
i

DIMENSIONALITY REDUCTION FOR PROTEIN

SECONDARY STRUCTURE PREDICTION

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER SCIENCE

By

Yasin GÖRMEZ

July 2017

ii

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules

and conduct, I have fully cited and referenced all materials and results that are not

original to this work.

Name-Surname: Yasin GÖRMEZ

Signature :

iii

REGULATORY COMPLIANCE

M. Sc. thesis titled Dimensionality Reduction for Protein Secondary Structure

Prediction has been prepared in accordance with the Thesis Writing Guidelines of the

Abdullah Gül University, Graduate School of Engineering & Science.

Prepared By Advisor

Yasin GÖRMEZ Assist. Prof. Zafer AYDIN

 Co-supervisor

 Assoc. Prof. Oğuz KAYNAR

Head of the Electrical and Computer Enginering Program

 Assoc. Prof. Vehbi Çağrı GÜNGÖR

iv

ACCEPTANCE AND APPROVAL

M. Sc. thesis titled Dimensionality Reduction for Protein Secondary Structure

Prediction and prepared by Yasin GÖRMEZ has been accepted by the jury in the

Electrical and Computer Engineering Graduate Program at Abdullah Gül University,

Graduate School of Engineering & Science.

……….. /……….. / ………..

 (Thesis Defense Exam Date)

JURY:

 Advisor : Assist. Prof. Zafer AYDIN

 Co-supervisor : Assoc. Prof. Oğuz KAYNAR

 Member : Assoc. Prof. İsa YILDIRIM

 Member : Assist. Prof. Mete ÇELİK

 Member : Assist. Prof. Celal ÖZTÜRK

APPROVAL:

The acceptance of this M. Sc. thesis has been approved by the decision of the Abdullah

Gül University, Graduate School of Engineering & Science, Executive Board dated …..

/….. / ……….. and numbered .…………..……. .

……….. /……….. / ………..

(Date)

Graduate School Dean

Prof. Dr. İrfan ALAN

v

ABSTRACT

DIMENSIONALITY REDUCTION FOR PROTEIN

SECONDARY STRUCTURE PREDICTION

Yasin GÖRMEZ

MSc. thesis in Graduate School of Engineering and Science

Supervisor: Assist. Prof. Zafer AYDIN

Co-Supervisor: Assoc. Prof. Oğuz KAYNAR

July 2017

Proteins are important for our lives and they execute essential metabolic processes. The

functions of the proteins can be understood by looking at the three-dimensional

structures of the proteins. Because the experimental detection of tertiary structure is

costly computational systems that estimate the structure provides a convenient

alternative. One of the important steps of protein structure estimation is the

identification of secondary structure tags. As new feature extraction methods are

developed, the data sets used for this estimation can have high dimensions and some of

the attributes can contain noisy data. For this reason, choosing the right number of

features and the right attributes is one of the important steps to achieve a good success

rate. In this study, size reduction process is applied on two different datasets using a

deep autoencoder and various dimension reduction and feature selection techniques

such as basic component analysis, chi-square, information gain, gain ratio, correlation-

based feature selection (CFS) and the minimum redundancy maximum relevance

algorithm as well as search strategies such as best first, genetic search, greedy

algorithm. To evaluate the prediction accuracy, a support vector machine classifier is

employed.

Keywords: Protein Secondary Structure Prediction, Autoencoder, Deep Learning,

Feature Selection, Dimension Reduction

vi

ÖZET

PROTEİN İKİNCİL YAPI TAHMİNİ İÇİN BOYUT

KÜÇÜLTME

Yasin GÖRMEZ

 Elektrik ve Bilgisayar Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Zafer ADIN

Eş Danışman: Doç. Dr. Oğuz KAYNAR

Temmuz 2017

Gerekli metabolik süreçleri yürüten proteinler insan hayatı için büyük önem

taşımaktadır. Proteinlerin fonksiyonları ile üç boyutlu yapıları arasında yakın bir ilişki

bulunmaktadır. Dört yapı düzeyi olan proteinlerin bir çoğunun, birincil yapı olarak da

adlandırılan amino asit dizilimi bilinmekte ancak üçüncül yapıları bilinmemektedir.

Üçüncül yapıların laboratuvar ortamında tespit edilmesinin çok maliyetli ve zor olması,

amino asit dizilimini kullanarak yapı tahmini yapan sistemlerin geliştirilmesine neden

olmuştur. Protein yapı tahmini yapan sistemlerin en önemli aşamalarından biri ise

ikincil yapı etiketlerinin tanımlanması işlemidir. Yeni öznitelik çıkarma yaklaşımları

geliştirildikçe yapısal özelliklerin tahmini için kullanılan veri setleri yüksek boyutlara

sahip olabilmekte ve kullanılan özniteliklerden bazıları gürültülü veri içerebilmektedir.

Bu nedenle uygun sayıda ve doğru öznitelikleri seçmek, iyi bir başarı oranı elde etmek

için önemli aşamalardan biridir. Bu çalışmada iki farklı veri seti üzerinde derin oto

kodlayıcı kullanılarak boyut düşürme işlemi uygulanmış, temel bileşen analizi, ki-kare,

bilgi kazancı, kazanım oranı, korelasyon tabanlı öznitelik seçim teknikleri ve minimum

fazlalık maksimum ilgi algoritması gibi çeşitli öznitelik seçim ve boyut düşürme

teknikleri ayrıca genetik algoritma, aç gözlü algoritma ve en iyi ilk önce algoritması gibi

çeşitli arama stratejileri ile birlikte kullanılarak elde edilen veri setleri ile

karşılaştırılmıştır. İkincil yapı tahmin başarısının karşılaştırılması için destek vektör

makinası kullanılmıştır.

Anahtar kelimeler: Protein İkincil Yapı Tahmini, Oto Kodlayıcı, Derin Öğrenme, Boyut

Düşürme, Öznitelik Seçimi

vii

Acknowledgements

 I would like to thank the academicians in Abdullah Gül and Cumhuriyet University for

their contribution in this thesis especially my advisor Assist. Prof. Zafer AYDIN and

my co-advisor Assoc. Prof. Oğuz KAYNAR who encouraged me work in

bioinformatics and always supported me during the thesis.

I want to thanks my friends especially my childhood friend Kamil ASLAN, my college

friend Yusuf Şevki GÜNAYDIN, my roommate Murat Fatih TUNA, my homemates

Mehmet Ali DEVECİ and Yunus Emre IŞIK, and my collegeus Ferhan

DEMİRKOPARAN and Gülsüm UZUT. Lastly, I would like to thank my father Bilal,

my mother Hatice, my sisters Necla, Yasemin and Merve and to Fluffy because they

supported me during the whole life.

The numerical calculations reported in this paper were partially performed at TUBITAK

ULAKBIM, High Performance and Grid Computing Center (TRUBA resources)

viii

Table of Contents

1. INTRODUCTION ... 1

2. STRUCTURE OF PROTEIN ... 3

2.1 PROTEIN STRUCTURE LEVELS .. 4

2.1.1 Primary Structure .. 4

2.1.2 Secondary Structure .. 5

2.1.2.1 Helix .. 5

2.1.2.2 Beta Strands and Beta Sheets .. 6

2.1.2.3 Loop .. 7

2.1.3 Tertiary Structure .. 7

2.1.4 Quaternary Structure .. 8

2.2 PROTEIN STRUCTURE PREDICTION ... 8

2.2.1 Secondary Structure Prediction .. 8

2.3 LITERATURE REVIEW FOR SECONDARY STRUCTURE PREDICTION ... 9

3. METHODS ... 13

3.1 CLASSIFICATION METHODS.. 13

3.1.1 Feature Extraction for One Dimensional Protein Structure Prediction 13

3.1.1.1 PSI-BLAST ... 13

3.1.1.2 Profiles based on Hidden Markov Model .. 14

3.1.1.3 Structural Profiles.. 14

3.1.2 DSPRED Method ... 15

3.1.3 Support Vector Machines .. 17

3.2 FEATURE SELECTION TECHNIQUES .. 18

3.2.1 Chi Square (X
2
) ... 18

3.2.2 Information Gain ... 19

3.2.3 Gain Ratio ... 20

3.2.4 Minimum Redundancy Maximum Relevance ... 21

3.2.5 Search Methods ... 22

3.2.5.1 Genetic Algorithm ... 22

3.2.5.2 Greedy Algorithm ... 23

3.2.5.3 Best First Feature Selection ... 23

3.3 PROJECTION TECHNIQUES .. 24

3.3.1 Principal Component Analysis .. 24

3.3.2 Deep Autoencoders.. 25

4. EXPERIMENTS AND ANALYSIS ... 31

5. CONCLUSIONS .. 48

ix

List of Figures

Figure 2.1 Structure of a free amino acid ... 3

Figure 2.1.1 Primary, secondary, tertiary and quaternary structures in proteins .. 4

