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ABSTRACT 

EARLY PROGNOSIS OF BREAST CANCER USING IMAGE 

PROCESSING AND MACHINE LEARNING 

     Sena Büşra YENGEÇ TAŞDEMİR 

M.Sc. in Electrical and Computer Engineering Department 

Supervisor: Dr. Zafer AYDIN 

December-2018 

Among females, leading cause of cancer death and the most common cancer type is breast 

cancer. Early detection is vital because it reduces the mortality rate. Digital 

mammography is a widespread medical imaging technique that is used for early detection 

and diagnosis of the breast cancer. Automatic detection of tumorous area from the digital 

mammography image helps to locate the abnormal tissues, which may be analyzed further 

by a radiologist. It has two main stages: feature extraction and classification. In this work, 

numerous feature extraction methods have been tested such as 2D-DWT, HOG, 

Haralick’s textural features, TAS, LBP, Zernike and GLCM. In order to select the most 

suitable classifier, the following classifiers also have been tested: random forest, logistic 

regression, k-nearest neighbors, naïve Bayes, decision tree, support vector machines, 

Adaboost, radial basis function network, multilayer perceptron, convolutional neural 

network. Based on comprehensive experiments, the optimum combination of feature 

extraction, feature selection and classification methods are identified. The proposed 

method, which employs CLAHE as image pre-processing tool, 2D-DWT, HOG, Haralick 

as feature extraction methods, wrapper as the feature selection method and random forest 

as the classifier, attained an accuracy of 87.5%. 

Keywords: Breast Cancer, ROI detection, Haralick Features, Wavelet Decomposition, 

HOG Features, Random Forest Classifier 
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ÖZET 

GÖRÜNTÜ İŞLEME VE MAKINE ÖĞRENMESİ 

YÖNTEMİYLE ERKEN MEME KANSERİ TEŞHİSİ 

     Sena Büşra YENGEÇ TAŞDEMİR 

Elektrik ve Bilgisayar Mühendisliği Bölümü Yüksek Lisans 

Tez Yönetisi: Dr. Zafer AYDIN 

Aralık-2018 

Kadınlarda, kanser ölümünün önde gelen nedeni ve en sık görülen kanser türü meme 

kanseridir. Erken teşhisi ölüm oranını azaltır, bu nedenle erken teşhis çok önemlidir. 

Dijital mamografi, meme kanserinin erken teşhisi ve tanısında kullanılan yaygın bir tıbbi 

görüntüleme tekniğidir. İlgili bölgenin (ROI) otomatik olarak saptanması, bir radyolog 

tarafından daha fazla analiz edilebilecek şekilde anormal alanları işaretlenmesine 

yardımcı olur. ROI'nin otomatik algılanması, özellik çıkarımı ve sınıflandırılması olmak 

üzere iki ana aşamaya sahiptir. Öznitelik çıkarma, görüntüyü bir bilgisayar için daha 

anlaşılır olan başka bir boyuta dönüştürür. İkinci adım, sınıflandırıcı tarafından yapılan 

kararı (normal veya ROI) içerir. Bu çalışmada, 2D-DWT, HOG, Haralick'in dokusal 

özellikleri, TAS, LBP, Zernike ve GLCM gibi farklı öznitelik çıkarma yöntemleri 

kullanılmıştır. Sistemin performansını değerlendirmek için, gerçeklenen sınıflandırıcılar; 

rastgele orman, lojistik regresyon, k-en yakın komşular (k-NN), naïve Bayes, karar ağacı, 

destek vektör makinesi (SVM), Adaboost, radyal temelli fonksiyon ağı (RBF-NN), çok 

katmanlı algılayıcı (MLP), konvolüsyonel sinir ağı (CNN) kullanılmıştır. Kapsamlı 

deneyler neticesinde, optimum başarıyı veren özellik çıkarma, özellik seçimi ve 

sınıflandırma yöntemleri tespit edilmiştir. Önerilen yeni ROI tanıma yönteminde görüntü 

ön işleme aracı olarak CLAHE, öznitelik çıkarmak için 2D-DWT, HOG, Haralick, özellik 

seçim yöntemi olarak wrapper ve sınıflandırıcı olarak rastgele orman yöntemi kullanılmış 

ve % 87.5'lik bir doğruluk oranı elde edilmiştir. 

 

Anahtar kelimeler: Meme Kanseri, İlgili Bölge tespiti, Haralick’in Dokusal Öznitelikleri, 

Dalgacık Ayrışımı, HOG Öznitelikleri, Rastgele Orman Sınıflandırıcısı 
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Chapter 1 

Introduction 
 Every living creature is constructed from cells. All cells have a certain job to do 

and their life cycle contains reproducing new cells. The cells produce new cells by 

dividing itself in a decent way. Old or damaged cells die, the new cells take their places. 

Cancer occurs when the cells starts to uncontrolled cell proliferation which later forms 

tumor [1]. Not all cancer types have tumors moreover, tumors can be benign or malignant. 

Benign tumors are not cancerous while, malignant tumors are cancerous growth [2].    

 Cancer can start any part of body. If it starts at the breast, this type of cancer is 

called as breast cancer. Figure 1.1 describes the cancer type occurrences among woman 

according to human development index (HDI) of countries. Among females, leading 

cause of cancer death and most common cancer type is breast cancer (Figure 1.1) [3].  

 

 

Figure 1.1 Various type of cancer occurrences among females according to HDI index of countries 

[3]. 

  

 Early detection of breast cancer is very important in order to develop an efficient 

treatment methodology. There are several techniques to examine the breast; MRI, 
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ultrasound and mammographic examination. Mammography often outdo other 

alternatives in any aspect. It is cheaper, easy, not time consuming [4].  

However, the signs of the cancer are very subtle at the early stages. Therefore, 

expert radiologists can misdiagnose an important proportion of the cases from 

mammography [5]. To reduce this error rate, computer aided detection (CAD) systems 

have been developed.  

A CAD system typically consists of three main stages: pre-processing, feature 

extraction and classification. Choosing the right method for each of these steps are 

important for the accuracy of a CAD system [6]. Furthermore, to facilitate the decision 

process, detecting regions of interest (ROI) automatically can help to localize the cancer 

tissue better instead of extracting features directly from the original high-resolution 

mammography image. This thesis is based on designing a novel CAD system using image 

processing and machine learning tools.  

 

1.1 Breast anatomy  

Female breast is mostly constructed from fat cells which is called adipose tissue 

(Figure 1.1.1) [7]. The primary function of the female breast is to produce milk which can 

be produced by lobes. Lobes contain smaller lobules in its structures. Figure 1.1.2 shows 

lobes, lobules and milk ducts that connects lobules and lobes [8]. Breast cancer usually 

starts to grow at lobes and lobules [7]. 

                                         

Figure 1.1.1. Structure of the female breast [7] 
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Figure 1.1.2 Small structures that produces the milk [7]  

1.2 Mammographic abnormality types 

Any region that does not look normal in mammogram is suspicious. The 

abnormalities in mammogram are circumscribed lesions, microcalcifications and 

speculated regions [4]. 

1.2.1 Circumscribed lesions 

A focused white area on mammogram can be perceived as tumors. There are two 

type of tumors; benign and malignant. Benign tumor means non-cancerous. While 

malignant tumors are cancerous. 

 If tumors contour is very discriminative it is called as circumscribed lesions [9]. 

Figure 1.2.1.1 shows a mammogram instance, lesion is marked with red circle. 

Circumscribed lesions are usually accepted as benign. 

                                                

Figure 1.2.1.1 Circumscribed lesions is marked with red circle (from MIAS database) 
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1.2.2 Speculated masses 

A tartarated tissue with irregular shape forms the speculated mass [9]. Figure 

1.2.1.2 shows an instance of speculated mass which is a well-known sign of malignancy. 

                          

Figure 1.2.1.2 Speculated mass is marked with red circle  (from MIAS database) 

 

1.2.3 Microcalcifications 

Calcium deposits can be received as sign of a cancer which can be seen as bright 

point on mammogram. If the calcium deposits are small, it is called microcalcification 

[10]. Figure 1.2.1.3 shows an instance of microcalcification. Microcalcifications are 

usually accepted as benign. 
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Figure 1.2.1.2 Microcalcification is marked with red circle (from MIAS database) 

 

1.3 CAD System 

CAD uses computer systems for early detection of abnormalities in the 

mammogram. Early detection is very important to reduce the mortality rate [5]. CAD 

system is constructed from preprocessing, feature extraction and classification.  

Preprocessing stage enhances the visibility of cancer affected area from normal 

breast tissue. Feature extraction part converts the information of the image into another 

domain which is more understandable for a computer. Classification is the decision-

making stage where computer decides the mammogram is either benign or malignant 

using machine learning techniques [6]. 

 

1.4 Literature review for Brest Cancer Detection 

Various combination of feature extraction and machine learning methods have 

been used in order to develop a CAD system for breast cancer detection. Ericeria et al. 

[11] proposed the variogram function as a texture feature descriptor and used SVM as a 

classifier on a dataset that contains 150 abnormal, 30 normal images. They obtained 

accuracy of 90.26% and specificity of 85.37%. 
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Reyad et al. [12] used LBP and some statistical measure as feature extraction 

algorithm. The evaluation of the algorithm is performed using SVM classifier on DDSM 

database. The best accuracy measure is achieved when both LBP and statistical measures 

are used.  

Tahmasbi et al. [13] extracted ROIs manually from mammogram and used them 

as input of the system. Zernike moments and multi-layer perceptron are combined and 

evaluated on MIAS database. The overall accuracy and AUC score are 96.43%, 97.6% 

respectively. 

Junior et al. [14] proposed a method that distinguishes the tissue as mass or not-

mass on DDSM databases mammograms. They also used manually cropped ROIs as input 

of the system. They used Geary’s Coefficient and Moran’s Index to texture 

characterization and SVM as classifier. The method achieves 98.13% of sensitivity and 

98.36% specificity. 

Ergin et al. [15] used Dense Scale Invariant Feature Transform (DSIFT), 

Histogram of Oriented Gradient (HOG), Local Configuration Pattern (LCP) as feature 

extraction algorithm and used SVM, k-NN, Decision Tree and Fisher’s LDA as classifier 

on whole mammogram images of DDSM dataset. 10-fold cross validation method have 

been employed and best accuracy measure of 99.80 was achieved by using HOG features 

and SVM classifier. 

Beura et al. [16] extracted ROI from the mammogram image and extracted 

features from the ROIs. The feature extraction part includes two level, first they applied 

discrete wavelet transform to ROI and computed the GLCM of sub-wavelet transformed 

images. In order to eliminate redundant features, they used f-test and t-test. Back 

propagation neural network (BPNN) is used as classifier and the evaluation of algorithm 

is done on both MIAS and DDSM database. For MIAS and DDSM database the accuracy 

measures are 98% and 98.8% respectively. 

Rouhi et al. [17] extracted ROIs using segmentation, later segmented tumor 

regions was used to extract features. To segment the regions, they used trained artificial 

neural network. As features they used intensity, shape and textural features which is later 

eliminated by genetic search algorithm to select relevant features. Multilayer perceptron 

was adopted as classifier on both DDSM and MIAS database. They obtained accuracies 

for MIAS and DDSM are 90.16, 96.47 respectively. 

Gedik [18] proposed a method that extracts features using fast finite shearlet 

transform. Extracted features are eliminated using t-test. SVM used as classifier on both 
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MIAS and DDSM database. The accuracy results 97%, 100% for MIAS and DDSM 

achieved using 5-fold CV.  

Khan et al. [19] used Gabor features that extracted from ROIs. In order to 

eliminate irrelevant features, they adopted particle swarm optimization (PSO). SVM was 

used as classifier on DDSM dataset. The accuracy of the algorithm is 98.2%. 

Shastri et al. [20] implemented a combination of HOG algorithm and Gabor filter 

which is called Histogram of Texture (HOT). The features are extracted from ROIs. They 

tested the algorithm on IRMA database using 2-fold CV. The algorithm achieves the 

accuracy of 95%. 

Pak et al. [21] determined the ROIs automatically and improved the quality of 

images using super resolution and non-subsampled contourlet transform. The textural 

features are extracted. Adaboost classifier have been used on MIAS database, and overall 

accuracy is 91.43%. 

Jasmine et al. [22] used wavelet transform feature extraction on MIAS dataset. 

Artificial neural network has been used to detect abnormalities of the tissue. True 

detection rate is 87%. 

Mutaz et al. [23] segmented ROIs. They extracted textural features using GLCM 

from ROI. GLCM features was extracted from four different angles and two-pixel 

distance. The classification has been done by using ANN on DDSM database. They 

achieved the accuracy of 91.67%. 

Jona et al. [24] used mini-MIAS dataset. They extracted textural features from 

GLCM matrix. They evaluated the relevant features using two different optimization 

technique which are genetic algorithm and particle swarm optimization. They adopted 

SVM to eliminate the algorithms performance. They obtained accuracy of 94%.  

Görgel et al. [25] extracted features using wavelet coefficients. They used a 

private database which contains 66 mammogram images. Among 66 images 28 images 

were abnormal and 38 images were normal. The classification part is done by using SVM 

classifier. They obtained accuracy of 84.8%. 

Berbar [26] extracted both contourlet (CT) features and GLCM texture features. 

The contourlet features are represented as CT1 and CT2. CT1 applies contourlet at level 

4, while CT2 applies contourlet at levels [4 3 2 1]. The experiment is one on DDSM 

dataset using SVM classifier using different parameters. Best accuracy measure of 

98.69% is achieved. 
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Bovis and Singh [27] used Haralick’s textural features on MIAS database. They 

constructed five GLCM and extracted Haralick’s features. They tested the performance 

using ANN and 10-fold CV. The average accuracy of 77% was obtained. 
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Chapter 2 

Methods 
2.1 Datasets, image enhancement and feature extraction 

methods for breast mass detection  

2.1.1 Datasets 

The datasets were acquired from both mini-MIAS (Mammographic Image 

Analysis Society) database and pilot dataset of the Digital Mammography Dream 

Challenge which was held on 2017.  