Figure 2.1.2.1.1 Alpha Helix .. 6

Figure 2.1.2.2.1 Beta Sheet ... 7

 Figure 2.1.1 Three state protein secondary structure prediction. First line is amino acid

sequence. Second line is secondary structure ... 11

Figure 3.1.2.1 Steps of DSPRED method for 1D protein structure prediction ... 21

Figure 3.1.3.1 Support Vector Machines and Hyper Plane Selection 23

Figure 3.2.5.3.1 Best First Search Algorithm ... 29

Figure 3.3.1.1 Covariance Matrix ... 30

Figure 3.3.2.1 Autoencoder Architecture ... 32

Figure 3.3.2.2 Deep Autoencoder Architecture .. 33

Figure 3.3.2.3 Transefer deep autoenoder to neural network with class label for

finetuning .. 34

Figure 3.3.2.4 Transefer deep autoenoder to neural network without class label for

finetuning .. 35

x

List of Tables

Table 4.1 Accuracy measures in original dimension evaluated by 10-fold cross

validation experiment on CB513 .. 42

Table 4.2 Accuracy measures in original dimension evaluated by 10-fold cross

validation experiment on EVAset ... 42

Table 4.3 Accuracy measures of chi-square method evaluated by 7-fold cross validation

experiment on CB513 ... 45

Table 4.4 Accuracy measures of chi-square method evaluated by 7-fold cross validation

experiment on EVAset .. 45

Table 4.5 Accuracy measures of information-gain method evaluated by 7-fold cross

validation experiment on CB513 .. 46

Table 4.6 Accuracy measures of information-gain method evaluated by 7-fold cross

validation experiment on EVAset ... 46

Table 4.7 Accuracy measures of gain ratio method evaluated by 7-fold cross validation

experiment on CB513 ... 47

Table 4.8 Accuracy measures of gain ratio method evaluated by 7-fold cross validation

experiment on EVAset .. 47

Table 4.9 Accuracy measures of genetic algorithm evaluated by 7-fold cross validation

experiment on CB513 ... 48

Table 4.10 Accuracy measures of genetic algorithm evaluated by 7-fold cross validation

experiment on EVAset .. 48

Table 4.11 Accuracy measures of greedy algorithm evaluated by 7-fold cross validation

experiment on CB513 ... 49

Table 4.12 Accuracy measures of greedy algorithm evaluated by 7-fold cross validation

experiment on EVAset .. 49

Table 4.13 Accuracy measures of CFS and BestFirst search strategy evaluated by 7-fold

cross validation experiment on CB513 ... 50

Table 4.14 Accuracy measures of CFS and BestFirst search strategy evaluated by 7-fold

cross validation experiment on EVAset .. 50

Table 4.15 Accuracy measures of minimum redundancy maximum relevance evaluated

by 7-fold cross validation experiment on CB513 51

Table 4.16 Accuracy measures of minimum redundancy maximum relevance evaluated

by 7-fold cross validation experiment on EVAset 51

Table 4.17 Accuracy measures of principal component analysis evaluated by 7-fold

cross validation experiment on CB513 ... 52

xi

Table 4.18 Accuracy measures of principal component analysis evaluated by 7-fold

cross validation experiment on EVAset .. 52

Table 4.19 Accuracy measures of autoencoder evaluated by 7-fold cross validation

experiment on CB513 ... 53

Table 4.20 Accuracy measures of autoencoder evaluated by 7-fold cross validation

experiment on EVAset .. 53

Table 4.21 Percentage of eliminated attributes for CB513 55

Table 4.22 Percentage of eliminated attributes for EVAset 56

xii

“To Our Martyr

1

Chapter 1

Introduction

Proteins formed by combining twenty amino acids in different sequence and

different numbers are building block of humans’ body. That’s why they have

critical importance for our lives. Proteins can also be used for making medicines

and are useful in many other situations. For molecular design and biological

medicine design knowing protein function is very important. In structural

biology, there is a strong association between protein’s function and protein’s

three-dimensional (3D) structure. Because determining protein structure with

experimental methods is costly, prediction of the three-dimensional structure

from amino acid sequence provides an effective alternative and is one of the

most important aims in theoretical chemistry and bioinformatics.

Methods to predict three-dimensional structure of proteins are divided into two

main categories such as; template-based modelling and free modelling. In

template-based modelling, a protein, which has a specified similarity to target

protein’s amino acid sequence, is detected. Then, three-dimensional structure

prediction is computed using that protein as a template. If such a protein cannot

be specified, three-dimensional structure is predicted with free modelling.

According to the thermodynamic hypothesis used by comparative and free

modelling, proteins are folded to have minimum free energy in physiological

environment. Several one-dimensional structural characteristics like secondary

structure, profile matrix, torsion angles, and solvent accessibility are used as

features to predict the 3D structure of a protein. Inferring these one-dimensional

(1D) characteristics with minimum error is important for three-dimensional

2

structure prediction. Until today many machine learning algorithms have been

developed for predicting 1D properties of proteins. In machine learning dataset

has critical importance for the accuracy and performance of classifier. Having

too many features may increase training time and can cause overfitting, which

reduces the accuracy on unseen data. Furthermore it can distort training due to

noisy features. On the other hand a few features may not sufficient for

satisfactory training, which is known as underfitting. Hence, proper and

sufficient numbers of features have to be employed in machine learning models.

To solve the aforementioned problems, dimensionality reduction techniques

such as feature selection and projection methods can be used [1]. The main

difference between these two techniques is that, in feature selection a subset of

features are selected and used without any change, but in projection methods,

the size of dataset is reduced by using all features with least information loss.

In this thesis, principal component analysis (PCA) [2], autoencoder (AE) [3],

ranker chi-square (X
2
) [4], ranker information gain [5], ranker gain ratio[6],

minimum redundancy maximum relevance (MRMR) [7], correlation-based

genetic feature selection (CFS-genetic) [8], correlation-based greedy feature

selection (CFS-greedy) [9] and correlation-based best first feature selection

(CFS-best first) [10] are used as dimension reduction techniques for protein

secondary structure prediction (PSSP). To predict the secondary structure of

proteins, a support vector machine from a two-stage classifier is employed. The

organization of this thesis is as follows. Chapter 2 explains protein structure,

protein structure prediction and includes literature review for protein secondary

structure prediction; Chapter 3 presents methods developed in this study;

Chapter 4 details the experiments and results; finally Chapter 5 provides

concluding remarks and future work.

3

Chapter 2

Structure of Protein

Proteins form a major class of macromolecules found in every organism

composed of consecutive attachment of amino acids by peptide bonds. There are

twenty different amino acid types commonly found in nature. Amino acids are

organic compounds that consist of a carbon atom (Ca), amine group (-NH2),

carboxyl group (COOH), and a side chain molecule (R). Figure 2.1 shows an

example of an amino acid molecule. The amino acids are produced at the

ribosomes and have different physical and chemical properties such as

electrostatic charge they carry, the hydrophobic states, acid dissociation

constants (pKa), molecular size and the functional group. These characteristics

play an important role in determining the structure of proteins [11].

 Figure 2.1 Structure of a free amino acid

4

2.1 Protein Structure Levels

Protein structure has four main levels: Primary structure, secondary structure,

tertiary structure and quaternary structure. Primary structure is the amino acid

sequence, secondary structure represents regular hydrogen bond patterns,

tertiary structure is the three-dimensional structure of a single amino acid chain

and quaternary structure is the three-dimensional structure of the protein, which

might contains more than one amino acid chain. Figure 2.1.1 shows four levels

of protein structure.

Figure 2.1.1 primary, secondary, tertiary and quaternary structures in proteins [12]

2.1.1 Primary Structure

Primary structure is the amino acid sequence of a polypeptide chain. It stays

together with peptide bonds that occur during protein synthesis. The primary

structure of a protein is decided in vivo by the gene that encodes its amino acid

content. The amino acid sequence is serves as a signature for the protein

dictating its structure and function. While this sequence can be determined by

methods such as mass spectrometry (MS) or Edman degradation, typically it is

identified by directly reading the sequence from the encoding gene [11].

5

2.1.2 Secondary Structure

Secondary structure in proteins is formed by regular hydrogen bonds between

neighboring amino acids with similar dihedral angles. There are two basic

motifs that form the hydrogen bond pattern such as; rotation motif and bridge

motif. In the rotation motif, also referred to as the n-rotation motif, there is a

hydrogen bond between an amino acid at position 𝑖 and the amino acid at

position 𝑖 + 𝑛 and 𝑛 typically takes values of 3, 4 or 5. In the bridge motif, there

is usually hydrogen bonding between amino acids that are not closely related to

each other in sequential order. Subsequent secondary structural elements are

formed when the rotation and bridge motifs are successively brought to a certain

layout. For example, the repeating 4-rotation motif forms the alpha helix and the

repeating bridge motif forms beta strands and beta sheets. The three-dimensional

structure of proteins can be thought of as the successive organization of

secondary structural elements.

2.1.2.1 Helix

In this structure the protein backbone adopts a helical structure (Figure

2.1.2.1.1). There are three types of helix: Alpha helix (α-helix), 310 helix and pi

helix (π–helix). Helices can have various functional roles. These may include

the motifs connected to DNA (strand-coil-strand, leucine zipper, zinc finger) and

structures passing through the cell membrane [13].

6

Figure 2.1.2.1.1 Alpha helix [14]

2.1.2.2 Beta Strands and Beta Sheets

Beta strands are the second most common regular units that stabilize the

structure of proteins (Figure 2.1.2.2.1). A beta strand consists of a polypeptide

chain that has 3 to 10 amino acids. In beta-strands, the polypeptide typically has

an extended conformation. Beta strands are aligned pairwise and consecutively

in three dimensional space interacting through hydrogen bonds. As a result of

this interaction, beta-sheets units are formed, which contain at least two beta-

strands. The interacting amino acid segments may be close to each other and

linked by a short loop, or they may be separated by many other structures. Even

though interacting beta strands are sequentially far from each other, they can

come closer in the three-dimensional space as a result of the folding process.

Protein aggregates and fibrils formed through combination of beta strands play a

role in the formation of various diseases like Alzheimer's [15].

7

Figure 2.1.2.2.1 Beta sheet [16]

2.1.2.3 Loop

Loops are structures usually located at the surface of the protein. They typically

occur between helix and beta sheets with different lengths and configurations.

Unlike the amino acids in the internal region of proteins, amino acids in loops

are not exposed to spatial and environmental constraints. They also do not play

an effective role in the regulation of secondary structural elements in the inner

zone. That’s why there may be more mutations in the loops. Regions that have

undergone this type of mutation in a series of alignments may indicate the loop

structure. Loops are more inclined to contain cyclic charged and polarized

amino acids and are usually found in the functionally active regions [17]. There

are three types of loops: curl, stitch and random coil.

2.1.3 Tertiary Structure

Tertiary Structure is the 3D structure of a single protein molecule. It can be

defined as the coordinates of atoms in 3D space. The strands and sheets are

folded to form a compact structure. This folding is guided by hydrophobic

interactions however, to stabilize the overall structure certain regions of a

protein may be fixed with specific tertiary interactions [11].

8

2.1.4 Quaternary Structure

Quaternary structure is the agglomeration which formed by several proteins or

polypeptide chain. It is stabilized by non-covalent bonds and disulfide bonds

which stabilize the tertiary structure. Most proteins do not have quaternary

structure and they function as a monomer. An example of a quaternary structure

is the hemoglobin protein, which carries oxygen in the blood and is composed of

four chains [11].

2.2 Protein Structure Prediction

Estimation of three-dimensional structure is understood when protein structure

prediction is called. Since this is a rather difficult problem, instead of predicting

the three-dimensional directly, the various structural properties of the protein are

usually primarily estimated and then these characteristics will be used for three-

dimensional structure prediction. These include the secondary structure

prediction, dihedral angles prediction and solvent accessibility prediction as a

general work.

2.2.1 Secondary Structure Prediction

The secondary structure prediction is the identification of the secondary

structural elements starting from the sequence information of the proteins. The

aim of this problem is to assign secondary structural elements (helix, beta

strands, loops) for each amino acid (Figure 2.1.1). To estimate secondary

structure generally supervised learning approaches are used. For this, a model is

trained by using proteins that have known secondary structure. Then unknown

proteins are predicted. The first developed methods of secondary structure

prediction were based on the tendency of each amino acid to form helices or

leaves. Sometimes, in addition, rules to estimate the formation of secondary

structural elements are included. These methods were successful at 60% to

predict which of the three states (helix, strands, loop) an amino acid residue

9

would adopt. Subsequently, a significant increase in accuracy was achieved by

using multiple sequence alignments and the success rate reached 80-82% [18],

[19]. In addition to the multiple sequence alignment, the accuracy reached 84-

85% when structural profiles were used; if there are proteins with known

secondary structure elements which have similarity in various levels [20], [21].

These accuracy rates make it possible to use secondary structure estimation

information in many other problems. These problems include estimating the

folding class, estimating the three-dimensional structure, classifying the

structural motifs, and improving the alignment of the series.

Figure 2.1.1 Three state protein secondary structure prediction. The first line is amino

acid sequence. The second line is secondary structure

2.3 Literature Review for Secondary Structure

Prediction

As mentioned earlier, the secondary structure prediction is defined as assigning

a secondary structure label for each amino acid of a given protein. Various

machine learning methods have been developed to estimate the secondary

structure including artificial neural networks (ANN), support vector machines,

dynamic Bayesian networks, random forests and ensemble techniques. Salamov

and Solovyev employed artificial neural network and k nearest neighbor with a

scoring matrix and obtained 72.2% Q3 accuracy [22]. Jones used neural

networks on position specific scoring matrices (PSSM) computed by PSI-

BLAST algorithm and achieved an average Q3 score between 76.5% and 78.3%

[23]. Jian-wei et al. proposed a neural network model for secondary structure

prediction and compared it with traditional back propagation algorithm. As a

10

result, they obtained %9 improvement [24]. Yaseen and Li applied a neural

network on a dataset that is obtained by using statistical-context based scores

and achieved 82.74% Q3 score [25]. Yao et al. obtained 78.1% Q3 accuracy by

a method called DBNN that use dynamic Bayesian network and neural network

[26]. Pollastri et al. employed recurrent neural network with PSI-BLAST

algorithm on both three and eight classes and their model obtained 78% correct

prediction [27]. Mirabello and Pollastri create application based on bidirectional

recurrent neural networks called Porter 4.0 and Paleale 4.0. Porter 4.0 got 82.2%

Q3 accuracy and Paleale 4.0 got 80.0% Q3 accuracy [19].

Among the other machine learning methods, k-nearest neighbor and minimum

distance use a distance formula (e.g. Minkowski, Euclid etc.) to classify data.

These algorithms do not require pre-training and test data are classified using

training set each time. Ghosh and Parai applied k nearest neighbor, minimum

distance and fuzzy k nearest neighbor algorithm on a dataset that contains amino

acid sequence of protein and they compared these methods with multilayer

neural networks. They showed that these methods give better accuracy than

multilayer neural networks [28]. Yang at al. proposed a novel nearest neighbor

method that uses non-homologous and both homologous characteristic of

protein secondary structure and obtained 87.51% Q3 score [29].

Support Vector Machines (SVM) is another widely used method to estimate

protein secondary structure. In SVM algorithm, which will be described in detail

in the next sections of study, data is divided into two classes with the help of a

linear hyper plane. Hua and Sun applied an SVM on RS126 and CB513 datasets

and obtained 73.5% Q3 score [30]. Aydin et al. used SVM and Dynamic

Bayesian network on CB513 and achieved 80.3% Q3 score [18]. Huang and

Chen used support vector machines on a dataset that is generated using PSSM

values and four physicochemical features (net charges, conformation

parameters, side chain mass, and hydrophobic), then obtained 79.52% Q3

accuracy [31]. Wang et al. made parameter optimization for support vector

machines for grid search and genetic algorithm. On the one hand model trained

11

by using grid search gave 76.08% Q3 score and the model learned by using

genetic algorithm produced 76.11% Q3 score [32].

Another machine learning technique used on protein secondary structure is

Hidden Markov Model (HMM). It’s a technique to estimate future behavior

based on current behavior. It’s widely used as a classifier in many fields such as

hand-writing recognition, bioinformatics and image processing etc. Martin et al.

considered finding optimal hidden Markov model for protein secondary

structure prediction and obtained 75.5% Q3 accuracy [33]. Aydin et al. extended

hidden semi-markov model to estimate secondary structure for single sequence

and obtained 67.89% Q3 score [34].

As previously defined, protein secondary structure prediction aims to assign

secondary structural elements for each amino acid. Therefore the number of

samples in the datasets will be equal to the number of amino acids, which can be

large. In this case, the speed of the learning algorithm becomes very important.

Extreme learning machine as a very fast algorithm is a derivative of fully-

connected neural network first proposed by Huang at al. [35]. Because of the

speed of this algorithm, it may be used in a problem with large sample size.

Wang et al. applied extreme learning machine on protein datasets CB513 and

RS126 and reached 74.7% Q3 accuracy. They found that the accuracy of

extreme learning machine is promising and because of the speed of algorithm, it

may be used in secondary structure prediction [36].

Although the classification algorithms sometimes make similar mistakes when

compared to each other, in some cases it is possible to make mistakes belonging

to a specific class. In order to avoid such types of errors, ensemble methods may

be used, in which two or more classification algorithms are combined by using

some mathematical or statistical techniques. Lin et al. combined several support

vector machines and obtained 74.98% Q3 accuracy [37]. Bouziane et al.

combined artificial neural networks and support vector machines with majority

voting and ideal fold selection on CB513 dataset. The model that used majority

12

voting gave 76.58% Q3 accuracy and ideal fold selection 78.50% Q3 accuracy

[38].

In the artificial neural networks, the number of neurons in the hidden layers is

important for the accuracy. If there is a few numbers of neurons, the model

cannot separate the samples well. To learn highly non-linear relationships the

number of hidden neurons should be sufficiently high, which requires a large

number of data samples in training set. This increases the computational

complexity of the learning phase. To solve this problem, deep learning

approaches are proposed and applied successfully in many problems. Spencer et

al. used deep belief networks for protein secondary structure with 80.7% Q3

score [39]. Li and Yu developed cascade convolutional neural network on 3

different dataset. They got the best 76.9% Q8 accuracy on CB513 [40]. Wang et

al. employed deep convolutional neural fields on protein dataset and they

obtained 84% Q3 accuracy [41].

In machine learning, the feature set is very important. Dimension reduction and

feature selection methods, which reduce the data set to a smaller size have been

used in many studies to improve classification performance. Li et al. applied

principal component analysis on a new dataset and obtained 86.7% Q3 accuracy

by support vector machines [42]. Adamczak used t-statistics and information

gain for feature selection and principal component analysis for dimension

reduction. He trained a neural network with reduced data set and achieved

79.1% Q3 accuracy [43].

Researchers also applied other machine learning methods that are not widely

used to estimate protein structure. Li et al. proposed a structural position-

specific scoring matrix and achieved 82.7% Q3 accuracy on EVAset [21].

Zongooei and Jalili used support vector regression and support vector regression

based on non-dominated sorting genetic algorithm. The first algorithm gave

85.79% and the second algorithm 84.94% Q3 accuracy on CB513 and 81.4% on

an independent test data [44]. Fayech et al. proposed a technique called data

mining for prediction and they obtained 78.2% Q3 accuracy [45].

13

Chapter 3

Methods

3.1 Classification Methods

3.1.1 Feature Extraction for One Dimensional Protein Structure

Prediction

Proteins with similar amino acid sequences typically have similar structure.

When the amino acid sequence is different, there is usually no structural

similarity however, there are proteins, which have similar structure but their

amino acid sequence is considerably different. Since the amino acid content of

structurally similar proteins may be different, statistical techniques are proposed

to summarize this difference. One of these is the profile matrix such as position

specific scoring matrix (PSSM) that is mainly a statistical score table that, is

obtained by aligning proteins in the same family, it shows which position the

amino acids is seen less or frequently and contains a likelihood score for

observing the 20 amino acids in each position of the query protein. In this thesis,

we use PSI-BLAST PSSM, HHMAKE PSSM, and structural profile matrices to

predict secondary structure of proteins.