The pilot set contains 500 images, 34 of them are labelled as abnormal and 466 as 

normal. The speculated region of interest of 31 abnormal mammographic images were 

marked by Assoc. Prof. Fahrettin Kılıç, who is an expert radiologist. The region of 

interests of the abnormal images were cropped and labelled manually which selects a 

rectangular region around the tumorous region. A similar cropping method was applied 

to 31 randomly selected normal mammograms, as well as, the size of the ROI was 

randomly selected. As a result, first ROI dataset has been constructed which contains 31 

cancer positive and 31 cancer negative images. The size of the ROIs is approximately 

73x68. 
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Figure 2.1.1.1 A ROI marked as a red circle in a mammogram image (from Pilot dataset). White circles represent mole 

markers 

 

 

Figure 2.1.1.2 Mammogram ROI dataset: (a) Three samples from non-ROI images labeled as 

negative (b) Three samples from ROI images labeled as positive 

The MIAS dataset consist of 322 digital mammograms, 109 abnormal and 213 

normal images with the size of 1024x1024. The ROIs of the dataset were marked initially, 

the same ROI dataset construction process has been applied to MIAS. Although the image 

sizes of the first and the second ROI datasets differ for each image, the datasets can be 

used for feature extraction without any change.  

Since the raw images of the MIAS-ROI set later will be used in Convolutional 
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Neural Network and Multi-Layer Perceptron, the size of the images must be same. For 

this reason, a third ROI dataset was produced with a fixed image size of 28x28 is average 

value of the ROIs in MIAS. 

 

2.1.2 Image enhancement 

The MIAS image quality is not good as Pilot dataset for this reason some 

image enhancement techniques have been applied.  

 

2.1.2.1 Contrast limited adaptive histogram equalization (CLAHE) 

CLAHE method is used for enhancing the contrast adaptively. Basis of operation 

is Adaptive Histogram Equalization (AHE).  The image is divided into small blocks 

which is called tiles and AHE equalizes the histogram for each tile. If the tile has some 

noise, AHE amplifies the noise. Therefore, contrast limiting is used to avoid this problem.  

If there is any histogram bin which is above a contrast limit, those pixels are pruned and 

distributed uniformly, this process is shown in Figure 2.1.2.1.1 [28] [29]. After 

equalization, to correct the artificiality of the tile borders, linear interpolation is applied. 

 

                    

Figure 2.1.2.1.1 Clahe Operation [30] 

 

2.1.2.2 Histogram Equalization 

Histogram equalization is used to adjust the global contrast [31]. After this 

process, the intensities can be more even as shown in Figure 2.1.2.2.1. 
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Figure 2.1.2.2.1 Histogram Equalization Process 

2.1.2.3 Dilation 

 Dilation adds pixels to boundary of an object and fills holes using a structuring 

element [31].  

2.1.2.4 Erosion 

This operation removes the boundary of the object using a structuring element 

[31]. 

2.1.2.5 Opening 

The morphological opening is an erosion followed by dilation [31].  

2.1.2.6 Closing 

The morphological closing is a dilation followed by erosion. Closing removes 

small holes from foreground [31]. 

2.1.2.7 White top-hat transform 

The white top-hat transform calculates the difference between the input image and 

its opening [32]. 

2.1.2.8 Black top-hat transform 

The black top-hat transform calculates the difference of the input image and 

its closing [32]. 
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2.1.3 Feature extraction methods 

Feature extraction aims to capture the visual information content of an image by 

reducing the pixel data into another domain in order to facilitate the decision-making 

process. 

2.1.3.1 Multi-resolution analysis using two-dimensional discrete wavelet 

transform (2D-DWT) 

The discrete wavelet transform can be implemented as a combination of a down 

sampler and a filter bank that decomposes a 1D or a 2D signal (i.e. image) into sub-bands 

at different resolution levels [33]. The digital filter bank contains high-pass and low-pass 

filters. Because image pairs contain the high and low frequency information, the Wavelet 

transform can extract useful texture features from mammographic ROIs. The two-level 

Wavelet decomposition of a two-dimensional signal is shown in Figure 2.1.3.1.1. 

                          

Figure 2.1.3.1.1 Sub-bands of 2 level wavelet decomposition 

  

 

Figure 2.1.3.1.2 One level wavelet decomposition of mammographic ROI 
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To compute two-dimensional discrete wavelet, transform (DWT), one dimensional DWT 

is applied on each column and the raw of the input image separately. Figure 2.1.3.1.2 

illustrates the 2D-DWT of a given mammographic ROI. The kernel of the wavelet was 

Haar function. The right image in the figure illustrates the decomposition of the original 

image on the left into four sub-bands in frequency domain, which represents low-high 

(LH), high-low (HL), low-low (LL), high-high (HH) components corresponding to 

horizontal, vertical, approximation and diagonal respectively. Three of the sub-regions, 

HH, HL and LH contains the detail information for different orientation and resolution of 

the ROIs while the LL involves the coarse approximation at a particular resolution level 

[34]. The LL sub-band can be decomposed further into sub-bands repeatedly to increase 

the resolution of the Wavelet.  

2.1.3.2 Histogram of oriented gradients (HOG) 

HOG features are used by the computer vision community to detect objects and 

localize them. It is based on the theory that a mass or shape can be distinguished by 

differential intensity histogram of the local intensity gradients or edge directions. Each 

mammographic ROI is divided into non-overlapping uniform windows. For each 

window, the differentials for each orientation are calculated. These are called the 

gradients 𝐺𝑋 and 𝐺𝑌 in x and y directions. The gradient which is related to differential is 

constructed from group of cells [35]. 

 The second step includes calculating the magnitude and orientation of the gradient 

for each pixel in the image, which can be achieved using equation 2.1.3.2.1 and equation 

2.1.3.2.1. 

 

                                           |𝐺|  =  √𝐺𝑋
2 + 𝐺𝑌

2          (Equation 2.1.3.2.1) 

 

                                     𝜃(𝑥, 𝑦)  =  𝑡𝑎𝑛−1 (
𝐺𝑌

2

𝐺𝑋
2)         (Equation 2.1.3.2.2) 

  

Figure 2.1.3.2.1 shows the visualization of a malignant ROI and its HOG 

representation. The HOG feature extraction method extracts 16 features and it is 

summarized in Algorithm 2.1.3.2.1. 
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Figure 2.1.3.2.1 Histogram of Oriented Gradients visualization of abnormal ROI 

 

Algorihm 2.1.3.2.1. HOG feature extraction 

1  //input I: The mammographic ROI image 

2  //output: 16 HOG features 

3  Gx = Sobel filter of input image (vertical); 

4  Gy = Sobel filter of input image (horizontal); 

5  Magnitude, Angle = Calculate the magnitude and angle of Gx and Gy; 

6  Number of Bins = 16; 

8  Bin = (Number of Bins * Angle) / 360; 

9  Features = Count number of occurrences of each value in array of Bin using 

Magnitude as weight where minimum length is set equal to the number of bins; 

10 Return Features; 

  

2.1.3.3 Haralick’s Textural Features 

 The texture of an image bears many characteristics that can be used to identify a 

ROI. In order to extract fourteen Haralick’s features the gray level co-occurrence matrices 

(GLCM) are used [36]. GLCM is a technique that can be used to compute the texture 

information by capturing the spatial relationships of the pixels which is shown in Figure 

2.1.3.3.1. The GLCM calculates the spatial relationship by counting the pixel pairs that 

have the same values for a given distance and direction. For this purpose, a co-occurrence 

matrix is computed for each of the four directions (0°, 45°, 90° and 135°) with one-pixel 

distance. The size of the GLCM is equal to gray level value of the given image. The 

GLCM calculates the spatial relationship by counting the pixel pairs with constant values 

that occurs in a given distance and direction. This process is shown in Figure 2.1.3.3.2. 

14 features for four directions can be derived from GLCM. 
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Figure 2.1.3.3.1 Spatial Information of GLCM [37] 

 

Figure 2.1.3.3.2 Computation of Matrices with unit distance and four directions. (a) Gray Level 

Values of the Input Image (b) 0⁰ GLCM c) 45⁰ GLCM d) 90⁰ GLCM e) 135⁰ GLCM [38] 

 

The gray level of the given image is three which is same size of the matrices. The 

co-occurrence matrices for each direction are calculated by counting the pixel pairs for 

the specified direction. After counting process numbers have been placed in/at an 

appropriate position. The fourteen Haralick features constructed from the following 

statistics contrast, entropy, homogeneity, correlation, mean of x-axis, mean of y-axis, 

energy, standard deviation, moment 1, moment 2, moment 3, distribution of the 

probability, ASM, mean, angular second moment (ASM), entropy [36]. 

 

2.1.3.4 Threshold adjacency statistics (TAS) 

 Threshold adjacency statistics are constructed as follows. First of all, original 

image is processed with three different threshold values, this process gives three binary 

 

   

 

 

   ●  
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images. Threshold values are mean intensity value (μ), maximum of the mean (μ+30) and 

minimum of the mean value (μ-30), the minimum intensity value should be at least 30. 

Secondly, the statistics are found to reveal the dissimilarities between threshold images. 

The number of white pixels that has no white pixel neighbor is counted, the number of 

white pixels that has one neighbor white pixel is counted, this process repeated till the 

number of the white neighbor pixel reaches to eight. The process which is shown in the 

Figure  2.1.3.4.1, constructs the statistics [39].  

 

Figure 2.1.3.4.1 Process of counting the number of white pixels [39] 

Each statistic is divided by the total number of white pixels to make normalization. 

This process is repeated for all three images and finally it gives 27 statistics. 

2.1.3.5 Local Binary Patterns (LBP) 

Local Binary Pattern extracts features to classifying texture [40]. The method uses 

texture spectrum model. To construct the LBP feature vector, the image is traversed 

window by window. Windows are divided into cells and for each pixel in the cell is 

compared with its eight neighbors. If pixels intensity is greater than the neighbors’ value, 

it is written 0 or else 1, it is shown in the Figure 2.1.3.5.1. Since it has the information of 

the 3x3 neighbors, there is 28 = 256 possible patterns [41] 

 

Figure 2.1.3.5.1 Local Binary Pattern of a matrix element [41]. 

The results of this test are stored in a binary array which is later converted to 

decimal which is illustrated in the Figure 2.1.3.5.2.  
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Figure 2.1.3.5.2 Calculation of the score using a binary array [41] 

 

The process is repeated for each pixel in the image. Finally, the 256-bin histogram 

of LBP feature vector is created. 

2.1.3.6 Zernike moments 

 Zernike moments are not texture feature, it is a global measure to show the 

distribution of mass [42]. Moments are statistical measure which captures both global and 

geometric information of the entire image instead of a single boundary point. In order to 

extract the features using Zernike Moments first the image is converted into binary scaled 

numerical image. Then pixel coordinates are mapped to unit circle. Origin of the unit 

circle is center of the image. The outside of the unit circle is discarded. The unit circle 

image map is then converted into polar coordinates. Zernike is constructed from 

polynomials which is represented by 𝑉𝑚𝑛(𝑥, 𝑦) [42]. The polynomials are calculated 

using Equation 2.1.3.6.1. 

                                                    𝑉𝑛𝑚(𝑥, 𝑦) =  𝑉𝑛𝑚(𝜌, 𝜃) =  𝑅𝑛𝑚(𝜌)𝑒𝑗𝑚𝜃                        (Equation 2.1.3.6.1) 

 

 

The 𝜌 represents the length from origin to f (x, y) pixel and 𝜃 represents the angle between 

the vector 𝜌 and x-axis. 𝑅𝑛𝑚(𝜌) is radial polynomial which is calculated using the Equation 

2.1.3.6.2. 

                           𝑅𝑛𝑚(𝜌) =  ∑ (−1)𝑠 (𝑛−𝑠)!

𝑠!(
𝑛+ |𝑚|

2
−𝑠)!(

𝑛− |𝑚|

2
−𝑠)

𝜌𝑛−2𝑠𝑛− |𝑚|/2
𝑠=0                        (Equation 2.1.3.6.2) 

 

The Zernike moments of order n with repetitions are calculated using the equation 

Equation 2.1.3.6.1 and Equation 2.1.3.6.3. 

𝐴𝑛𝑚 =  
𝑛+1

𝜋
∑ ∑ 𝑓(𝑥, 𝑦)𝑉𝑚𝑛

∗ (𝜌, 𝜃)𝑑𝑥𝑑𝑦𝑦𝑥                              (Equation 2.1.3.6.3) 
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2.1.3.7 Gray-level co-occurrence matrix 

 GLCM examines the spatial information the pixels in a subregion of an image. 

Creation of the GLCM matrix is described in the section 2.1.3.3 Haralick’s Textural 

Features. 

 

2.1.4 Feature selection 

 The extracted features are mathematical descriptors, which can be employed by a 

classifier to decide. If the number of features is high, the classification model can suffer 

from the presence of irrelevant features as well as noise contained in features [43]. 

Further-more, as the number of dimensions increases the classification model can be 

prone to over-fitting, which reduces the prediction accuracy on unseen test examples. To 

address these problems, feature selection can be used. The major task is to select a feature 

set, which contains a sub-set of the original features that are relevant for predicting the 

output class. 

2.1.4.1 Correlation feature selection (CFS) 

 The CFS algorithm builds different sub-feature sets and evaluates the correlation 

between feature and class for each feature, according to CFS the correlation between 

feature and class should be robust but correlation between features should be weak. The 

CFS measures the merit of a sub-feature set to evaluate the relevant features [44]. On the 

other hand, the CFS in the Weka software uses three different measures which are relief, 

minimum description length and symmetrical uncertainty instead of merit.  

 

2.1.4.2 Correlation attribute evaluation 

 The correlation attribute evaluation works slightly different than the CFS. It builds 

feature subsets and it evaluates the features relevancy by measuring the Pearson’s 

correlation coefficient for feature and the class [45]. However, The CFS calculates not 

only the correlation of feature and class, but also the correlation between all features.  