3.1.1.1 PSI-BLAST

The PSI-BLAST method can be thought of as the iterative version of the

BLAST algorithm [46]. The query proteinis aligned with the proteins in the

database and the remaining proteins above the threshold are selected. In the

second and subsequent iterations, the proteins above the threshold are aligned by

a multiple alignment method and a statistical profile matrix is calculated and

aligned with proteins in the database. In each iteration, the profile matrix is

14

updated using proteins above the threshold. Usually 3-6 iterations are sufficient

for convergence. The size of the profile matrix obtained by the PSI-BLAST

method is 20*U, where U is the number of amino acids in the target (i.e. query)

protein. With the use of profilers in alignment, proteins with structural similarity

but without sequence similarity can be discovered and included to the profile

matrix. The most widely used profile matrix derivation method for structure

prediction is PSIBLAST. This can be due to the program's fast runtime,

sensitivity at a certain level, easy access to the software, and regular updates on

the software. Even if the PSI-BLAST method can detect more distant protein

similarities, it also performs some mismatches. Therefore, profile matrices

produced by using this method contain noise. The methods and databases are

open for access and will be downloaded from the relevant internet address [47].

3.1.1.2 Profiles based on Hidden Markov Model

Profiles derived from hidden Markov models (HMM) can also be used as input

features for predicting structural properties of proteins [48]. Profiles based on

hidden Markov models are known to be more sensitive than standard profiles

and are able to discover more distant protein relations. In this thesis, hidden

Markov models obtained from the first iteration of HHBlits method is

transformed into position specific scoring matrices (PSSM) which, dimension of

20*U and used as the second profile matrix. To generate HHMAKE profiles

(position specific scroring matrix), in the first step, proteins are aligned against

the NR database by the HHBlits algorithm and proteins above the threshold are

multiply aligned. Then, an HMM-profile model is obtained from this multiple

alignment and the distributions in match states are normalized to interval [0, 1]

to derive the HHMAKE profile. The HHblits method and databases can be

downloaded from the internet address of this software [49].

3.1.1.3 Structural Profiles

In addition to profile matrices based on multiple alignments of amino acid

sequences, structural profile matrices can also be used for 1D structure

15

prediction [50]. Structural profile matrices are constructed using structural

sequences of proteins found by sequence alignment methods. Typically, the

dimension of a structural profile matrix constructed for secondary structure

estimation is 3 x U (U is the number of amino acids in the target protein and

each column has the observation score of one of the three secondary structures

for that amino acid). Structural profiles can be evaluated in separate categories

from methods that use only sequence profiling, since they also use structural

information of template proteins that are similar to the target protein. In another

category, structure labels of target protein can be predicted by using secondary

structure information of template proteins, for which the sequence similarity

with the target is below a certain level. In this case, the use of structural profiles

is in between these two categories.

The accuracy of prediction is directly related to the similarity level between

protein sequences used in constructing the structural profile matrix and the

target protein. This similarity can also be local in which target resembles a sub-

region of a database protein. On this basis, structural information of local

similarities can be used to estimate the structural properties of the target protein.

In this thesis, the HMM-profile model obtained for each target is aligned with

the HMM-profiles of the PDB proteins, which is achieved by the second phase

of the HHBlits method. In the next step, those templates for which the

percentage of sequence identity score is above 20% are eliminated. Then the

structural profile matrix is derived by computing the average weighted

frequency of secondary structure labels aligned to each amino acid of the target.

Finally the profile matrix is normalized so that each column sums to 1 [51].

3.1.2 DSPRED Method

The DSPRED method is a two-stage classifier that includes Dynamic Bayesian

Networks (DBN) and a support vector machine classifier.A separate DBN is

trained for each position specific scoring matrix produced by PSI-BLAST [47]

16

and the first step of HHBlits [48] (PSIBLAST PSSM and HHMAKE PSSM).

Then the predictions are combined with a structural profile matrix obtained from

the second stage of the HHBlits method and sent as input to an SVM classifier.

Figure 3.1.2.1 summarizes the steps of DSPRED.

Figure 3.1.2.1 Steps of DSPRED method for 1D protein structure prediction

In this figure, DBN-past represents the model, in which the profile vector in

current position depends on the neighboring positions that come before, and

DBN-future represents the model, in which the profile vector in current position

depends on the positions that come after. Here the vectors are the columns of the

profile matrix and there are as many columns as the number of amino acids. As

a result, two types of DBN models are trained for each profile matrix (totally

four). Then, the probability distributions for the secondary structure classes from

these DBN classifiers are averaged over various combinations. For example, the

average of the estimated distributions from the PSIBLAST profile matrices is

Distribution 1, Dynamic Bayesian Network estimates by using HHMAKE

profile matrix that is produced in the first phase of HHBlits is Distribution 2,

and the average of Distribution 1, Distribution 2, and structural profile matrices

17

is Distribution 3. Structural profile matrix is produced in the second phase of

HHBlits by aligning the HMM-profile matrix from the first phase to the HMM-

profile matrices of proteins in PDB [52] and normalizing the frequencies of the

tag information of PDB proteins. In this thesis, dimension of distribution 1, 2,

and 3 and structural profile matrix is 3*U because we make three state protein

secondary structure prediction. Therefore, each column contains the estimated

probabilities of the secondary structure classes at that position. In the second

stage of DSPRED, the profile matrices (PSI-BLAST and HHMAKE) used for

DBN are combined with Distributions 1, 2, and 3 and sent to a support vector

machine. For this purpose, a sliding and symmetric window around each amino

acid is selected and the columns of the profile matrices, distribution 1, 2, and 3

corresponding to these windowed positions are used as input parameters.

Finally, the support vector machine predicts the secondary structure class of the

amino acid in the center of the window.

3.1.3 Support Vector Machines

Support Vector Machine (SVM) is a learning method proposed by Vapnik for

the solution of classification and curve fitting problems, which takes advantage

of statistical learning theory and the principle of minimizing the structural risk

[53]. This method is commonly used for determining classes that are linearly

separable but can also be used for nonlinear classification thanks to the kernel

functions that map the input space to a higher-dimensional. Support vector

machine are supervised machine learning methods aim to separate data in two

classes by using a linear hyper plane. In the learning phase the parameters of

these separators are determined then unknown classes are estimated using these

parameters.

The main purpose of the SVM is to determine the best separator that has the

minimum error. As shown in figure 3.1.3.1, two support vectors that minimize

the error are selected and the distance between the planes that pass through the

closest support vectors is maximized. In the last step, the class value for new

sample is calculated by using equation 3.1.3.1. In this equation y represents the

18

class value, x represents the new sample’s feature vector, w represents the

weight vector that is perpendicular to the hyperplane and b represents the

constant value. If y>0 the sample is assigned to the first class, otherwise it is

assigned to the second class.

 𝑦 = 𝑤𝑡𝑥 + 𝑏 (eq. 3.1.3.1)

Figure 3.1.3.1 Support vector machines and hyper plane selection

Unlike other machine learning techniques, support vector machines can separate

only two classes. For three or more classes, two techniques can be used: one

versus all (OVA), or one versus one (OVO). In OVA, one class is selected as the

first class and all the remaining classes as the second class. A separate model is

trained for each class and predictions from individual classifiers are combined.

In OVO, separate SVM is trained for each class pair and predictions from

individual classifiers are combined.

3.2 Feature Selection Techniques

3.2.1 Chi Square (X
2
)

The chi-square method, also known as X
2
 test, is developed by Randy Kerber in

1992 and also by Huan Lui and Rudy Setiono in 1995. It can be used to

determine whether variables are eligible to represent the dataset or not [4]. In a

19

chi-square test there are two hypotheses, 𝐻0 and 𝐻1. 𝐻0 represents that variables

are not eligible (i.e. null model), and 𝐻1 represents that variables not eligible to

represent the dataset. The chi-square method has two phases. In the first step, the

chi-square statistic of the observed values with respect to the actual classes is

calculated. X
2

value can take values between zero and positive infinity. If this

value is close to zero, the observed frequency values and the expected frequency

values are comparably close. If this value is high, the observed frequency values

and the expected frequency values differ significantly. For this reason, in the

second stage, the X
2

value is compared with a threshold value determined from

the Chi-square distribution. This threshold value is determined based on the

level of significance and the degree of freedom. The significance level

represents the probability of obtaining a chi-square statistic greater than the

threshold using the null model and the degree of freedom is calculated by

subtracting one from the number of attributes being analyzed. The 𝐻1 hypothesis

is accepted if the calculated value is greater than the specified value.

Otherwise 𝐻0 is accepted. Equation 3.2.1.1 shows the formula of the chi square

statistic.

 𝑋2 = ∑
(𝑜𝑖− 𝑒𝑖)2

𝑒𝑖

𝑖=𝑛
𝑖=1 (eq. 3.2.1.1)

In this equation, 𝑛 represents the number of features in dataset; 𝑜𝑖 represents the

observed frequency value for 𝑖𝑡ℎ feature, and 𝑒𝑖 represents the expected

frequency value for 𝑖𝑡ℎ feature.

3.2.2 Information Gain

The information gain (IG) is one of the entropy-based metrics that can be used

to calculate the estimated loss when the data set is divided by attributes [5].

Entropy is a value that determines the irregularity or uncertainty of the system.

A high entropy value indicates that the system contains high information. To

compute the information gain metric, the entropy value for class labels of a

given data set is computed as formulated in equation 3.2.2.1.