 

2.1.4.3 Gain ratio attribute evaluation (GR) 

 This feature selection method calculates the gain ratio according to class for each 

feature. Gain ratio measure is used for sorting the attributes.  The algorithm chooses the 

feature that maximizes the GR to be on the top [44]. Process is repeated to sort the features 
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by relevance. The gain ratio is measured using the entropy measure. The entropy (H) is 

calculated for measuring the systems unpredictability. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶𝑙𝑎𝑠𝑠) =  − ∑ 𝑃(𝑐) log2(𝑃(𝑐))𝑐 𝜖 𝐶𝑙𝑎𝑠𝑠            (Equation 2.1.4.3.1) 

 

                      𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐶𝑙𝑎𝑠𝑠, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒) =  
(𝐻(𝐶𝑙𝑎𝑠𝑠)−𝐻(𝐶𝑙𝑎𝑠𝑠| 𝐹𝑒𝑎𝑡𝑢𝑟𝑒))

𝐻(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)
                         (Equation 2.1.4.3.2) 

 

2.1.4.4 Information gain attribute evaluation 

 The method calculates the information gain according to class for each feature 

[46]. The same process of gain ratio attribute evaluation is repeated. 

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛 (𝐶𝑙𝑎𝑠𝑠, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒) =  𝐻(𝐶𝑙𝑎𝑠𝑠) − 𝐻(𝐶𝑙𝑎𝑠𝑠| 𝐹𝑒𝑎𝑡𝑢𝑟𝑒)  (Equation 2.1.4.4.1) 

 

2.1.4.5 Principal component analysis (PCA) 

 The basic idea of the PCA is finding patterns in the data and transfer data into new 

feature space [43]. In order to find the patterns PCA uses eigen vectors (principal 

components) and eigen values of a covariance matrix. PCA projects high dimensional 

data into lower dimensions and retains most of the information. The eigen vectors 

determine the direction of the new feature space while the eigen values determine the 

magnitude. 

 

2.1.4.6 Relief-based feature selection algorithm 

 The algorithm calculates a score for each feature. Then, according to score the 

features are sorted and features whose rank is above a threshold will be selected [47]. To 

calculate the score, a score vector (w) is initialized. The size of the w is equal the number 

of the features (k) in the dataset. One feature vector (f) which belongs to a random 

instance is taken and compared with similar feature vectors which belongs to same and 

another class. The most similar same-class instance is near-hit, and the most similar 

different-class instance is near miss. For each feature the score is updated using the 

Equation 2.1.4.6.1. This process is repeated m times, note that the size of the data set is 

equal to n. 

𝑤𝑗 =  𝑤𝑗 − (𝑓𝑗 − 𝑁𝑒𝑎𝑟ℎ𝑖𝑡)
2

+ (𝑓𝑗 − 𝑁𝑒𝑎𝑡𝑚𝑖𝑠𝑠)
2
                  (Equation 2.1.4.6.1) 
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2.1.4.7 Symmetrical uncertainty (SU) 

 This feature selection method calculates the symmetrical uncertainty according to 

class for each feature. SU measure is used for sorting the attributes. The algorithm 

chooses the feature that has the highest value of SU to be on the top [48]. Process is 

repeated to sort the features by relevance. SU is calculated using Mutual Information (MI) 

(Equation 2.1.4.7.1) and entropy (H) (Equation 2.1.4.3.1). Mutual information measures 

the correlation between feature and class. 

𝑀𝐼(𝑐𝑙𝑎𝑠𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) =  𝐻(𝑐𝑙𝑎𝑠𝑠) − 𝐻(𝐶𝑙𝑎𝑠𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒)          (Equation 2.1.4.7.1)                   

𝑀𝐼(𝑐𝑙𝑎𝑠𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) = 𝐻(𝑐𝑙𝑎𝑠𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) − 𝐻(𝑐𝑙𝑎𝑠𝑠|𝑓𝑒𝑎𝑡𝑢𝑟𝑒) 

 −𝐻(𝑓𝑒𝑎𝑡𝑢𝑟𝑒|𝑐𝑙𝑎𝑠𝑠)             (Equation 2.1.4.7.2) 

 

The formula of the SU is shown in the Equation 2.1.4.7.3.  

 

𝑆𝑈(𝑐𝑙𝑎𝑠𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) =  
2 𝑥 𝑀𝐼(𝑐𝑙𝑎𝑠𝑠,𝑓𝑒𝑎𝑡𝑢𝑟𝑒)

𝐻(𝑐𝑙𝑎𝑠𝑠)+𝐻(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)
           (Equation 2.1.4.7.3) 

 

2.1.4.8 Wrapper 

 The wrapper method uses a selected classifier recursively in cross validation. For 

each cross validation different combination of features will be used to find a good feature 

set [49]. The diagram of the wrapper feature selection method can be seen in the Figure 

2.1.4.8.1.  

    

 

Figure 2.1.4.8.1 Diagram of Wrapper feature selection [49] 
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2.2 Classification Methods 

Classification methods contains two main stage. The first stage is finding a generic 

mathematical model to fit dataset features into classes, the second stage includes the 

application of the model to new and unseen data in order to predict its class.[50] 

Following classifier methods are implemented: Random Forest, Logistic Regression, K-

Nearest Neighbors, Naïve Bayes, Decision Tree, Support Vector Machines, Adaboost, 

Radial Basis Function Network, Multilayer Perceptron, Convolution Neural Network. 

 

2.2.1 Decision tree learning 

 In decision trees the features, the decision rules and decisions are represented as 

nodes, branch and leaf respectively. The idea behind the decision tree learning is to model 

a tree using various algorithms. The WEKA software uses C4.5 algorithm. The C4.5 

algorithm initializes with the original dataset as root. For each iteration, algorithm 

traverse each feature of the dataset and calculates the information gain (difference in 

entropy) of the feature. Then it selects the feature which has highest information gain 

value. Using the selected feature dataset is split. The algorithm is done recursively for 

each feature thus the decision tree is formed [51][52]. Figure 2.2.1.1 illustrates a simple 

decision tree. To stop the recursion one of the following cases should be done: 

• The elements of the subset belong to same class then the node becomes to a leaf. 

• The features are running out, there is no more feature to select, then the most 

common class is selected and node becomes a leaf. 

• The instances are running out, the most common class is selected and node 

becomes a leaf. 
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Figure 2.2.1.1 Simple decision tree [52] 

 

2.2.2 Random forest 

 Random forest algorithm creates multiple decision trees using the random sample 

with replacement algorithm. It uses random and a small part of the training data. Feature 

bagging is used when trees are constructed. The feature bagging algorithm randomly 

selects √𝑛 features out of n features for each split [53]–[55]. The optimum number of 

trees can be found using the cross-validation. The final decision of the classification is 

made by majority voting. Figure 2.2.2.1 illustrates a random forest which is constructed 

from multiple decision trees. 

     

Figure 2.2.2.1 Random forest [56] 
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2.2.3 K-nearest neighbors 

 The k-NN is an instance-based method. The training part of the algorithm is only 

storing the entire training set features and its labels. The classification part is made by 

using the training set directly (no model is needed). To classify a new instance the entire 

training set is searched and mode of the class value of K similar instances is selected. 

Figure 2.2.3.1 shows the KNN’s working process.  The similar instances can be called as 

neighbors, Euclidian distance (Equation 2.2.3.1) is used for finding the neighbors. [57]–

[59]  

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) =  √∑ (
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑛

−𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑛
)

2
𝑗
𝑛=1           (Equation 2.2.3.1) 

                                      

Figure 2.2.3.1 K-nearest neighbors [60] 

 

2.2.4 Naïve Bayes classifier 

 The Naïve Bayes classifier is a probabilistic classifier. It assumes that all the 

features in are independent. In training part, the probability of each class given different 

feature values (conditional probability) should be calculated (Equation 2.2.4.1). It is not 

necessary to fit a model [61][62].    

 

𝑃(𝐶𝑘|𝑥) =
𝑃(𝐶𝑘) 𝑃(𝑥|𝐶𝑘)

𝑃(𝑥)
               (Equation 2.2.4.1) 
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 To classify the new unseen data, the predictions can be done using the Bayes 

theorem (Equation 2.2.4.2) [63]. 

                                                 𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘 𝜖 {1,..,𝐾}

 𝑝(𝐶𝑘) ∏ 𝑝(𝑥𝑖|𝐶𝑘)𝑛
𝑖=1                            (Equation 2.2.4.2) 

 

2.2.5 Logistic regression 

 The kernel of the logistic regression is logistic function that also called as sigmoid 

function. The sigmoid function is shown in Figure 2.2.5.1. It fits an equation that 

combines coefficients and input values to find output values (Equation 2.2.5.1) [64]. 

 

Figure 2.2.5.1 Logistic Function 

 

𝑦 =  
𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2

1+𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2
                                      (Equation 2.2.5.1) 

 

Where 𝛽0 is bias and the 𝛽1, 𝛽2 values are the coefficients. The coefficients will 

be estimated using maximum likelihood estimation to minimize the error rate between 

predicted value and true class using some optimization algorithms [65]. The estimated 

coefficients are used later for predicting the new cases, if predicted value is approximates 

to 1, new instance belongs to default class, otherwise it belongs to other class. 
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2.2.6 Support vector machines (SVM) 

 SVM defines a hyperplane that maximizes the margin between classes using a 

kernel in training part. Figure 2.2.7.1 shows the visualization of a hyperplane. Numerical 

optimization techniques are used to find coefficients of the hyperplane. Using hyperplane 

new data is classified [66], [67]. 

                   

Figure 2.2.7.1 Visualization of hyperplane 

 

2.2.7 Adaptive boosting (AdaBoost) 

 Adaboost is a meta learner that combines many weak learners in order to build a 

strong learner [56]. Weak classifiers are trained using a random subset of a training set. 

Adaboost gives weight to every instance after training part of the weak learner. A 

misclassified instance gets higher weight so, it appears at the top of the next training 

subset of next weak classifier. Also, classifiers get a weight based on the accuracy after 

training as well. To classify a new instance Equation 2.2.7.1 is used where ℎ𝑡(𝑥) 

represents output of weak classifier c for input i [68], [69]. 

 

𝑦̂ = 𝑠𝑖𝑔𝑛(∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ∙ ℎ𝑡(𝑖)𝑇
𝑡=1 )               (Equation 2.2.7.1) 

 

2.2.8 Artificial Neural Network (ANN) 

 ANN is a framework rather than an algorithm. ANN constructed from connected 

artificial neurons. Each neuron receives a signal, process it using a non-linear function 

(activation function) and transmit it to other connected neurons. Neurons and connection 

between neurons have weights, as the learning process proceeds the weights will be 

adjusted [70][71]. Figure 2.2.8.1 shows the basic visualization of an ANN. 
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Figure 2.2.8.1 Visualization of a ANN [72] 

 

2.2.9 Multilayer Perceptron (MLP) 

 MLP is a form of feedforward ANN and it uses backpropagation algorithm for 

training. MLP consists of an input layer, at least one hidden layer and an output. Each 

neuron uses nonlinear activation function [70][73]. Figure 2.2.9.1 shows the structure of 

MLP. 
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Figure 2.2.9.1 One hidden layer multilayer perceptron [74] 

2.2.10 Radial basis function network (RBFN) 

 The RBFN is a type of neural network which uses radial function as activation 

function (Equation 2.2.10.1) [75], [76]. The network constructed from three layers, input 

layer, one hidden layer with activation function of radial basis and linear output layer 

(Figure 2.2.10.1). 

 

                 

Figure 2.2.10.1 Construction of RBFN [77] 
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𝜑(𝑥) =  𝑒−𝛽‖𝑥−𝜇‖2
                         (Equation 2.2.10.1) 

 

Where 𝜇 mean, x is the input and 𝛽 is the coefficient which controls the with of 

the gaussian bell curve of radial function (Figure 2.2.10.2). 

 

 

 

Figure 2.2.10.2 Gaussian radial function with different 𝜷 values. [77] 

 

2.2.11 Convolution neural network (CNN) 

 CNN is a type of feed-forward artificial neural network which is mostly used for 

image recognition. The CNN consists of two components which are hidden layer where 

the feature extraction happens and the classification part which is done by fully connected 

layers which is shown in Figure 2.2.11.1 [78][79]. 

 

 

Figure 2.2.11.1 CNN layers [79] 
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2.3 Cross validation techniques (CV) 

 CV procedures are used for the estimating the skill of the dataset on a validation 

set. 

 

2.3.1 Ten-fold cross validation (10-fold CV) 

 This process is used for the evaluate the machine learning tools skill using 

resampling procedure [80]. The process is as follows: randomize the dataset, split data set 

into k fold. For each fold use them as a test set and rest of them are training set and save 

the score. 

 

2.3.2 Leave-one instance out cross validation (LOO-CV) 

  In each iteration of the LOOCV, one image is selected as the test data and rest are 

used as the train set. This process is repeated until all images have been used as the test 

sample [81]. 

 

2.4 Classifier evaluation metrics 

 Some metrics are used for evaluating the classifiers performance. The metrics that 

are used in Weka: Accuracy, f-measure, false positive rate, specificity, precision, recall 

and AUC score. In order to calculate accuracy measures, confusion matrix is constructed. 

 

2.4.1 Confusion Matrix 

 Confusion matrix visualizes the performance of the algorithm [82]. The rows and 

the columns of the matrix represents the actual class and predicted class respectively [83]. 

If there is two class one is labelled as positive (P) and the other is negative (N) the 

confusion matrix is in the Figure 2.2.2.1.1. 
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Figure 2.2.2.1.1 Confusion Matrix [84] 

 

2.4.2 Accuracy 

 Accuracy (Equation 2.2.2.2.1) can be represented as ratio between number of 

correctly classified instances and all classified instances [50]. 