20

 𝐸 = − ∑ (log2
𝑓𝑠(𝑖)

𝑁
) ×

𝑓(𝑖)

𝑁

𝑛
𝑖=1 (eq. 3.2.2.1)

In this equation, 𝑛 represents the number of class in dataset, 𝑓𝑠(𝑖) represent the

number of sample for 𝑖𝑡ℎ class, and 𝑁 represents the total number of samples.

In the second phase of calculating information gain metric, the entropy value for

each attribute is calculated and this new entropy value is subtracted from the

value found in the first step to calculate the information gain for each attribute.

Equation 3.2.2.2 shows the calculation of entropy value for each attribute, and

equation 3.2.2.3 shows calculation of information gain value.

 𝐸(𝑖) ∑
𝑠𝑠(𝑘)

𝑁

𝑛
𝑘=1 × ∑ −

𝑐𝑠𝑘(𝑘,𝑚)

𝑠𝑠(𝑘)
 (log2

𝑐𝑠𝑘(𝑘,𝑚)

𝑠𝑠(𝑖)
)𝑐𝑠

𝑚=1 (eq. 3.2.2.2)

 𝐵(𝑖) = 𝐸(𝑖) − 𝐸 (eq. 3.2.2.3)

In the equations, 𝐸(𝑖) represents the entropy value for 𝑖𝑡ℎ feature, 𝑛 represents

the number of unique value of the 𝑖𝑡ℎ feature, 𝑠𝑠(𝑘) represents the number of

sample that belongs 𝑘𝑡ℎ value of 𝑖𝑡ℎ feature, 𝑁 represents the total number of

sample in dataset, 𝑐𝑠 represents the number of class in dataset, 𝑐𝑠𝑘(𝑘, 𝑚)

represents the number of sample that belongs the feature 𝑖, variable 𝑘 and class

𝑚, 𝐵(𝑖) represents the information gain for 𝑖𝑡ℎ feature, and 𝐸 represents the

value calculated in eq. 3.2.2.1.

3.2.3 Gain Ratio

The gain ratio (GR) is also one of the entropy-based metrics that can be used to

calculate the estimated loss when the data set is divided by attributes. When an

attribute in the dataset has many different values, the number of samples falling

for each value is low for that attribute. For this reason, the entropy value

calculated for that attribute becomes small and the information gain large. As

explained in the information gain method, the large value of this variable

indicates that the variable is good at defining the dataset. If there are a lot

different values for an attribute, information gain methods select that attribute as

a good separator. Although the system memorizes the training set well, it cannot

separate the test set properly using that attribute. As a solution to this problem,

21

the gain ratio normalizes the information gain with the partitioning information

for each attribute. If the gain ratio of an attribute is high, then this attribute is a

good separator. Equation 3.2.3.1 formulates how partitioning information value

is calculated and equation 3.2.3.2 shows the computation of gain ratio.

 𝑆(𝑖) = − ∑
𝑠𝑠(𝑘)

𝑁

𝑛
𝑘=1 × (log2

𝑠𝑠(𝑘)

𝑁
) (eq. 3.2.3.1)

 𝐾(𝑖) =
𝐵(𝑖)

𝑆(𝑖)
 (eq. 3.2.3.2)

In the above equations, 𝑆(𝑖) represents the partitioning information value for

𝑖𝑡ℎ feature, 𝑛 represents the unique values for 𝑖𝑡ℎ feature, 𝑠𝑠(𝑘) represents the

sample size that belongs the 𝑘𝑡ℎ value of 𝑖𝑡ℎ feature, 𝑁 represents the total

number of samples, 𝐾(𝑖) represents the gain ratio value for 𝑖𝑡ℎ feature, and 𝐵(𝑖)

represents the information gain value that calculated in eq. 3.2.2.3.

3.2.4 Minimum Redundancy Maximum Relevance

Minimum redundancy maximum relevance, which proposed by Ding and Peng,

is a feature selection algorithm that aims to eliminate redundant attributes and

selects the attribute that is the most related with the class labels [7]. In other

words it selects the attributes that have minimum correlation with each other. In

the first step of the algorithm, for each 𝑥, 𝑦 (two variables in the dataset) the

mutual information value (I) is calculated as shown in equation 3.2.4.1.

 𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥𝑖 , 𝑦𝑗)𝑛
𝑗=1

𝑛
𝑖=1 × log

𝑝(𝑥𝑖,𝑦𝑗)

𝑝(𝑥𝑖)×𝑝(𝑦𝑗)
 (eq. 3.2.4.1)

In this equation, n represents the number of samples in dataset, 𝑝(𝑥𝑖 , 𝑦𝑗)

represents the dependent probability distribution value, 𝑝(𝑥𝑖) and 𝑝(𝑦𝑗)

represent marginal probabilities for the relevant sample. In this algorithm, two

conditions must be provided by using 𝐼 value: Minimum redundancy (mRed),

and maximum relevance (mRel). mRed and mRel values are calculated as

shown in equations 3.2.4.2 and 3.2.4.3, respectively.

 𝑚𝑅𝑒𝑑 =
1

𝑚2 ∑ ∑ 𝐼(𝑥𝑖 , 𝑦𝑗)𝑚
𝑗=1

𝑚
𝑖=1 (eq. 3.2.4.2)

 𝑚𝑅𝑒𝑙 =
1

𝑚
 ∑ 𝐼(𝑥𝑖 , ℎ𝑖)𝑚

𝑖=1 (eq. 3.2.4.3)

22

In these equations, 𝑚 represents the dimension of the new feature set, and ℎ𝑖

represents the class label for sample 𝑖. Finally, the features are selected to satisfy

two conditions, max (𝑚𝑅𝑒𝑙 − 𝑚𝑅𝑒𝑑) and max (
𝑚𝑅𝑒𝑙

𝑚𝑅𝑒𝑑
).

3.2.5 Search Methods

3.2.5.1 Genetic Algorithm

The genetic algorithm (GA) is a global search optimization technique that is

inspired by natural selection, crossover, and mutation events in biology. In this

method, firstly, a population, which is formed by candidate solutions, is

produced and this population is updated through genetic processes called

selection, crossover, and mutation until the specified stopping criterion is met.

Genetic algorithm uses the idea of surviving the best while finding better

solutions. Genetic algorithm is different from conventional non-linear

optimization techniques in that it searches for a solution population by updating

it, instead of gradually changing a single solution. Because conventional

optimization algorithms deal with the local properties of the iteration points,

they can easily be fitted to local extremum points. Conversely, genetic algorithm

uses the random search operator in addition to the systematic search, therefore it

is prevented from being attached to the local minimum or maximum point.

Genetic algorithm starts with a series of solutions to optimize the parameters.

Each parameter of the chromosomes that forms the solution is called the gene.

Parameters can be encoded as a binary bit string, integer or real number.

Without any prior knowledge, each chromosome in the first population is

randomly generated using uniform distribution. Then fitness value for each

solution is calculated by the determined function and solutions are sorted with

respect to their fitness value. With the help of these sequential generations, new

generations are produced using techniques such as mutation and crossover and

these processes are repeated on new generations until the desired success rate is

achieved. Because of these characteristics, a genetic algorithm may achieve a

higher success rate even though it works slower than many algorithms.

23

3.2.5.2 Greedy Algorithm

The aim of the algorithms that use the greedy approach is to choose the best

component to reach the result. This approach, which is used in many problems

as graph theory, can be used as a feature selection algorithm, which can be used

in two ways such as; forward feature selection (FFS), and backward feature

selection (BFS).

Forward feature selection starts with the empty feature set and features are

added to this set in each step, hence the name. In the first step of this algorithm

the features are sorted based on a condition, which can be leave-one-out cross

validation accuracy for each feature. Then, the algorithm adds the feature that

has the best condition score to the empty set and calculates the condition score

again. In the second step, the next feature from sorted feature set is added to the

feature set and condition score is calculated again. If the new condition score is

better than the previous one, this feature stays in the feature set, otherwise, it is

not added. The second step is applied for each feature in the dataset and as a

result a feature set which has less or equal number of dimensions than the

original feature set is obtained. The aim of the backward feature selection is the

same as that of the forward feature selection and its running phase very similar

to forward feature selection but it works in reverse order. In the first step

features are sorted as in the forward feature selection. Then the condition score

is calculated for the full feature set. The feature that has the worst condition

score is removed and the second condition score is calculated. If it is better than

the first one, this feature is deleted from the feature set, otherwise, it is retained.

These operations are applied iteratively for each feature and the final feature set

is obtained.

3.2.5.3 Best First Feature Selection

Best first algorithm, which is proposed by Xu et al. as a feature selection

algorithm, is very similar to greedy algorithm [10]. Unlike greedy algorithm, the

best first algorithm can start from any point and search both in forward and

24

backward directions (by considering all possible single attribute additions and

deletions at a given point) [54]. Direction and starting feature set is defined as a

parameter in this algorithm, which is summarized in figure 3.2.5.3.1 [55].

Figure 3.2.5.3.1 Best first search algorithm

In this figure, A is the classifier, T is the sample in dataset, Λ is the any ranking

algorithm, and P is the selected feature set. The aim of the algorithm is to return

best feature set that satisfy the condition.

3.3 Projection Techniques

3.3.1 Principal Component Analysis

Principal component analysis (PCA) is a dimension reduction technique used to

find the dependency between variables. The aim of this method is to minimize

the loss while maximizing variance. In the first phase, the covariance between

each variable pair is calculated as formulated in equation 3.3.1.1. The

covariance represents the mutual exchange of two variables. If this value is

positive, the two variables grow or shrink together. If it is negative, one of the

variables grows while the other reduces. If zero, they are independent from each

other [2].

25

 𝑐𝑜𝑣(𝑋, 𝑌) =
∑ (𝑋𝑖− �̅�)𝑛

𝑖=1 × (𝑌𝑖− �̅�)

𝑛−1
 (eq. 3.3.1.1)

In this equation, 𝑋 and 𝑌 represent two variables (i.e. features), 𝑛 represents the

sample size in dataset, 𝑋𝑖 and 𝑌𝑖 represent the value of the 𝑖𝑡ℎ sample for 𝑋 and

𝑌, respectively, and �̅� and �̅� represent the mean value of 𝑋 and 𝑌, respectively.

Then, the covariance matrix shown in figure 3.3.1.1 is constructed using the

covariance values found in step one.

Figure 3.3.1.1 Covariance matrix

In the third step, eigenvalues and eigenvectors of this matrix are calculated and

are sorted from highest to smallest to obtain the component matrix. The purpose

of this sorting is to rank variables according to the representation capacity of the

dataset. In the last step, the components having the highest representative value

are selected. In this step number of components can be determined any value

between 1 to number of feature in dataset. By multiplying this selected matrix

with the feature matrix, the new feature vector that has lower dimension is

obtained.

3.3.2 Deep Autoencoders

The autocoder (AE), a derivative of artificial neural networks, was first

proposed by the Hinton and PDB groups in the 1990s [3]. In 2016, it became

one of the main topics in machine learning when the deep learning architecture

26

became more popular [56]. The autocoder is a fully connected artificial neural

network consisting of three layers: input layer, the hidden layer and the output

layer. The number of neurons in the input layer and output layer are the same

and equal to the number of features in the dataset. The number of neurons in the

hidden layer can be determined as desired, which is an important factor affecting

the performance of the network. An example autoencoder architecture with 3

neurons in the hidden layer for a data set with 5 attributes is shown in figure

3.3.2.1.

Figure 3.3.2.1 Autoencoder architecture

Autoencoder does not need any class label because it uses the input data as the

output data. That’s why it is an unsupervised learning method. The network

determines the optimal weight values using the backpropagation algorithm

during training to match the input data to the same data at the output. For this

reason, the method is also referred to as the backpropagation algorithm without

a teacher [57]. The autocoder operates as a coder that maps its input data to itself

with minimal loss. If there are fewer neurons in the middle layer than the output

and input layer, the reduced data is derived from the middle layer. The forward

propagation from one layer to the next is formulated in equation 3.3.2.1.

27

 𝑦𝑗 = 𝑓(∑ 𝑥𝑖 × 𝑤𝑖𝑗
𝑛
𝑖=1) + 𝑏 (eq. 3.3.2.1)

In equation 3.3.2.1, 𝑥𝑖 represents the value of 𝑖𝑡ℎ neuron in the current layer, 𝑦𝑗

represents the value of 𝑗𝑡ℎ neuron in the next layer, 𝑤𝑖𝑗 represents the weights

value that connect the 𝑥𝑖 to 𝑦𝑗, 𝑛 represents the number of neurons in the current

layer, 𝑏 represents the bias value (that is constant for each layer), and 𝑓

represents the activation function (gauss, sigmoid, softmax etc.).

 min (∑ (𝑦𝑗
′ − 𝑦𝑗)2𝑛

𝑖=1) (eq. 3.3.2.2)

During model training the weights are updated to minimize difference between

the actual values and the output values expressed in equation 3.3.2.2. In equation

3.3.2.2, 𝑦𝑗
′ represents the actual value and 𝑦𝑗 represents the value that is

produced by the network.

The deep autoencoder (deepAE) is obtained by connecting several auto encoders

one after another. As shown in figure 3.3.2.2, the values obtained from the

hidden layer of the first autoencoder model are connected to the input layer of

the second autoencoder. In deep auto encoders, each autoencoder model is

trained one after another. Standard autoencoder reduces the data in one step.

Hence either the dimension reduces suddenly or the reduction is little. In this

case, the deep auto-encoders can be used to reduce data to lower dimensions

gradually, which enables more complex datasets to be separated. This is the

most important advantage of deep auto encoders.

Figure 3.3.2.2 Deep autoencoder architecture

In each autoencoder model, weights that connect neurons in input layer to

neurons in hidden layer are called the encoder weights, and weights that connect

28

neurons in hidden layer to neurons in output layer are called the decoder

weights. After training, data that has reduced dimension can be obtained using

encoder weights. The aim of the decoder weights is to reproduce data in the

original dimension. However new data produced at the output layer may not be

exactly the same as the original data. In deep autoencoder model, training of

each autoencoder model independently may cause a decrease in the success rate.

This problem can be solved by a method called fine tuning. There are two

approaches for fine tuning. In the first one, input layer of the first autoencoder

model is connected to the input layer of the second autoencoder by using the

encoder weights of the first autoencoder. Then for the second and third

autoencoders, these steps are repeated and new network that has m layers (m

represents the number of autoencoders) is obtained by applying these steps to

each auto-encoder model. After this, the input layer of the last autoencoder is

connected to the hidden layer of last autoencoder by using encoder weights of

the last autoencoder. Then, output layer with n neurons (n represents the number

of unique class labels) is generated and is connected to the new network with

random weights (Shown in figure 3.3.2.3). In the final step this new network is

trained by using dataset that has the class labels. In this way, deep autoencoder

also becomes dependent with class label. This approach generates neural

networks with initial weights, which can also be used to initiate weights for

escaping local minimum in neural networks structure [58].

29

Figure 3.3.2.3 Transefer of deep autoencoder to neural network with class label for

finetuning

To perform finetuning using the first approach, an additional classification layer

(e.g. softmax) is needed, so the model becomes supervised. However in this

approach the decoder weights cannot be updated. The second approach can be

used to do finetuning without making the model supervised by updating decoder

weights. Firstly, the input layer of the first autoencoder is connected to the input

layer of the second autoencoder by using encoder weights of the first

autoencoder. Then for the second and third autoencoders, these steps are

repeated and new network that has m layers (m represents the number of

autoencoder) is obtained. Finally, the input layer of the last autoencoder is

connected to the hidden layer of last autoencoder by using encoder weights of

the last autoencoder. These steps are similar to the first approach but, instead of

a defining an output layer for class label, the last layer of the new network (it is

the same as the hidden layer of the last autoencoder) is connected to the output

layer of the last autoencoder by using decoder weights of the last autoencoder,

then output layer of the last autoencoder is connected to the output layer of

penultimate autoencoder by using decoder weights of the penultimate layer.

These steps are repeated progressively till the first layer and a network with 2 ×

m + 1 layers is obtained (figure 3.3.2.4). Finally this network is trained by using

the dataset without labels.

30

Figure 3.3.2.4 Transefer of deep autoencoder to neural network without class label for

finetuning

In these type of autoencoders, the goal is to in the output layer, so that the

training set may be memorized by the network. In some cases, this approach

may not have high accuracy rate on the test data. To solve this problem,

denoising autoencoder is used, which is a stochastic version of the autoencoder

[59]. In order to enforce the hidden layer to discover more robust features and

prevent it from simply learning the identity, the autoencoder is trained to

reconstruct the input from a corrupted version of it. There are two main steps in

the denoising autoencoder: encode the input data and decode the encoded data to

the noisy version of the input data. To generate noisy data there are many

methods such as adding Gaussian noise to input data. Vincent et al. randomly

select some sample and they also randomly select some features from the

selected sample. Then, they set the value of those features to the zero to make

denoising autoencoder [60]. The system can also learn data with different

patterns that are not in training data thanks to the autoencoder. In this thesis we

transfer of deep autoencoder to neural network without class label forfinetuning.

31

Chapter 4

Experiments and Analysis

In this thesis, deep autoencoder is used as a dimensionality reduction technique

for protein secondary structure prediction and is compared with the traditional

feature selection and dimension reduction techniques. As well as with the model

that is trained with the original dataset. As the protein dataset CB513 produced

by Cuff and Barton [61] and Evaset [62] are used. For all train-test models, a

one-versus-one support vector machine is used as the classifier. Q3 accuracy,

precision, and recall [63] is used as the performance measures.

In this thesis cross validation [64] is used to evaluate the prediction accuracy. A

7-fold cross-validation experiment is performed on CB513 and a 10-fold cross-

validation on EVAset. Proteins are randomly assigned to train and test sets for

each fold. Then, from each train set 10% of the proteins are chosen randomly to

form validation set and the rest is saved as the train set for optimization (i.e.

model optimization or to optimize the number of dimensions). This train set

contains approximately 90% of the proteins in the original train set of the cross-

validation. To further reduce the sample size and speed up the optimizations,

each train set for optimization is further reduced by selecting 25% of the

proteins randomly. Similarly, 50% of proteins are selected randomly from each

validation set. As a result, 4 different dataset created for each fold (totally

7×4+10 ×4 = 68): such as, train set, test set, train set for optimization set and

validation set for optimization.

True secondary structure labels of proteins in CB513 and EVAset are computed

by the DSSP program [65] starting from 3D coordinate information in PDB.

32

Then for each protein PSSM and structural profiles are extracted using PSI-

BLAST and HHBlits as explained in Section 3.1.1. In the next step, the

secondary structure is predicted using the first phase of DSPRED method and a

total of three distributions are obtained as described in Section 3.1.2. As a result,

three distributions with length L ×3 and two PSSM matrixes in length L ×20 are

obtained for each dataset (L representsthe number of amino acids in target

protein). To extract feature for each amino acid a symmetric window of size 11

is chosen around each amino acid for CB513 dataset and a window of size 19

for Evaset.