 

                                                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
                        (Equation 2.2.2.2.1) 

 

2.4.3 Precision 

  Precision (Equation 2.2.2.3.1) calculates how well the classifier predicted 

condition positive cases [85]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
             (Equation 2.2.2.3.1) 

2.4.4 Recall (Sensitivity) 

 Recall (Equation 2.2.2.4.1) measures the proportion of condition positive cases 

that classified as condition positive [85]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (Equation 2.2.2.4.1) 
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2.4.5 Specificity 

 Specificity (Equation 2.2.2.5.1) measures the proportion of condition negative 

cases that classified as condition negative [85]. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
          (Equation 2.2.2.5.1) 

 

2.4.6 Area under curve score (AUC) 

 Receiver operating characteristic (ROC) curve shows how a classifier differentiate 

two different classes. The AUC is the area under ROC curve [85]. Figure 2.2.2.6.1 

visualizes a simple ROC curve. 

                             

Figure 2.2.2.6.1 Visualization of a ROC curve [86] 

2.4.7 F1 score 

 F1 score (Equation 2.2.2.7.1) measures the test accuracy using precision and recall 

[85]. 

𝐹1𝑠𝑐𝑜𝑟𝑒 =  
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

         (Equation 2.2.2.7.1) 

 

2.4.8 False positive rate (FPR) 

 FPR (Equation 2.2.2.8.1) is also called miss rate. It measures the probability of 

false alarm [85]. 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
              (Equation 2.2.2.8.1) 
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2.5 Proposed Method 

Various methods have been tested as explained in Section 2.2. Based on the 

experimental results given in Section 3.1, a method comprises of the tools that give the 

best performances is proposed. The summary of the proposed method is shown in Figure 

2.3.1 as a flow diagram which has several stages. Explanation of the stages is as follows. 

 

Figure 2.3.1 Flow Diagram of the Proposed Algorithm 

Diagram starts with image acquisition. The images are acquired from two different 

datasets (see Section 2.1.1). The experiments of the proposed method are performed for 

each dataset. As image pre-processing, CLAHE operation is applied on MIAS dataset in 

order to increase the visibility of the tumorous region (see Figure 3.2.2). However, the 

CLAHE operation is only applied to MIAS dataset because of the reasons explained in 

Section 3.2. Pre-processing is followed by a manual ROI cropping (see Section 2.1.1). As 

a result, the dataset that is used in the algorithm contains cancer positive (marked by an 

expert) and cancer negative (randomly cropped, see Section 2.1.1) sub-regions. In this 

thesis those regions are referred as ROIs.  

One level Haar wavelet decomposition is applied on the ROI dataset (see Section 

2.1.3.1). Haralick features (see Section 2.1.3.3) are extracted from LL, LH, HL, HH sub-
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bands of the wavelet decomposed image while, HOG features (see Section 2.1.3.2) are 

extracted only from LL sub-band. Haralick gives total 224 attributes as explained in 

Figure 2.3.2. 

 

 

 Before feature selection total number of attributes is 16 + 224 = 240. Most relevant 

12 features are selected by Wrapper algorithm (see Section 2.1.4.8). The classifier of the 

Wrapper algorithm was Random Forest with default parameters.  

 The selected features are given as an input to Random Forest classifier (see 

Section 2.2.2). Different number of trees for Random Forest classifier are tested. The 

optimum number of trees is found as 100.  

 The proposed method is tested on the datasets. The test results of the proposed 

method are given in Tables 3.1.50, 3.2.2 and 3.2.7 [87].  
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Chapter 3 
 

 

Experiments and Analysis 

In order to evaluate the performance, various feature extraction and classification 

methods have been applied on different datasets which is described in the Chapter 2. 10-

fold cross validation and leave one instance out cross validation was performed.   Hyper 

parameter optimization has been applied on a validation set. Moreover, using the model 

which was acquired from cross validations, the breast has been traversed and suspicious 

areas has been labeled on whole breast. The experiments have been executed using 

WEKA software and TensorFlow (python) [88], [89].  

 

3.1 Evaluation of feature extraction methods 

 Feature extraction methods converts image into simpler domain which is more 

understandable for computer, therefore it is important to select a suitable feature 

extraction method or combination of different feature extraction methods. Various feature 

extraction methods, which is described in section 2, have been applied and evaluated 

using different machine learning techniques on Pilot dataset. Table 3.1.1 shows 10-fold 

cross validation using Random forest classifier applied on dataset without normalization. 

The random forests number of trees is set to 100 which is the default value of WEKA. 

Class 0 represents normal classified instances, class 1 represents abnormal instances. 

Accuracy metrics are represented in the tables. Moreover, to achieve a great performance 

accuracy metrics of both classes should be higher.  
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Metrics(%

) 

\Class 

0 1 
 Weighted 

Avg. 

TP Rate  71.0   77.4   74.2 

FP Rate  22.6 29 25.8 

Precision  75.9   72.7 74.3    

Recall  71.0 77.4   74.2   

F-Measure  73.3 75 74.2 

ROC Area  80.6 80.6 8.06    

Overall 

Accuracy  
  77 

Table 3.1.1 Haralick features are extracted from Pilot dataset and evaluated using 10-fold cross 

validation with random forest classifier without normalization 

The experiment which is described above has been repeated using different sized 

ROI datasets. The datasets are generated using the such methodology that fixes number 

of the abnormal instances and increases the number of the normal cases by two times, 

three times, four times, five times of the number of normal instances. Thus, there is four 

more datasets. For instance, biggest ROI dataset of Pilot dataset has 186 instances (31 

abnormal, 155 normal). Table 3.1.2 shows the 10-fold cross validation accuracy metrics 

using random forest classifier on dataset which contains 31 abnormal 62 normal 

instances. The table 3.1.2 shows better evaluation metrics than the Table 3.1.1 for class 0 

and weighted average of all cases. On the other hand, class one’s (malignant cases) TP 

Rate and f-measure has been dropped.  
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate  85.5 67.7 79.6 

FP Rate  32.3 14.5 26.3 

Precision  84.1 70.0 79.4 

Recall   85.5 67.7 79.6 

F-

Measure  
84.8 68.9 79.5 

ROC 

Area  
83.2 83.2 83.2 

Overall 

Accuracy 
  79 

Table 3.1.2 Haralick features are extracted from the dataset which is constructed from 31 abnormal 

and 62 normal instances and evaluated using 10-fold CV with random forest 

 Table 3.1.3 shows 10-fold CV results of another ROI dataset that has 31 abnormal 

93 abnormal instances. Compared to Table 3.1.1 the performance metrics drops for class 

1 and increases for class 0 also weighted average of the metrics are decreased. 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.          

TP Rate  95.7 12.9 75 

FP Rate  87.1 4.3 66.4 

Precision  76.7 50 70 

Recall  95.7 12.9 75 

F- 

Measure  
85.2 20.5 69 

ROC 

Area 
54.4 54.4 54.4 

Overall 

Accuracy 
  75 

Table 3.1.3 Haralick features are extracted from the dataset which is constructed from 31 abnormal 

and 93 normal instances and evaluated using 10-fold CV with random forest 

Table 3.1.4 and 3.1.5 corresponds to evaluation metrics of 10-fold CV for data 

sets that have 31 abnormal 124 normal and 31 abnormal 155 normal instances 

respectively.  
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Metrics(

%)\Class 
0 1 

Weighted 

Avg. 

TP Rate  94.4 12.9 78.1 

FP Rate  87.1 5.6 70.8 

Precision 81.3 36.4 72.3 

Recall 94.4 12.9 78.1 

F-

Measure 
87.3 19 73.7 

ROC 

Area  
51.8 51.8 51.8 

Overall 

Accuracy  
  78 

Table 3.1.4 Haralick features are extracted from the dataset which contains 31 abnormal and 124 

normal instances and evaluated using 10-fold CV with random forest 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate  95.5 3.2 80.1 

FP Rate  96.8 4.5 81.4 

Precision  83.1 12.5 71.4 

Recall  95.5 3.2 80.1 

F-

Measure  
88.9 5.1 74.9 

ROC 

Area 
65.1 65.1 65.1 

Overall 

Accuracy 
  78 

Table 3.1.5 Haralick features are extracted from the dataset which contains 31 abnormal and 155 

normal instances and evaluated using 10-fold CV with random forest 

According to table 3.1.4 and 3.1.5 accuracy metrics of abnormal cases are 

increased because of the dataset size rise. But it is kind of overfitting because while 

normal cases accuracy metrics increasing, the abnormal cases metrics decreasing 

critically, the classifier predicts every instance as normal which is predominant. 
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Haralick features have been normalized on balanced dataset and imbalanced 

dataset which contains 31 abnormal 62 normal cases. The results are shown in table 3.1.6 

and 3.1.7. In table 3.1.1 and 3.1.2, 3.1.3 and 3.1.5 the accuracy metrics are almost same 

except ROC area. The features which are not normalized perform better than the 

normalized version. The upcoming experiments are done using balanced dataset and one 

of the imbalanced datasets which contains 31 normal 62 abnormal instances. 

Metrics(%

)\Class 
0 1 

Weighted 

Avg.  

TP Rate  71  77.4   74.2 

FP Rate 22.6 29 25.8 

Precision 75.9 72.7 74.3 

Recall  71 77.4 74.2   

F-Measure  73.3 75 74.2 

ROC Area  79.7    79.7 79.7 

Overall 

Accuracy  
  80 

Table 3.1.6 Haralick features are extracted from balanced dataset, normalized and evaluated using 

10-fold cross validation with random forest classifier 
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 88.7 64.5 80.6 

FP Rate  35.5 11.3 27.4 

Precision 83.3 74.1 80.2 

Recall 88.7 64.5 80.6 

F-

Measure  
85.9 69 80.3 

ROC 

Area  
86 86 86 

Overall 

Accuracy  
  80 

Table 3.1.7 Haralick features are extracted from unbalanced dataset, normalized and evaluated using 

10-fold cross validation with random forest classifier 

 

 Other classification methods are used without normalization. Table 3.1.8 and 3.1.9 

shows Haralick feature extraction with AdaBoost classifier on balanced and imbalanced 

dataset respectively. The number of iterations of the AdaBoost classifier was 10. 

According to table 3.1.8 and 3.1.9 Random forest gives slightly better results than 

Adaboost. Table 3.1.9 shows that balanced dataset gives better results than the 

imbalanced dataset in case of Adaboost. 
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.  

TP Rate  71 77.4 74.2 

FP Rate 22.6 29 25.8 

Precision  75.9 72.7 74.3 

Recall  71 77.4 74.2 

F-

Measure  
73.3 75 74.2 

ROC 

Area  
78.6 78.6 78.6 

Overall 

Accuracy  
  74 

Table 3.1.8 Haralick features are extracted from balanced dataset evaluated using 10-fold cross 

validation using AdaBoost classifier 

 

  

Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate  82.3 64.5 76.3 

FP Rate  35.5 17.7 29.6 

Precision 82.3 64.5 76.3 

Recall 82.3 64.5 76.3 

F-

Measure  
82.3 64.5 76.3 

ROC 

Area  
82 82 82 

Overall 

Accuracy  
  76 

Table 3.1.9. Haralick features are extracted from imbalanced dataset evaluated using 10-fold cross 

validation using AdaBoost classifier 

 

 Table 3.1.10 and 3.1.11 present the accuracy metrics of KNN classifier. Parameter 

of KNN were set to default values which is 1 for K value. KNN classifier gives close 

results to Adaboost and Random forest for both balanced and imbalanced dataset but still 

Random Forest gives best results 
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Metrics(%

)\Class 
0 1 

 Weighted 

Avg.     

TP Rate 67.7 77.4 72.6 

FP Rate 22.6 32.3 27.4 

 Precision 75 70.6 72.8 

Recall 67.7 77.4 72.6 

F-Measure 71.2 73.8 72.5 

ROC Area 74.5 74.5 74.5 

Overall 

Accuracy 
  72 

Table 3.1.10 Haralick features are extracted from balanced dataset evaluated using 10-fold cross 

validation using KNN classifier 

 

Metrics(%

)\Class 
0 1 

Weighted 

Avg 

TP Rate 80.6 64.5 75.3 

FP Rate 35.5 19.4 30.1 

Precision 82 62.5 75.5 

Recall 80.6 64.5 75.3 

F-Measure 81.3 63.5 75.4 

ROC Area 72.7 72.7 72.7 

Overall 

Accuracy 
  75 

Table 3.1.11 Haralick features are extracted from imbalanced dataset evaluated using 10-fold cross 

validation using KNN classifier 

 

 Logistic Regression is used as classifier the results are shown in Table 3.1.12 and 

3.1.13. Parameters of Logistic Regression were set to default values. The accuracy 

metrics are better than other classifiers when the imbalanced data is used while, the 

balanced data results are approximately same. 
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.        

TP Rate 64.5 77.4 71 

 FP Rate 22.6 35.5 29 

 Precision 74.1 68.6 71.3 

Recall 64.5 77.4 71 

F-

Measure 
69 72.7 70.8 

ROC 

Area 
67.6 73.7 70.7 

Overall 

Accuracy 
  70 

Table 3.1.12 Haralick features are extracted from balanced dataset evaluated using 10-fold cross 

validation using Logistic Regression classifier 

 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.      

TP Rate 85.5 77.4 82.8 

FP Rate 22.6 14.5 19.9 

Precision 88.3 72.7 83.1 

Recall 85.5 77.4 82.8 

F-

Measure 
86.9 75 82.9 

ROC 

Area 
86.8 87.1 86.9 

Overall 

Accuracy 
  82 

Table 3.1.13. Haralick features are extracted from unbalanced dataset evaluated using 10-fold cross 

validation using Logistic Regression classifier 

 

 Naïve Bayes classifier is used, the results are described in table 3.1.14 and 3.1.15. 

Parameters were set to default values. The classifier gives approximately similar results 

for abnormal cases, on balanced dataset. 
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.    