That means for each amino acid in CB513 there are 20×11=220 HHMAKE

PSSM values, 20×11=220 PSIBLAST PSSM values, 3×11=33 predicted

distribution by DBNs using PSIBLAST PSSMs (distribution 1), 3×11=33

predicted distribution by DBNs using HHMAKE PSSMs (distribution 2) and 3

×11=33 average of predicted distributions and structural profile matrix

(distribution 3). Totally there are 539 features for CB513. For each amino acid

in EVAset there are 20×19=380 HHMAKE PSSM values, 20×19=380

PSIBLAST PSSM values, 3×19=57 predicted distribution by DBNs using

PSIBLAST PSSMs (distribution 1), 3×19=57 predicted distribution by DBNs

using HHMAKE PSSMs (distribution 2), and 3×19=57 average of predicted

distributions and structural profile matrix (distribution 3). Totally there are 931

features for EVAset. And in CB513 there are 84119 amino acid samples and in

Evaset there are 584595 amino acid samples.

In the third phase, for each each fold a one-vs-one SVM is trained in original

dimension (539 features for CB513, 931 features for Evaset) on train sets.

Gamma parameter is set to 0.00781 for each fold and C parameter is set to 1,

which were optimized by Aydin et al. for CB513 [6]. Then predictions are

computed on test sets. The accuracy values for 7-fold cross-validation

experiment on CB513 is shown in Table 4.1 and the accuracy values for 10-fold

cross-validation on EVAset is summarized on Table 4.2.

33

Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 0.837 0.671 0.860 0.890 0.838 0.732 0.804

Fold-2 0.818 0.711 0.850 0.869 0.836 0.754 0.805

Fold-3 0.824 0.698 0.871 0.896 0.848 0.748 0.814

Fold-4 0.828 0.710 0.853 0.880 0.823 0.763 0.812

Fold-5 0.812 0.741 0.826 0.880 0.780 0.761 0.802

Fold-6 0.821 0.720 0.853 0.891 0.808 0.767 0.814

Fold-7 0.853 0.719 0.855 0.903 0.841 0.760 0.828

Mean

Result
0.829 0.710 0.852 0.888 0.824 0.756 0.812

Table 4.1 Accuracy measures in original dimension evaluated by 10-fold cross validation

experiment on CB513

Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 0.865 0.772 0.840 0.880 0.840 0.796 0.833

Fold-2 0.862 0.796 0.847 0.898 0.845 0.795 0.841

Fold-3 0.876 0.785 0.839 0.899 0.832 0.797 0.843

Fold-4 0.861 0.779 0.854 0.896 0.852 0.792 0.841

Fold-5 0.861 0.780 0.843 0.894 0.836 0.793 0.837

Fold-6 0.862 0.774 0.848 0.900 0.836 0.789 0.837

Fold-7 0.859 0.779 0.855 0.892 0.842 0.800 0.839

Fold-8 0.869 0.777 0.827 0.888 0.809 0.798 0.834

Fold-9 0.870 0.793 0.839 0.891 0.833 0.804 0.839

Fold-10 0.859 0.760 0.854 0.899 0.840 0.787 0.836

Mean

Result
0.865 0.780 0.845 0.894 0.837 0.795 0.838

Table 4.2 Accuracy measures in original dimension evaluated by 10-fold cross validation

experiment on EVAset

In the fourth phase, ranker feature selection techniques (Chi-square, Information

Gain, and Gain Ratio) are applied on the each train set for optimization

separately and features are sorted according to the calculated rank values by

34

using train set for optimization. Then, features are selected by using all feature

selection methods. In this phase, CFS used with search techniques such as:

genetic algorithm, greedy algorithm, best first algorithm, and minimum

redundancy maximum relevance are applied on the train set for optimization to

find best feature set followed by selecting the same features in the corresponding

validation set. As a test data, validation set is used if necessary. For each ranker

method, a wrapper approach is applied, in which an SVM is trained with one-

dimensional train set for optimization that has the feature with the best rank

value only, and tested on the validation set that has the same feature only. Then,

other features added one by one in to the datasets according to the rank order,

and train and test steps are repeated for these new sets. Finally, the feature set

that gives the best prediction accuracy on validation set is found. In minimum

redundancy maximum relevance algorithm firstly features are ranked by using

MRMR metric then best features selected with forward feature selection

techniques by using correlation based feature selection algorithm. The feature

selection steps described above are repeated for each fold of the cross-validation

experiment. We used following command lines for feature selection algorithms

[66].

Chi-Square: weka.filters.supervised.attribute.AttributeSelection -b -i

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E

"weka.attributeSelection.ChiSquaredAttributeEval" –S

“weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1”

Information gain: weka.filters.supervised.attribute.AttributeSelection -b -i

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E

"weka.attributeSelection.InfoGainAttributeEval" –S

“weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1”

Gain ratio: weka.filters.supervised.attribute.AttributeSelection -b -i

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E

"weka.attributeSelection.GainRatioAttributeEval" –S

“weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1”

35

Genetic algorithm: weka.filters.supervised.attribute.AttributeSelection -b -i

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E

"weka.attributeSelection.CfsSubsetEval -M" -S

"weka.attributeSelection.GeneticSearch -Z 20 -G 20 -C 0.6 -M 0.033 -R 20 -S 1"

Greedy algorithm: weka.filters.supervised.attribute.AttributeSelection -b -i

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E

"weka.attributeSelection.CfsSubsetEval -M” -S

"weka.attributeSelection.GreedyStepwise -T -1.7976931348623157E308 -N -1"

CFS and best first strategy: weka.filters.supervised.attribute.AttributeSelection -

b -i $train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E

"weka.attributeSelection.CfsSubsetEval -M” -S

"weka.attributeSelection.BestFirst -D 1 -N 5"

Minimum Redundancy Maximum Relevance Algorithm:

weka.filters.supervised.attribute.AttributeSelection -b -i $train_set_file -o

$train_out_file -r $test_set_file -s $test_out_file -E

"weka.attributeSelection.CfsSubsetEval -M" -S

"weka.attributeSelection.RerankingSearch -method 2 -blocksize 20

rankingMeasure 0 -search \"weka.attributeSelection.GreedyStepwise -T -

1.7976931348623157E308 -N -1 -num-slots 1\""

After the attributes are selected, for each fold of the cross-validation experiment

an SVM is trained on the original train set and class labels of test set are

predicted. The experiment results on test data are shown in Tables 4.3 – 4.16.

36

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 81 0.836 0.676 0.860 0.888 0.836 0.737 0.805

Fold-2 91 0.822 0.727 0.844 0.865 0.830 0.763 0.808

Fold-3 78 0.822 0.724 0.861 0.890 0.843 0.755 0.816

Fold-4 531 0.828 0.711 0.853 0.880 0.823 0.763 0.812

Fold-5 404 0.815 0.743 0.830 0.884 0.783 0.764 0.806

Fold-6 13 0.825 0.735 0.834 0.870 0.797 0.775 0.810

Fold-7 485 0.853 0.723 0.857 0.905 0.842 0.762 0.830

Mean

Result
---- 0.830 0.720 0.848 0.884 0.821 0.760 0.813

Table 4.3 Accuracy measures of chi-square method evaluated by 7-fold cross validation

experiment on CB513

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 149 0.851 0.752 0.840 0.876 0.836 0.782 0.824

Fold-2 121 0.851 0.779 0.847 0.896 0.840 0.780 0.833

Fold-3 130 0.862 0.766 0.840 0.898 0.826 0.782 0.835

Fold-4 184 0.852 0.764 0.850 0.891 0.846 0.781 0.833

Fold-5 309 0.862 0.773 0.846 0.895 0.838 0.790 0.836

Fold-6 421 0.860 0.770 0.850 0.900 0.837 0.786 0.836

Fold-7 185 0.848 0.765 0.855 0.889 0.840 0.789 0.832

Fold-8 539 0.870 0.774 0.829 0.888 0.810 0.797 0.834

Fold-9 115 0.861 0.775 0.840 0.889 0.830 0.791 0.832

Fold-

10
286 0.856 0.751 0.857 0.897 0.844 0.782 0.834

Mean

Result
---- 0.858 0.767 0.846 0.892 0.835 0.786 0.833

Table 4.4 Accuracy measures of chi-square method evaluated by 7-fold cross validation

experiment on EVAset

37

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 81 0.836 0.676 0.860 0.888 0.836 0.737 0.805

Fold-2 91 0.822 0.727 0.844 0.865 0.830 0.763 0.808

Fold-3 78 0.822 0.724 0.861 0.890 0.843 0.755 0.816

Fold-4 432 0.825 0.714 0.853 0.880 0.825 0.763 0.812

Fold-5 401 0.815 0.739 0.829 0.884 0.782 0.762 0.804

Fold-6 10 0.826 0.735 0.840 0.878 0.800 0.775 0.812

Fold-7 485 0.853 0.723 0.857 0.905 0.842 0.762 0.830

Mean

Result
---- 0.830 0.720 0.849 0.885 0.822 0.760 0.813

Table 4.5 Accuracy measures of information-gain method evaluated by 7-fold cross

validation experiment on CB513

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 144 0.851 0.754 0.840 0.877 0.836 0.782 0.825

Fold-2 126 0.853 0.779 0.846 0.895 0.840 0.783 0.833

Fold-3 143 0.862 0.766 0.839 0.898 0.825 0.782 0.834

Fold-4 179 0.851 0.764 0.850 0.891 0.846 0.781 0.832

Fold-5 321 0.862 0.773 0.846 0.895 0.838 0.789 0.836

Fold-6 442 0.861 0.771 0.850 0.900 0.837 0.787 0.837

Fold-7 169 0.848 0.762 0.853 0.888 0.838 0.788 0.831

Fold-8 529 0.870 0.775 0.828 0.888 0.810 0.798 0.834

Fold-9 149 0.862 0.776 0.840 0.889 0.829 0.793 0.833

Fold-

10
284 0.856 0.751 0.858 0.898 0.845 0.782 0.835

Mean

Result
---- 0.858 0.767 0.845 0.892 0.835 0.786 0.833

Table 4.6 Accuracy measures of information-gain method evaluated by 7-fold cross

validation experiment on EVAset

38

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 83 0.835 0.674 0.860 0.888 0.835 0.735 0.804