TP Rate 51.6 87.1 69.4 

FP Rate 12.9 48.4 30.6 

Precision 80 64.3 72.1 

Recall 51.6 87.1 69.4 

F-

Measure 
62.7 74 68.4 

ROC 

Area 
77.9 78.5 78.2 

Overall 

Accuracy 
  69 

Table 3.1.14 Haralick features are extracted from balanced dataset evaluated using 10-fold cross 

validation using Naive Bayes classifier 

 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 45.2 93.5 61.3 

 FP Rate 6.5 54.8 22.6 

 Precision 93.3 46 77.6 

 Recall 45.2 93.5 61.3 

F-

Measure 
60.9 61.7 61.1 

ROC 

Area 
85 79.6 83.2 

Overall 

Accuracy 
  61 

Table 3.1.15 Haralick features are extracted from unbalanced dataset evaluated using 10-fold cross 

validation using Naive Bayes classifier 

 Table 3.1.16 and 3.1.17 shows the results of Decision Tree classification method. 

The results are similar to Random Forest classifiers results. 

 

 

 

 

 



   

 

45 

 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.    

TP Rate 67.7 64.5 66.1 

FP Rate 35.5 32.3 33.9 

Precision 65.6 66.7 66.1 

Recall 67.7 64.5 66.1 

F-

Measure 
66.7 65.6 66.1 

ROC 

Area 
66.5 66.5 66.5 

Overall 

Accuracy 
  67 

Table 3.1.16 Haralick features are extracted from balanced dataset evaluated using 10-fold cross 

validation using Decision Tree classifier 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.  

TP Rate 80.6 61.3 74.2 

FP Rate 38.7 19.4 32.3 

 Precision 80.6 61.3 74.2 

Recall 80.6 61.3 74.2 

F-

Measure 
80.6 61.3. 74.2 

ROC 

Area 
70.8 70.8 70.8 

 Overall 

Accuracy 
  74 

Table 3.1.17 Haralick features are extracted from imbalanced dataset evaluated using 10-fold cross 

validation using Decision Tree classifier 

 

SVM is another classification algorithm that is used to evaluate the performance 

of the Haralick features. Parameters of the SVM classifier was default values. Table 

3.1.18 and 3.1.19 demonstrates the results of unbalanced and balanced dataset. 

Performance of the SVM is lower than previous methods. Especially when the 

unbalanced dataset is used the classifier overfits and classifies every instance as 

predominant class’s label. 
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Metrics(%

)\Class 
0 1 

Weighted 

Avg.  

TP Rate 
87.1 9.7 48.4 

FP Rate 
90.3 12.9 51.6 

 Precision 
49.1 42.9 46 

Recall 
87.1 9.7 48.4 

F-

Measure 

62.8 15.8 39.3 

ROC 

Area 

48. 48.4 48.4 

 Overall 

Accuracy 
  48.4 

Table 3.1.18 Haralick features are extracted from balanced dataset evaluated using 10-fold cross 

validation using SVM classifier 

 

 
Metrics(

%)\Class 
0 1 

Weighted 

Avg.  

TP Rate 100 0 66.7 

FP Rate 100 100 66.7 

 Precision 667 0 44.4 

Recall 100 0 66.7 

F-

Measure 
80 0 53.3 

ROC 

Area 
50 50 50 

 Overall 

Accuracy 
  66 

Table 3.1.19 Haralick features are extracted from unbalanced dataset evaluated using 10-fold cross 

validation using SVM classifier 

 

Table 3.1.20 and 3.1.21  shows the results of the RBF-NN on both datasets. The kernel 

of the RBF-NN was random forest, and the parameters was set to default values. The 

classifier gives almost similar results but table X24 demonstrates that the second classes 

f1 score is decreased when it compared to balanced dataset. 
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Metrics(%

)\Class 
0 1 

Weighted 

Avg.  

TP Rate 48.4 71 59.7 

FP Rate 29 51.6 40.3 

Precision 62.5 57.9 60.2 

Recall 48.4 71 59.7 

F-

Measure 
54.5 63.8 59.2 

ROC 

Area 
59.4 59.2 59.3 

 Overall 

Accuracy 
  59 

Table 3.1.20. Haralick features are extracted from balanced dataset evaluated using 10-fold cross 

validation using RBF-NN classifier 

 
Metrics(%

)\Class 
0 1 

Weighted 

Avg.  

TP Rate 74.2 61.3 69.9 

FP Rate 38.7 25.8 34.4 

 Precision 79.3   54.3 71 

Recall 74.2 61.3 69.9 

F-Measure 76.7 57.6 70.3 

ROC Area 74.7 74.7 74.7 

 Overall 

Accuracy 
  69.9 

Table 3.1.21 Haralick features are extracted from unbalanced dataset evaluated using 10-fold cross 

validation using RBF-NN classifier 

 

LBP features has been extracted and evaluated using the random forest and 10-

fold CV, the table 3.1.22 shows the accuracy metrics. This experiment is repeated using 

normalized dataset, which is shown in table 3.1.23. The normalization does not change 

accuracy metrics. LBP features and Random forest combination does not perform well in 

comparison with Haralick and random forest.  
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.      

TP Rate 22.6 54.8 38.7 

FP Rate 45.2 77.4 61.3 

Precision 33.3 41.5 37.4 

Recall 22.6 54.8 38.7 

F-

Measure 
26.9 47.2 37.1 

ROC 

Area 
31.9 31.9 31.9 

Overall 

Accuracy 
  38 

Table 3.1.22 LBP features are extracted from balanced dataset, evaluated using 10-fold cross 

validation with random forest classifier 

 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.      

TP Rate 22.6 54 38.7 

FP Rate 45.2 77.4 61.3 

Precision 33.3 41.5 37.4 

Recall 22.6 54.8 38.7 

F1-

Measure 
26.9 47.2 37.1 

ROC 

Area 
31.9 31.9 31.9 

Overall 

Accuracy 
  38 

Table 3.1.23 LBP features are extracted from balanced dataset, normalized and evaluated using 10-

fold cross validation with random forest classifier 

  

 

LBP features are extracted from balanced and unbalanced dataset the results are 

shown in table 3.1.24 and 3.1.25. The results of unbalanced and balanced dataset show 

that the classifier works better with Haralick features. Moreover, both Haralick and LBP 

features on balanced and imbalanced datasets shows that normalization decreases the 

class 1’s accuracy measures and overall accuracy. 
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.      

TP Rate 85.5 19.4 63.4 

FP Rate 80.6 14.5 58.6 

Precision 67.9 40 58.6 

Recall 85.5 19.4 63.4 

F-

Measure 
75.7 26.1 59.2 

ROC 

Area 
57.1 57.1 57.1 

Overall 

Accuracy 
  63 

Table 3.1.24 LBP features are extracted from balanced dataset, evaluated using 10-fold cross 

validation random forest classifier  

 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 83.9 16.1 61.3 

FP Rate 83.9 16.1 61.3 

Precision 66.7 33.3 55.6 

Recall 83.9 16.1 61.3 

F-

Measure 
74.3 21.7 56.8 

ROC 

Area 
53.3 53.3 53.3 

Overall 

Accuracy 
  61 

Table 3.1.25 LBP features are extracted from unbalanced dataset, normalized and evaluated using 

10-fold cross validation random forest classifier 

 

 Since the normalization does not changes any accuracy measures, even worsens 

them, from now on the experiments done on unnormalized dataset. LBP features are 

tested using AdaBoost classifier the results are showed on table 3.1.26 and 3.1.27. 
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AdaBoost does not work well on LBP features. Adaboost performance was better on the 

Haralick features. 

 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 41.9 58.1 50 

FP Rate 41.9 58.1 50 

Precision 50 50 50 

Recall 41.9 58.1 50 

F-

Measure 
45.6 53.7 49.7 

ROC 

Area 
41.5 41.5 41.5 

Overall 

Accuracy 
  50 

Table 3.1.26 LBP features are extracted from balanced dataset and evaluated using 10-fold cross 

validation AdaBoost classifier 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 82.3 19.4 61.3 

FP Rate 80.6 17.7 59.7 

Precision 67.1 35.3 56.5 

Recall 82.3 19.4 61.3 

F-

Measure 
73.9 25 57.6 

ROC 

Area 
52.1 52.1 52.1 

Overall 

Accuracy 
  61 

Table 3.1.27. LBP features are extracted from imbalanced dataset and evaluated using 10-fold cross 

validation AdaBoost classifier 

 The combination of LBP features and AdaBoost classifier has been tried on 

imbalanced dataset, table 3.1.27 shows the results. The overall accuracy seems higher 

than the balanced dataset results however, the class 1’s accuracy metrics decreased.  

 For imbalanced and balanced datasets, the f-measure gives the overall test 

accuracy. The appropriate measure to test our algorithms accuracy is to use class 1’s f-
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measure. Overall f-measure is not suitable to test the performance of the algorithm as 

shown previously for imbalanced datasets, it biases to the class 0’s f-measure. Table 

3.1.28shows classifiers performance on LBP features and class 1’s f-measures for balanced 

and imbalanced dataset. 

 

Classifier/F-

measures (%) 
Balanced Dataset Imbalanced Dataset 

K-NN 40.0 23.7 

Logistic regression 63.2 62.9 

RBF Network 46.4 25.0 

Naïve Bayes 47.2 37.1 

Decision Tree 51.4 25.5 

SVM 43.3 0 

Table 3.1.28 LBP features are extracted from balanced and imbalanced dataset, evaluated using 10-

fold cross validation with different classifiers  

 

Table 3.1.28 shows the LBP features test results which was done by various 

classifiers on different sized datasets. The performance of the LBP feature extraction 

method is not enough when it is compared with the Haralick’s features. LBP feature 

works well on balanced dataset with Logistic Regression classifier with default 

parameters. The overall accuracy for this case is 66%. The detailed measures are shown 

in table 3.1.29. 
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 58.1 74.2 66.1 

FP Rate 25.8 41.9 33.9 

Precision 69.2 63.9 66.6 

Recall 58.1 74.2 66.1 

F-

Measure 
63.2 68.7 65.9 

ROC 

Area 
74.3 73.5 73.9 

Overall 

Accuracy 
  66 

Table 3.1.29 LBP features are extracted from balanced dataset, evaluated using 10-fold cross 

validation with Logistic Regression classifier 

 

TAS features are extracted from both imbalanced and balanced dataset. Same process that 

is applied to LBP and Haralick features is repeated using TAS feature. Table 3.1.30 shows 

the experiment results of the class 1’s. The best f-measure of TAS features evaluated 

using Naïve Bayes classifier this is followed by Logistic Regression and SVM classifiers. 

The detailed accuracy measures of Naïve Bayes Classifier are shown in table 3.1.31. 

 

Classifier/F-

measures (%) 
Balanced Dataset Imbalanced Dataset 

Random Forest 

 

55.7 60.4 

Adaboost 62.7 57.1 

K-NN 59.7 59.4 

Logistic regression 64.6 52.8 

RBF Network 58.1 54.8 

Naïve Bayes 66.7 59.5 

Decision Tree 46.4 56.7 

SVM 64.4 57.1 

Table 3.1.30 TAS features are extracted from balanced and imbalanced dataset, evaluated using 10-

fold cross validation with different classifiers  
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 51.6 74.2 62.9 

FP Rate 25.8 48.4 37.1 

Precision 66.7 60.5 63.6 

Recall 51.6 74.2 62.9 

F-

Measure 
58.2 66.7 62.4 

ROC 

Area 
67 67.2 67.1 

Overall 

Accuracy 
  62 

Table 3.1.31 TAS features are extracted from balanced dataset, evaluated using 10-fold cross 

validation with Naive Bayes classifier 

 

Zernike features are extracted and evaluated using the methodology that have been 

done previously. Table 3.1.32 shows the f-measure of class 1 using different classifiers. 

 

Classifier/F-

measures (%) 
Balanced Dataset Imbalanced Dataset 

Random Forest 

 

55.2 18.2 

Adaboost 44.8 39.3 

K-NN 56.3 44.8 

Logistic regression 42.4 33.3 

RBF Network 46.2 50.0 

Naïve Bayes 55.1 50.0 

Decision Tree 50.0 30.2 

SVM 50.7 0 

Table 3.1.32 Zernike features are extracted from balanced and imbalanced dataset, evaluated using 

10-fold cross validation with different classifiers  
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Zernike features works well with K-NN classifier on balanced dataset. The 

performance of the Zernike features close to LBP features and worse than the Haralick 

and TAS features. The SVM classifier is gives the worst result for the class 1 on 

unbalanced dataset because of overfitting. 

Detailed performance metrics of the K-NN and Zernike features are described in 

the table 3.1.33. The parameters of the K-NN is set to default values.  

 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 
35.5 64.5 50 

FP Rate 
35.5 64.5 50 

Precision 
50 50 50 

Recall 
35.5 64.5 50 

F-

Measure 

41.5 56.3 48.9 

ROC 

Area 

46.8 46.8 46.8 

Overall 

Accuracy 
  50 

Table 3.1.33 Zernike features are extracted from balanced dataset, evaluated using 10-fold cross 

validation with K-NN classifier 

 

 From GLCM matrix 6 statistical features which are energy, homogeneity, 

correlation, dissimilarity, ASM and contrast have been extracted. The f-measures of class 

1 is shown in table 3.1.34. Best performance is achieved when RBF Network is used as 

classifier. SVM classifier, same as the Zernike features, overfits to data on imbalanced 

dataset. Classify all instances as class 0 which has more instances. 
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Classifier/F-

measures (%) 
Balanced Dataset Imbalanced Dataset 

Random Forest 

 

69.7 58.6 

Adaboost 66.7 64.3 

K-NN 63.5 61.5 

Logistic regression 76.9 73.8 

RBF Network 78.8 36.4 

Naïve Bayes 70.0 54.9 

Decision Tree 64.7 58.0 

SVM 74.0 0 

Table 3.1.34 GLCM matrix statistical features are extracted from balanced and imbalanced dataset, 

evaluated using 10-fold cross validation with different classifiers  

 

Other metrics than the f-measure of RBF Network is shown in table 3.1.35. This feature 

extraction technique works better than the previous TAS, Zernike and LBP. Combination 

of GLCM statistical features and RBF Network gives slightly higher results than the 

Haralick’s and Random Forest combination. 

 

Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 
71 83.9 77.4 

FP Rate 
16.1 29 22.6 

Precision 
81.5 74.3 77.9 

Recall 
71 83.9 77.4 

F-

Measure 

75.9 78.8 77.3 

ROC 

Area 

73 73.3 73.2 

Overall 

Accuracy 
  77 

Table 3.1.35 GLCM matrix statistical features are extracted from balanced dataset, evaluated using 

10-fold cross validation with RBF Network classifier 
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 Hog features are extracted and evaluated using different classifiers. Table 3.1.36 

give the f-measure of the abnormal cases. Naive Bayes and HOG features combination 

gives better result than the other classifier methods combination with HOG features. The 

detailed measures of HOG and Naive Bayes combination is described in the table 3.1.37. 

 

Classifier/F-

measures (%) 
Balanced Dataset Imbalanced Dataset 

Random Forest 

 

61.0 43.1 

Adaboost 56.7 20.0 

K-NN 48.1 34.6 

Logistic regression 58.8 40.0 

RBF Network 63.9 24.6 

Naïve Bayes 73.7 578 

Decision Tree 59.5 22.2 

SVM 62.5 0 

Table 3.1.36 HOG features are extracted from balanced and imbalanced dataset, evaluated using 10-

fold cross validation with different classifiers  

 

Even though the f-measure for class 1 is high, the overall accuracy and the accuracy 

metrics for class 0 is a bit low. Yet, the results are better than the Zernike accuracy metrics 

and slightly higher than the TAS and LBP features. 
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Metrics(

%)\Class 
0 1 

Weighted 

Avg.     

TP Rate 
45.2 90.3 67.7 

FP Rate 
9.7 54.8 32.3 

Precision 
82.4 62.2 72.3 

Recall 
45.2 90.3 67.7 

F-

Measure 

58.3 73.7 66 

ROC 

Area 

63.5 63.5 63.5 

Overall 

Accuracy 
  67.7 

Table 3.1.37 HOG features are extracted from balanced dataset, evaluated using 10-fold cross 

validation with Naive Bayes classifier 

 

The ROC curves of the Adaboost and Random forest has been generated. Figure 3.1.1 

describes the ROC curves. As the curve approximates to y-axis, the performance of the 

classifier is got better. For this reason, it can be said that AdaBoost performs better than 

the Random Forest. 

 

 

Figure 3.1.1 ROC curves of Random Forest and AdaBoost 
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Summarization of the f-measure for balanced and normalized dataset with different 

classifiers and different features is showed on the table 3.1.38. Above other features 

Haralick gives stable and approximately higher results according to other classifiers. 

 

Classifier/Feature 

Descriptor (%) LBP  TAS  ZERNIKE  GLCM HOG Haralick 

Random Forest 45.7 55.7 55.2 69.7 61.0 75 

AdaBoost 53.7 62.7 44.8 66.7 56.7 75 

KNN 40.0 59.7 56.3 63.5 48.1 73.8 

Logistic 

Regression 63.2 64.6 42.4 76.9 58.8 72.7 

RBF Network 46.4 58.1 46.2 78.8 63.9 63.8 

Naïve Bayes 47.2 66.7 55.1 70.0 73.7 61.7 

Decision Tree 51.4 46.4 50.0 64.7 59.5 62.1 

SVM 43.3 64.4 50.7 74.0 62.5 80 

Table 3.1.38 Summarization of different classifiers and feature descriptors class 1’s f-measure  

 

 Feature selection algorithms are tested on Haralick’s textural feature. Because, 

Haralick gives best accuracy metrics for both classes. Table 3.1.40 demonstrates the 

combination of different feature selection methods and different classifiers on balanced 

and imbalanced dataset with or without normalization. The values of the table represent 

the f-measure of the class 1. The feature selection algorithms are performed using their 

default parameter except Wrapper method. Wrapper methods uses classifier as a 

parameter. For each classification method Wrapper’s classifier is set to current 

classification method. Best measures are written bold type.  

 Haralick’s textural features give 56 features. Feature selection decreased the 

number of features. Each feature selection method has given different numbers: CFS 

selects 11 features. Correlation Attribute Evaluation, Gain Ratio, Info Gain, Relief 

Ranking and Symmetrical Uncertainty algorithms have ranked the features, first ten 

features of the ranked features have been selected. After PCA 8 new features have been 

produced by using 56 Haralick features. Wrapper have selected 6 features. 

Random Forest classifier works well with, CFS and Wrapper feature selection 

method on balanced dataset. Normalization slightly changes the measure. Best 

performance of Random forest is achieved using Wrapper feature selector the f-measure 

for this combination is 83.9% for balanced and normalized dataset. 

Logistic regression works well with correlation attribute evaluation on balanced 

dataset. For this case normalization does not affect the results. The f-measure is 84.4%. 
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for both normalized and unnormalized sets. Wrapper method also works well with 

Logistic regression. The f measure for balanced and unbalanced dataset is 81.8%. 

KNN performs better when Wrapper is used on balanced dataset. The 

normalization does not change the result of the KNN classifier. The f-measure is 83.9%. 

Naïve Bayes performs effectively with wrapper feature selection method on 

balanced dataset. Normalization does not change the metrics. Correlation attribute 

evaluation also works properly. The best f-measure that achieved is 81.3%. 

Decision tree performs efficiently using Info Gain feature selector, this is followed 

by Gain Ration. Moreover, normalization gave approximately 5-6% better f-measure 

(81.3%) on balanced dataset. 

SVM works well with wrapper method, normalization has been decreased the f-

measure for this case. Without normalization the wrapper gives 81.3% f-measure while 

normalization gives 80%. On the other hand, without feature selection and normalization 

SVM gives 15.8%, for this case the normalization Boosts the SVMs performance and 

with normalization and without feature selection the f-measure is 80% on balanced 

dataset. 

RBF Network give the best results when Wrapper feature selection method have 

been employed. The f-measure is 81.4% for abnormal class and this result is obtained on 

balanced dataset. 

AdaBoost achieved highest score when CFS is employed on balanced dataset 

which is 84.8%. The normalization process does not change the f -measure. 

 

Combination of 

Classifier and 

Selector /  Balanced 

Balanced and 

normalized Imbalanced 

Imbalanced 

normalized 

Random forest 

(without selection) 77.0 75.0 79 80 

CFS-Random forest 80.0 78.8 67.8 54.2 

Correlation 

Attribute 

Evaluation-

Random Forest 75.8 73.8 56.7 60.7 

Gain Ratio-

Random Forest 77.4 76.2 61.0 61.3 

Info Gain - 

Random forest 77.4 77.4 57.1 59.6 

PCA -Random 

forest 75.6 78.9 71.8 73.0 

Relief Ranking - 

Random forest 73.0 76.9 68.9 71.0 
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Symmetrical 

Uncertainty- 

Random Forest 75.4 79.4 61.0 62.1 

Wrapper- Random 

Forest 82.5 83.9 79.4 80.0 

Logistic Regression 

(without selection) 72.7 72.7 73.8 75.0 

CFS-Logistic 

Regression 76.2 76.2 71.9 71.9 

Correlation 

Attribute 

Evaluation – 

Logistic Regression 84.4 84.4 75.4 75.4 

Gain Ratio- 

Logistic Regression 80.6 80.6 58.6 58.6 

Info Gain – 

Logistic Regression 76.7 76.7 60.0 60.0 

PCA – Logistic 

Regression 67.7 67.7 78.3 78.3 

Relief Ranking – 

Logistic Regression 79.4 79.4 72.1 72.1 

Symmetrical 

Uncertainty- 

Logistic Regression 76.7 76.7 53.3 53.3 

Wrapper – Logistic 

Regression 81.8 81.8 71.9 75.0 

KNN (without 

selection) 73.8 73.8 63.5 63.5 

CFS - KNN 64.5 64.5 78.8 78.8 

Correlation 

Attribute 

Evaluation - KNN 71.9 71.9 68.8 68.8 

Gain Ratio-KNN 71.0 67.7 60.3 60.3 

Info Gain - KNN 67.6 67.6 55.2 55.2 

PCA - KNN 75.7 75.7 71.3 71.3 

Relief Ranking - 

KNN 68.7 68.7 71.0 71.0 

Symmetrical 

Uncertainty- KNN 67.6 67.6 55.7 55.7 

Wrapper - KNN 83.9 83.9 76.2 76.2 

Naïve Bayes 

(without selection) 74.0 61.7 61.7 61.7 

CFS – Naïve Bayes 76.7 76.7 59.8 59.8 

Correlation 

Attribute 

Evaluation - Naïve 

Bayes 80.0 78.8 68.3 68.3 

Gain Ratio - Naïve 

Bayes 77.8 77.8 53.1 53.1 

Info Gain - Naïve 

Bayes 77.8 76.7 53.1 53.1 
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PCA - Naïve Bayes 67.2 69.0 72.8 72.8 

Relief Ranking - 

Naïve Bayes 79.4 81.3 68.5 68.5 

Symmetrical 

Uncertainty - Naïve 

Bayes 77.8 76.7 53.1 53.1 

Wrapper - Naïve 

Bayes  81.3 81.3 73.7 75.4 

Decision Tree 

(without selection) 65.6 62.1 61.3 62.3 

CFS - Decision 

Tree 72.1 79.4 63.0 60.7 

Correlation 

Attribute 

Evaluation - 

Decision Tree 59.6 57.6 45.6 66.7 

Gain Ratio- 

Decision Tree 74.2 80.0 65.3 68.0 

Info Gain - 

Decision Tree 74.2 81.3 63.8 66.7 

PCA - Decision 

Tree 61.3 61.3 70.1 70.1 

Relief Ranking - 

Decision Tree 71.0 71.0 47.5 47.5 

Symmetrical 

Uncertainty - 

Decision Tree 74.2 81.3 65.3 68.0 

Wrapper - Decision 

Tree 75.4 76.5 76.7 75.4 

SVM (without 

selection) 15.8 80.0 0 63.0 

CFS - SVM 77.6 76.5 0 0 

Correlation 

Attribute 

Evaluation - SVM 72.1 72.1 51.1 47.8 

Gain Ratio - SVM 73.0 73.0 0 0 

Info Gain - SVM 73.0 73.0 0 0 

PCA - SVM 56.4 55.1 53.3 53.3 

Relief Ranking - 

SVM 75.8 75.8 61.5 61.5 

Symmetrical 

Uncertainty - SVM 73.0 73.0 0 0 

Wrapper - SVM 81.3 80.0 0 0 

RBF Network 

(without selection) 63.8 63.8 63.8 57.6 

CFS - RBF 

Network 72.5 72.5 70.4 70.4 

Correlation 

Attribute 

Evaluation - RBF 

Network 74.1 74.1 74.4 74.4 
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Gain ratio - RBF 

Network 75.8 75.8 77.3 77.3 

Info Gain - RBF 

Network 77.4 77.4 74.7 74.7 

PCA - RBF 

Network 72.5 72.5 79.3 79.3 

Relief Ranking - 

RBF Network 69.3 69.3 75.9 75.9 

Symmetrical 

Uncertainty - RBF 

Network 77.4 77.4 65.5 65.5 

Wrapper - RBF 

Network 81.4 81.4 73.8 73.8 

AdaBoost (without 

selection) 75.0 75.0 64.5 64.5 

CFS - AdaBoost 84.8 84.8 77.2 77.2 

Correlation 

Attribute 

Evaluation - 

AdaBoost 76.7 76.7 42.3 67.6 

Gain Ratio- 

AdaBoost 74.2 74.2 62.7 66.7 

Info Gain - 

AdaBoost 78.8 78.8 67.9 66.7 

PCA - AdaBoost 71.0 71.0 75.4 75.4 

Relief Ranking - 

AdaBoost 70.8 70.8 55.2 63.5 

Symmetrical 

Uncertainty- 

AdaBoost 78.8 78.8 62.7 69.3 

Wrapper - 

AdaBoost 79.4 79.4 73.8 69.1 

Table 3.1.39 Feature selection methods evaluated using different classifiers 

 

 Parameter optimization of KNN, RBF Network, Adaboost, SVM and Random 

Forest is performed on balanced Haralick features dataset whose features were selected 

according to classifier.  

The irrelevant features of the dataset were eliminated using CFS feature selection. 

After, parameter of the KNN (K) is optimized using the following numbers 1, 5, 10, 15, 

... 100 (with increments of 5 after k=5).  KNN gave the best result when k=20. Table 

3.1.41 shows the detailed metrics.  
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Metrics(%

)\Class 

0 1 Weighted 

Avg. 

TP Rate 71 90.3 80.6 

FP Rate 9.7 29 19.4 

Precision 88 75.7 81.8 

Recall 71 90.3 80.6 

F-Measure 78.6 82.4 80.5 

ROC Area 81.7 81.7 81.7 

Overall 

Accuracy 

  75 

Table 3.1.40 Accuracy metrics of KNN when k=20 

 The irrelevant features of the dataset were eliminated using CFS feature 

selection. Then, parameter of the Random Forests (number of trees) optimized using the 

following numbers 5, 10, 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500.  The 

optimum number of tree was 25. Table 3.1.42 shows the detailed metrics.  

                  

Metrics(%

)\Class 

0 1 Weighted 

Avg. 

TP Rate 77.4 83.9 80.6 

FP Rate 16.1 22.6 194 

Precision 82.8 78.8 80.8 

Recall 77.4 83.9 80.6 

F-Measure 80 81.3 80.6 

ROC Area 83.4 83.4 83.4 

Overall 

Accuracy 

  80.64 
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Table 3.1.41 Accuracy metrics of Random Forest when number of trees equal to 25 

Number of clusters for RBF Network has been optimized using the parameter set 

of 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50. Best result was achieved when 

number of clusters are equal to 15. Table 3.1.43 shows the accuracy metrics. 

 

Metrics(%

)\Class 

0 1 Weighted 

Avg. 

TP Rate 67.7 77.4 72.6 

FP Rate 22.6 32.3 27.4 

Precision 75 70.6 72.8 

Recall 67.7 77.4 72.6 

F-Measure 71.2 73.8 72.5 

ROC Area 76.5 76.3 76.4 

Overall 

Accuracy 

  70.64 

Table 3.1.42 Accuracy metrics of RBF Network when number of clusters equal to 15 

 

Number of iterations for Adaboost classifier has been changed using the following 

set of numbers: 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 175, 200. Best result was 

performed when number of iterations are equal to 50. Table 3.1.44 shows the accuracy 

metrics. 
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Metrics(%

)\Class 

0 1 Weighted 

Avg. 

TP Rate 83.9 87.1 85.5 

FP Rate 12.9 16.1 14.5 

Precision 86.7 84.4 85.5 

Recall 83.9 87.1 85.5 

F-Measure 85.2 85.7 85.5 

ROC Area 89 89 89 

Overall 

Accuracy 

  85.48 

Table 3.1.43 Accuracy metrics of AdaBoost when number of iterations equal to 50 

To optimize the C and gamma parameters of SVM the following parameter sets 

has been used.  

𝐶 𝜖  {2−5, 2−3, 2−1, 21, 23, 25, 27, 210, 213, 215  } 

𝛾 𝜖  {2−15, 2−13, … , 2−1, 21, 23, 25  } 

There were total 11 values for the C parameter and 11 parameters for gamma 

parameter. A total of 121 pair has been performed. Among all the pairs, the combination 

of C = 213and 𝛾 =  2−5 gives the best result. Table 3.1.45 shows the detailed metrics. 

 

Metrics(%

)\Class 

0 1 Weighted 

Avg. 

TP Rate 74.2 90.3 82.3 

FP Rate 9.7 25.8 17.7 

Precision 88.5 77.8 83.1 

Recall 74.2 90.3 82.3 

F-Measure 80.7 83.6 82.1 

ROC Area 82.3 82.3 82.3 

Overall 

Accuracy 

  82 

Table 3.1.44 Accuracy metrics of SVM when C = 𝟐𝟏𝟑and 𝜸 =  𝟐−𝟓 
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The optimum parameters graph of occurrence vs accuracy has been drawn for 

SVM, AdaBoost and Random Forest since their optimum parameters were achieved the 

best results of optimization.  

Figure 3.1.2 shows AdaBoost with 50 iterations, accuracy versus number of 

occurrences of the accuracy. The number of occurrences has been concentrated on 80-

85%. 

                         

Figure 3.1.2 AdaBoost occurrence of the accuracy versus number of iterations for 50 iterations 

 

Figure 3.1.3 shows Random Forest with 25 trees (iterations), accuracy versus 

number of occurrences of the accuracy. The number of occurrences has been concentrated 

on 80-90%.  

                      

Figure 3.1.3 Random Forest occurrence of the accuracy versus number of tress for 25 trees 

 

SVM with parameters C = 213and 𝛾 =  2−5 graph is shown in the figure 3.1.3. 

The number of occurrences has been concentrated on the range between 75-85%. 
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Figure 3.1.4 SVM occurrence of the accuracy versus different parameter for C = 𝟐𝟏𝟑and 𝜸 =  𝟐−𝟓 

 

Leave-one-instance-out cross validation (LOO-CV) has been employed for best 

classifier methods on balanced Haralick feature set whose features are selected using 

Wrapper methods. Table 3.1.46 shows overall accuracy metrics of classifiers’ evaluation 

using LOO-CV. One can understand that there was a little bit overfitting because the 

metrics has been decreased after LOO-CV. The metrics of Random Forest and AdaBoost 

are approximately close to each other. On the other hand, Adaboost and SVM metrics 

have been decreased dramatically because they are more prone to overfitting while 

Random Forest more robust to overfitting. Furthermore, the overall accuracies for 10-fold 

CV of Random Forest, SVM, AdaBoost are 80.64, 82, 85.48. 

 

Metrics(%) 

/Classifier  

Random 

Forest 

SVM AdaBoost 

Accuracy 77.5 70.96 77.4 

F-measure 75.9 70.2 77.3 

FP-Rate 18.8 29 22.6 

Specificity 81.3 71.0 77.4 

Precision 78.6 73.4 77.9 

Recall 73.3 71 77.4 

Table 3.1.45 LOO-CV performed on best classifiers using Haralick features 
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 Random Forest and Haralick combination constructed a new model. Using this 

model, mammograms has been traversed window by window and each window has been 

labeled as abnormal or normal. The zero and one labels have been represented as black 

and white color respectively. Afterwards, new mammograms have been reconstructed 

using the labels of the windows. The purpose of this process is to find the ROI of a 

mammogram by examining the entire mammogram. Figure 3.1.4 shows a mammogram 

and its reconstructed version using model. It can be seen that the model labeled some 

normal regions as abnormal and it labelled the abnormal area as abnormal. There are 

excess false alarms. For this reason, the model should be developed. 

 

                 

           a      b 

Figure 3.1.5 The mammogram (a) is traversed window by window and labeled using the model, labels 

reconstruct the mammogram (b) 

 

 Stacking method has been employed on balanced dataset with the classifiers that 

has gave the well results on the previous experiments. Meta classifier of the stacking has 

been selected as Logistic Regression Classifier. The reason of this selection is Logistic 
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Regression Classifier is simple, using the complicated meta learner decreases the 

accuracy.  

Table 3.1.47 describes the f-measure for stacking of AdaBoost, RBF Network 

using different meta learner on balanced dataset. Moreover, the table shows KNN, 

AdaBoost combination and AdaBoost, Random Forest combination with meta learner of 

Logistic regression on balanced dataset. Also, SVM classifier is used as meta learner and 

the performance is compared with Logistics performance. As it shown the table 3.1.47 

the f-measure has been decreased approximately 9% when the SVM is used as meta 

learner.  

Furthermore, combination of Adaboost and RBF Network with Logistic meta 

learner achieves best accuracy among others. 

 

Combinations(

%)\Class 

0 1 Weighted Avg. 

Adaboost and 

RBF Network 

with meta 

learner Logistic 

Regression 

83.3 84.4 83.9 

Adaboost and 

RBF Network 

combination 

with meta 

learner SVM 

77.4 74.2 75.8 

KNN, AdaBoost 

combination 

with meta 

learner Logistic 

Regression 

76.7 78.1 77.4 

AdaBoost, 

Random Forest 

combination 

with meta 

learner Logistic 

Regression 

80 81.3 80.6 

Table 3.1.46 Different combination of classifiers has been performed using Logistic and SVM meta 

learner 

 

Combination of different feature extraction methods have been performed and 

Random Forest is employed as classifier with 10-fold CV. Random forest is used because 

it is more robust to overfitting. Table 3.1.48 shows the results. The figure shows f-

measure of class 1’s with and without feature selection. The results are normalized. 

Feature selection is done by using Wrapper method. Wrapper is selected, the reason for 

this selection is according to 3.1.48 most of the cases Wrapper gives best or second-best 
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results. HOG, Haralick combination and Haralick, TAS combination gives best accuracy 

among other combination and previous feature extraction methods. This is followed by, 

Tas, HOG combination and GLCM, Haralick combination. For all the cases, feature 

selection increases the performance of the method.  

 

Combination of Feature extraction/F-measures (%) Without feature selection With feature selection 

GLCM and Haralick 76.2 76.9 

GLCM and HOG 58.6 71.9 

GLCM and TAS 50.9 67.7 

Haralick and TAS 76.2 80.6 

HOG and Haralick 75.0 80.6 

TAS and HOG 44.8 78.5 

Table 3.1.47 Different combination of features are extracted from balanced dataset, feature selection 

is made by Wrapper method, then selected and non-selected versions is evaluated using 10-fold cross 

validation with Random Forest classifier using default parameters 

 

 Some experiments of feature extraction algorithms have been repeated using 

Wrapper feature selector and LOO-CV algorithm. Moreover, new datasets have been 

constructed using Wavelet decomposition employed as new component of feature 

extraction algorithms. Hybrid of wavelet and other feature extraction algorithms is used. 

To extract the hybrid features first wavelet decomposition is applied and then the features 

are extracted from LL component of the wavelet decomposition. Then extracted features 

are normalized using min-max normalization. Irrelevant features are eliminated using 

wrapper feature selector. Random Forest classifier have been employed, number of trees 

has been optimized for each dataset. The accuracy measures are represented on table 

3.1.49. It can be seen from the table that combination of Wavelet, Haralick and HOG 

descriptors outperforms which means this combination is useful for feature selection. The 

figure 3.1.5 shows the ROC curve of the proposed algorithm. 
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Method / 

Measure 

Accurac

y 

F-

Measure 

FP Rate Specifici

ty 

Precisio

n 

Recall AUC 

Score 

Haralick  77.5%  75.9%  18.8%  81.3%  78.6%  73.3%  85%  

HOG  43.5%  42.6%  56.3%  43.8%  41.9%  43.3%  44%  

LBP  50%  45.6%  43.7%  56.3%  48.1%  43.3%  46%  

TAS  56.45%  55.7%  43.8%  56.3%  54.8%  56.7%  62%  

Wavelet

+  

Haralick  

71%  70%  28.1%  71.9%  70%  70%  79%  

Wavelet

+  

HOG  

46.8%  50.7%  62.5%  37.5%  45.9%  56.6%  44%  

Wavelet

+  

GLCM  

58.1%  58.1%  43.8%  56.3%  56.3%  60%  66%  

Wavelet

+  

Haralick

+  

HOG  

(Pro-

posed 

method)  

87.1%  87.5%  16.1%  83.8%  84.8%  90%  84%  

Table 3.1.48 LOO-CV performed on different feature extraction algorithms using Random forest 

algorithm. 
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Figure 3.1.6 ROC curves of the Haralick and the proposed Wavelet-Haralick-HOG descriptor 

(feature selection is applied in LOOCV setting for each method 

 Wavelet, Haralick and HOG features are extracted from ROIs. The features are 

normalized and selected using Wrapper feature selector. Then, proposed method was 

evaluated using Random Forest, SVM, AdaBoost classification algorithms.  Table 3.1.50 

shows the LOO-CV results of the proposed method. One can understand that the proposed 

method performs successfully using Random Forest classifier. It is followed by SVM 

classifier. Adaboost performs effectively on the Haralick dataset and 10-fold CV, while 

classifies poorly when LOO-CV and proposed method is adopted. 

 

Classifier / 

Measure 
RF  SVM  AdaBoost  

Accuracy 87.10% 77% 69% 

F-Measure 87.50% 78% 69% 

FP Rate 16.10% 25% 32% 

Specificity 83.80% 74% 67% 

Precision 84.80% 75% 68% 

Recall 90% 80% 71% 

AUC 

Score 
84% 77% 72% 

Table 3.1.49 LOO-CV performed on proposed feature extraction algorithm using different classifiers 

 

 The experiments on the Pilot dataset showed that using balanced dataset gives 

more accurate results. Furthermore, some classifiers are prone to overfitting in order to 
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have true results (without overfitting) LOO-CV can be performed and the true results can 

be obtained. Combination of true feature extraction methods, feature selection and 

classifier give higher accuracy results.  

  

3.2 Image enhancement on mammographic images  

 Some image enhancement techniques are applied in order to emphasize the 

tumorous region on MIAS dataset. In Pilot dataset the quality of the images is better 

therefore the malignant regions are more visible. Figure 3.2.1 a and b shows samples from 

both datasets. 

       

   a      b    

Figure 3.2.1 a is a sample from MIAS dataset and b is from pilot dataset. 

 

CLAHE operation is applied in order to increase the visibility of the tumorous 

region in MIAS dataset. Figure 3.2.2 shows the result of CLAHE processed version (b) 

of the original image (a). 
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                                   a                         b 

Figure 3.2.2 a) original mammogram and B) CLAHE processed version of original 

Histogram equalization is applied to adjust the contrast of the image. Figure 

3.2.3 shows histogram equalized version (b) of the original image (a) 

 

              
Figure 3.2.3 a) original image b) histogram equalized version of the original image 

 

Some basic image processing operations has been applied to highlight the 

suspicious areas, figure 3.2.4, figure 3.2.5, figure 3.2.6, figure 3.2.7, figure 3.2.8, figure 

3.2.9 shows original mammogram and dilation, erosion, opening, closing, white top hat, 
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black top hat processed version of the original mammogram image, respectively. The 

structuring element that is used for dilation, erosion, opening and closing process is 15x15 

square. White top-hat and black top-hat operations structuring element is 250x250 square. 

One can interpret by visual inspection that among all image processing operations, 

CLAHE gave the best result. 

 

               
Figure 3.2.4 Original mammogram and Dilation applied mammogram 

 

                    

Figure 3.2.5 Original mammogram and Erosion applied mammogram 
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Figure 3.2.6 Original mammogram and Opening applied mammogram 

 

                     

Figure 3.2.7 Original mammogram and Closing applied mammogram 
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Figure 3.2.8 Original mammogram and Top-Hat (white top-hat) applied mammogram 

 

                    

Figure 3.2.9 Original mammogram and Black Top-Hat applied mammogram  

 

CLAHE is selected and used for all MIAS dataset. Table 3.2.1 shows 10-fold cross 

validation of extracted features using proposed method from original MIAS dataset while 

table 3.2.2 shows CLAHE applied results. It can be seen that the CLAHE applied version 

has been increased the results by 6%.  
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Metrics(%)\Class 0 1 
 Weighted 

Avg.     

TP Rate  66.5 30.6 52 

FP Rate   69.4 33.5 54.9 

Precision  58.6 38.2 50.4 

Recall   66.5 30.6 52 

F-Measure  62.3 34 50.9 

 ROC Area  54.2 54.2 54.2 

Overall 

Accuracy 
  52 

 

Table 3.2.1. Proposed methods features are extracted from MIAS database and evaluated using 

Random Forest classifier with 10-fold CV 

 

Metrics(%)\Class 0 1 
Weighted 

Avg.  

TP Rate 73.6 36.9 58.8 

 FP Rate 63.1 26.4 48.2 

 Precision  63.2 48.8 57.3 

Recall  73.6 36.9 58.8 

 F-Measure  68 42.1 57.5 

ROC Area   65.2 65.2 65.2 

Overall 

Accuracy 
  58.8 

Table 3.2.2 Proposed methods features are extracted from CLAHE applied MIAS database and 

evaluated using Random Forest classifier with 10-fold CV 

 

 Multi-layer perceptron (MLP) has been applied to MIAS ROI database whose 

features are extracted using the proposed method. MLP had one hidden layer and number 

of hidden units were 25, the activation function of the hidden neurons and output neuron 

was hyperbolic tangent, cost function was cross entropy. The optimization algorithm was 

the steepest gradient descent algorithm (i.e. online mode) using back-propagation. 
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Weights are initialized randomly using uniform distribution in range [-1,1]. A fixed 

learning rate 𝜂 = 0.1 have been used in the beginning. Stopping method has been 

implemented using the early stopping criteria which can be implemented using the 

following steps: 10% of the dataset used as train set and another 10% is used as validation 

set. Maximum of 20 epochs has been performed and optimum number of epoch and 

iterations has been found. Once the optimum number of iterations/epochs was found the 

network was trained using the rest of the dataset. The outputs have been predicted using 

the procedure above with and without feature selection. As feature selection wrapper 

method has been employed. Moreover, prediction part is repeated 10 times. Different 

number of optimum epoch/iteration and accuracy rates were obtained. Table 3.2.3 and 

3.2.4 shows the results, feature selection does not change for one evaluation and 

normalization increased the accuracy. When the evaluation was repeated 10 times (10-

fold) feature selection achieves better results. For one-fold optimum number of epoch and 

iteration was 1 epoch and zero iteration while, the optimum parameters for ten-fold was 

4 epoch and 2 iteration for normalized dataset. 

  

 

Without Feature 

Selection(Normalized) 

With Feature Selection 

(Normalized) 

Accuracy  75% 75% 

Mean accuracy for 10-fold  70.35% ±7.59%  72.5% ±2.78%  

Table 3.2.3 MLP accuracy result of one-fold and ten-folds on normalized dataset 

 

 

 

Without Feature 

Selection(without Normalization) 

With Feature Selection (without 

Normalization) 

Accuracy  57% 67% 

Mean accuracy for 10-fold 69%± 7.53%  72.85% ±2.36%  

Table 3.2.4 MLP accuracy result of one-fold and ten-folds on dataset 

 

 

 Different learning rates have been performed using the search-then-converge 

schedule using equation 3.2.1, where n is number of iterations (1, … 100.000), 𝜂0 = 0.1 

and 𝜏 = 103.  The accuracy of 64.28% have been obtained on normalized dataset while, 
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the search-then-converge was performed on dataset whose features nor selected nor 

normalized, the accuracy of 71.6% have been achieved. 

𝜂(𝑛) =  
𝜂0

1+ 
𝑛

𝜏

                            (Equation 3.2.1) 

Momentum coefficient 𝛼 was included to weight update rule, for this experiment 

learning rate have been fixed to 0.1 again, accuracy of 64.42 has been obtained. On the 

other hand, the experiment is repeated on normalized dataset whose features were selected 

71.42% accuracy have been achieved.   

 MLP that have been described previously is repeated using Batch optimization. 

Feature selection and normalization have been performed on the data set and the 

experiments were done on this dataset. The accuracy of 75% have been achieved for one-

fold MLP, however for ten-fold MLP the accuracy decreased critically to 55%±24%. 

The accuracy of 55% and 75% has been obtained for search then converge and 

momentum coefficients respectively. Most of the cases the performance of the online 

learning is higher than the Batch learning.  

 Mini Batch mode has been employed and MLP is repeated using mini batch. The 

normalized dataset whose features have been selected was used in experiments. One folds 

accuracy was 75% while ten-fold accuracy was decreased 1% compared with the Batch 

mode and became 54%±24%. The momentum coefficients and the momentum 

coefficients gave the same result of Batch learning. 

 The parameters of mini Batch have been optimized. The optimized parameters 

were: number of epochs (𝑁𝑒), number of hidden units at the hidden layer (M), learning 

rate (𝜂) and the mini Batch size (𝐵𝑠) and momentum coefficient (𝛼) using the range: 

1 ≤𝑁𝑒 ≤ 20 

𝑀 = 50,100,150,200,250 

𝐵𝑠= 25, 50, 75, 100 

𝜂 = 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 

𝛼 = 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 

 

 The highest accuracy of 75% is achieved when  𝑁𝑒 = 1, M=25, 𝛼 =0.5 and 𝜂 = 

0.01. The optimization gave the same results. 
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 The same optimization previously that was performed, has been repeated and 

this time instead of optimizing the momentum coefficient, search-then-converge 

schedule has been optimized using the following values of 𝜂0: 

    𝜂0 = 0.5, 0.1, 0.05, 0.01, 0.005 

 The optimum accuracy 75% was achieved when the 𝑁𝑒 = 8, M=20 and 𝜂0 =0.1. 

The time of the convergence was equal to previous experiments time of convergences. 

The accuracy stayed the same. 

 L2-norm regularization have been performed with optimization of the lambda 

(𝜆) and other parameters that have been optimized on pervious experiments. The range 

of the lambda values were [0.0001, 0.001, 0.01, 0.1, 1.0, 10,100]. The max accuracy 

that achieved in this experiment was 70% when M=5, 𝜆=0.001,  𝐵𝑠=50,  𝜂0=0.1. 

 Some optimization techniques (ADAM, Adagrad, Adadelta and Rprop) have 

been applied in order to improve the MLP algorithm results are shown in table 3.2.5. 

Adagrad achieved the 70.3% accuracy when initial accumulator was 0.01. Initial 

accumulators default value is 0.1 which is used by TensorFlow. Using Adadelta 57% 

accuracy have been obtained when ADAM decay rate was equal to 0.8, default value of 

0.95 is used by TensorFlow. ADAM and RMSProp achieve 81.4% and 74% accuracy 

respectively. RMSPRop’s decay rate was 0.5 (default value: 0.9), ADAM’s beta1 was 

0.7 (default: 0.9) and beta2 was 0.99 (default: 0.99). 

 

Parameters/Optim

ization Technique 

Accuracy Number of 

Hidden Neurons 

Learning Rate Minibatch Size 

Adagrad 70.3% 15 0.001 25 

Adadelta 57% 30 0.5 75 

ADAM 81.4% 25 0.0005 25 

RMSProp 74% 30 0.001 50 

Table 3.2.5 MLP accuracy results and optimum parameters for different optimization techniques. 
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 MLP with two and three hidden layers is used. The construction of this new MLPs 

was similar to previously explained MLP except hidden layer number. The search then 

converge schedule have been applied. Table 3.2.6 describes the accuracy results and 

optimum parameters for 2 and 3 hidden layers MLP. One can understand that the 

increasing the number of hidden layers does not increases the accuracy of the system. 

Parameters/Optim

ization Technique 

Accuracy Number of 

Hidden Neurons 

𝜂0 Minibatch Size 

2 Hidden Layer 74% 5 0.001 25 

3 Hidden Layer 74% 5 0.005 75 

Table 3.2.6 MLP accuracy results and optimum parameters for 2 and 2 hidden layer MLP 

 The 2 and 3 hidden layer MLP have been optimized using the ADAM 

optimization the 81.4% accuracy have been achieved for both cases. 

 Table 3.2.7 summarizes the accuracy results for different experiments that have 

been already done. The best result has been achieved when the ADAM optimization 

was performed. 
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Experiments Accuracy 

Optimization of Parameters using different 

learning rates 75% 

Optimization using Search then converge 75% 

L2-norm  70% 

Adagrad  70.3% 

Adadelta 57% 

RMSProp 74% 

ADAM 81.4% 

2 hidden layer MLP 74% 

3 hidden layer MLP 74% 

 

ADAM and 2 hidden layer MLP 81.4% 

ADAM and 3 hidden layer MLP 81.4% 

Table 3.2.7 MLP accuracy results of previous experiments 

 Basic machine learning classifiers have been performed to evaluate the 

performance of the proposed method on MIAS database without feature selection. Table 

3.2.8 describes the 10-fold accuracy of different classifiers using default parameters. Best 

accuracy measures have been obtained when Bagging and Random Forest classifiers was 

employed. 
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Classifier/Accuracy Accuracy (%) 

Random Forest 58.75 

Logistic Regression 58.02 

KNN 57.66 

Naïve Bayes 53.28 

Decision Tree 54.01 

SVM 56.00 

RBF Network 56.20 

AdaBoost 55.47 

Bagging 59.00 

Table 3.2.8 Accuracy values of Machine Learning Methods that have been performed on MIAS 

dataset 

 Different feature selection methods have been performed and evaluated using 

the Random Forest classifier 10-fold CV, table 3.2.8 shows the results. Among all 

feature selection methods PCA performed best accuracy measure using random forest 

classifier. 
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Feature Selection / 

Performance 

Metrics Accuracy (%) F-measure (%) 

CFS  58.39 58.0 

Correlation 

Attribute 

Evaluation  56.20 55.2 

Gain Ratio  58.02 57.3 

Info Gain  60.94 60.2 

PCA  61.31 60.1 

Relief Ranking  56.56 55.5 

Symmetrical 

Uncertainty  58.75 58.2 

One Rule 

Attribute 60.58 60.6 

Table 3.2.9 Accuracy metrics of feature selection methods that have been performed on MIAS 

dataset using Random Forest classifier 

 RBF Network, random forest and bagging classifiers have been evaluated using 

LOO-CV. The features are selected using PCA, parameters have been optimized. Table 

3.2.9 describes the accuracy measures of this experiment. RBF Network outperforms to 

other classifiers. 

Feature Selection / 

Performance 

Metrics Accuracy (%) F-measure (%) 

RBF Network 77.41 75.86 

Random Forest 56.14 45.12 

Bagging  56.55 45.36 

Table 3.2.10 Classifiers have been evaluate using LOO-CV  

 Instead of feature extracted dataset of MIAS, raw pixel data have been used as 

input of MLP. In order to do that, a new MIAS ROI database have been prepared, ROIs 
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were cropped in the same size which is equal to average width and height of the ROIs. 

Average accuracy of 56%±24% has been obtained for 10-fold on 1 hidden layer MLP. 

Moreover, the pixel dataset was used as the input of the simple Convolution Neural 

Network (CNN) and the accuracy of 68.9% was obtained.  

 Image enhancement techniques increased the overall accuracy. The MIAS dataset 

is larger than the Pilot dataset, for this reason MLP can be implemented to this dataset. 

Simple MLP worked effectively and give the accuracy of 75%. Some optimization 

techniques have been applied in order to increase the accuracy, just ADAM optimization 

increased the accuracy gave 81.4%. For other cases the accuracy has been decreased or 

stayed the same. More than 1 hidden layer MLP was employed and the accuracy 

decreased 1%. Basic machine learning tools have been performed on MIAS dataset best 

accuracy of 59% and 58.75% is achieved using Bagging and Random forest algorithms. 

LOO-CV using RBF Network gave the highest result of 77% accuracy. Raw images have 

been used as input of MLP and CNN. 68.9% accuracy have been obtained by CNN. 
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Chapter 4 
 

 

Conclusions and Future Prospects 

4.1 Conclusions 

In this thesis, a new feature extraction method is proposed for ROI detection in 

mammogram images. The proposed method first computes the Wavelet transform of the 

selected image, followed by extracting HOG and Haralick descriptors which compute 

textural and gradient features. Then the best set of features is selected using a wrapper 

strategy. When employed in a random forest classifier the proposed feature extraction 

method achieves the best ROI detection accuracy on the pilot dataset of the Digital 

Mammography DREAM Challenge whose image quality is high. Moreover, the hybrid 

feature extraction method developed in this thesis gives 8% better accuracy than the 

Haralick features. Different feature extractors have been used and results show that the 

classifier works better with combination of Wavelet, Haralick and HOG features. The 

parameter optimization and feature selection have increased the accuracy of ROI 

detection. 

The proposed methods have also been applied to the MIAS dataset, which 

contains 322 images. Due to poor image quality and ambiguous tumorous regions, image 

enchanment techniques have been employed. The image enchanment methods increased 

the accuracy by 6.8%. Among the classification methods implemented, MLP worked 

effectively and gave an accuracy of 81.4% when the model is trained using the Adam 

optimization algorithm optimization. For other cases the accuracy has been decreased or 

stayed the same. Deep MLP models with more than one hidden layers have also been 

implemented but this decreased the accuracy by 1%. As an alternative to MLP models, 

raw images have been used as input to MLP and CNN however this did not perform better 

than the models that emply feature extraction methods. However if the CNN and other 

deep models are trained on larger datasets the prediction accuracy can be expected to be 

higher as demonstrated in Digital Mammography DREAM Challenge.  
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4.2 Future Prospects 

As a future work, the proposed method can be used for automatic detection of 

ROIs in a CAD system. For this purpose, first, a mammogram image can be subdivided 

into small square-sized images by applying a sliding window. Then each image can be 

classified as ROI (positive) or not (negative). Second, the performance of the proposed 

method can be analyzed on other clinical databases (i.e DDSM) in order to verify the 

feasibility and adaptability of the results. Third, other feature extraction methods such as 

Curvelet can be implemented and tested on small and large datasets. Finally, deep 

learning methods and ensemble methods developed recently can be implemented and 

trained on larger image databases and combined with the existing method for breast 

cancer detection.  
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