Fold-2 91 0.823 0.726 0.844 0.865 0.829 0.763 0.808

Fold-3 77 0.822 0.726 0.862 0.890 0.846 0.756 0.817

Fold-4 536 0.827 0.711 0.852 0.880 0.823 0.763 0.812

Fold-5 150 0.809 0.751 0.832 0.883 0.785 0.765 0.806

Fold-6 14 0.830 0.734 0.844 0.882 0.801 0.777 0.815

Fold-7 508 0.854 0.721 0.857 0.904 0.845 0.761 0.830

Mean

Result
---- 0.830 0.720 0.850 0.886 0.823 0.761 0.814

Table 4.7 Accuracy measures of gain ratio method evaluated by 7-fold cross validation

experiment on CB513

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 174 0.853 0.756 0.841 0.877 0.839 0.784 0.826

Fold-2 134 0.853 0.780 0.846 0.895 0.840 0.784 0.834

Fold-3 146 0.863 0.766 0.840 0.897 0.827 0.783 0.835

Fold-4 153 0.851 0.761 0.850 0.891 0.845 0.779 0.831

Fold-5 269 0.860 0.773 0.746 0.895 0.837 0.788 0.835

Fold-6 444 0.861 0.770 0.849 0.899 0.837 0.786 0.836

Fold-7 133 0.846 0.759 0.854 0.887 0.840 0.786 0.830

Fold-8 523 0.870 0.775 0.828 0.887 0.810 0.798 0.834

Fold-9 100 0.860 0.774 0.841 0.889 0.830 0.791 0.832

Fold-

10
242 0.854 0.750 0.857 0.897 0.844 0.781 0.833

Mean

Result
---- 0.857 0.766 0.845 0.892 0.835 0.786 0.833

Table 4.8 Accuracy measures of gain ratio method evaluated by 7-fold cross validation

experiment on EVAset

39

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 240 0.836 0.673 0.858 0.890 0.833 0.733 0.804

Fold-2 237 0.817 0.716 0.848 0.868 0.833 0.756 0.805

Fold-3 229 0.818 0.710 0.868 0.892 0.851 0.748 0.814

Fold-4 245 0.828 0.710 0.852 0.877 0.825 0.764 0.812

Fold-5 226 0.809 0.745 0.829 0.884 0.779 0.762 0.804

Fold-6 228 0.823 0.721 0.852 0.889 0.807 0.769 0.814

Fold-7 257 0.851 0.717 0.855 0.906 0.833 0.759 0.827

Mean

Result
---- 0.827 0.713 0.852 0.888 0.822 0.757 0.812

Table 4.9 Accuracy measures of genetic algorithm evaluated by 7-fold cross validation

experiment on CB513

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 450 0.859 0.769 0.840 0.879 0.837 0.791 0.830

Fold-2 445 0.857 0.790 0.849 0.899 0.844 0.790 0.839

Fold-3 433 0.871 0.780 0.840 0.900 0.829 0.792 0.841

Fold-4 449 0.854 0.773 0.854 0.894 0.851 0.786 0.837

Fold-5 408 0.859 0.777 0.843 0.895 0.833 0.789 0.835

Fold-6 414 0.856 0.771 0.848 0.899 0.834 0.783 0.834

Fold-7 439 0.851 0.772 0.856 0.890 0.841 0.794 0.835

Fold-8 439 0.865 0.769 0.826 0.886 0.804 0.792 0.830

Fold-9 451 0.866 0.785 0.841 0.892 0.832 0.798 0.837

Fold-

10
420 0.853 0.753 0.856 0.898 0.839 0.781 0.833

Mean

Result
---- 0.859 0.774 0.845 0.894 0.835 0.790 0.835

Table 4.10 Accuracy measures of genetic algorithm evaluated by 7-fold cross validation

experiment on EVAset

40

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 16 0.836 0.669 0.852 0.879 0.833 0.732 0.800

Fold-2 16 0.822 0.724 0.837 0.855 0.827 0.762 0.804

Fold-3 15 0.826 0.708 0.856 0.879 0.844 0.752 0.811

Fold-4 16 0.825 0.718 0.838 0.860 0.816 0.766 0.806

Fold-5 14 0.806 0.748 0.825 0.877 0.780 0.761 0.801

Fold-6 16 0.826 0.728 0.840 0.879 0.794 0.774 0.811

Fold-7 15 0.849 0.717 0.839 0.894 0.819 0.756 0.820

Mean

Result
---- 0.828 0.716 0.841 0.876 0.816 0.758 0.808

Table 4.11 Accuracy measures of greedy algorithm evaluated by 7-fold cross validation

experiment on CB513

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 29 0.837 0.748 0.845 0.884 0.831 0.772 0.820

Fold-2 30 0.838 0.775 0.852 0.900 0.839 0.773 0.829

Fold-3 28 0.849 0.765 0.844 0.903 0.821 0.774 0.831

Fold-4 28 0.836 0.759 0.855 0.896 0.842 0.770 0.827

Fold-5 30 0.837 0.759 0.848 0.898 0.826 0.771 0.825

Fold-6 27 0.832 0.752 0.851 0.899 0.829 0.764 0.822

Fold-7 33 0.832 0.757 0.858 0.892 0.838 0.777 0.826

Fold-8 29 0.842 0.756 0.832 0.890 0.800 0.774 0.821

Fold-9 30 0.848 0.775 0.846 0.895 0.828 0.785 0.830

Fold-

10
34 0.830 0.743 0.856 0.900 0.831 0.768 0.825

Mean

Result
---- 0.839 0.759 0.849 0.896 0.829 0.773 0.826

Table 4.12 Accuracy measures of greedy algorithm evaluated by 7-fold cross validation

experiment on EVAset

41

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 16 0.836 0.669 0.852 0.879 0.833 0.732 0.800

Fold-2 16 0.822 0.724 0.837 0.855 0.827 0.762 0.804

Fold-3 15 0.826 0.708 0.856 0.879 0.844 0.752 0.811

Fold-4 16 0.825 0.718 0.838 0.860 0.816 0.766 0.806

Fold-5 16 0.811 0.749 0.826 0.879 0.778 0.765 0.804

Fold-6 16 0.826 0.728 0.840 0.879 0.794 0.774 0.811

Fold-7 15 0.849 0.717 0.839 0.894 0.819 0.756 0.820

Mean

Result
---- 0.839 0.716 0.841 0.876 0.815 0.759 0.808

Table 4.13 Accuracy measures of CFS and BestFirst search strategy evaluated by 7-fold

cross validation experiment on CB513

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 34 0.838 0.749 0.844 0.882 0.833 0.773 0.821

Fold-2 30 0.838 0.775 0.852 0.900 0.839 0.773 0.829

Fold-3 33 0.851 0.764 0.844 0.902 0.822 0.774 0.831

Fold-4 31 0.836 0.758 0.855 0.896 0.842 0.770 0.827

Fold-5 30 0.837 0.759 0.848 0.898 0.826 0.771 0.825

Fold-6 34 0.835 0.753 0.850 0.897 0.831 0.765 0.823

Fold-7 32 0.832 0.756 0.858 0.892 0.838 0.777 0.826

Fold-8 29 0.842 0.756 0.832 0.890 0.800 0.774 0.821

Fold-9 33 0.849 0.775 0.846 0.895 0.828 0.786 0.831

Fold-

10
34 0.837 0.743 0.856 0.900 0.831 0.768 0.825

Mean

Result
---- 0.840 0.759 0.849 0.896 0.829 0.773 0.826

Table 4.14 Accuracy measures of CFS and BestFirst search strategy evaluated by 7-fold

cross validation experiment on EVAset

42

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 16 0.836 0.669 0.852 0.879 0.833 0.732 0.800

Fold-2 16 0.822 0.724 0.837 0.855 0.827 0.762 0.804

Fold-3 15 0.826 0.708 0.856 0.879 0.844 0.752 0.811

Fold-4 16 0.825 0.718 0.838 0.860 0.816 0.766 0.806

Fold-5 14 0.806 0.748 0.825 0.877 0.780 0.761 0.801

Fold-6 16 0.826 0.728 0.840 0.879 0.794 0.774 0.811

Fold-7 15 0.849 0.717 0.839 0.894 0.819 0.756 0.820

Mean

Result
---- 0.828 0.716 0.841 0.876 0.816 0.758 0.808

Table 4.15 Accuracy measures of minimum redundancy maximum relevance evaluated by

7-fold cross validation experiment on CB513

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 23 0.833 0.748 0.845 0.885 0.829 0.770 0.819

Fold-2 24 0.837 0.776 0.852 0.901 0.839 0.773 0.829

Fold-3 24 0.847 0.764 0.846 0.904 0.822 0.772 0.830

Fold-4 25 0.834 0.757 0.856 0.898 0.842 0.768 0.827

Fold-5 25 0.834 0.757 0.849 0.900 0.825 0.768 0.823

Fold-6 25 0.832 0.752 0.851 0.900 0.830 0.763 0.822

Fold-7 27 0.829 0.757 0.858 0.892 0.836 0.775 0.825

Fold-8 26 0.844 0.753 0.832 0.890 0.799 0.774 0.821

Fold-9 26 0.847 0.772 0.846 0.896 0.827 0.783 0.829

Fold-

10
27 0.835 0.742 0.856 0.901 0.828 0.767 0.824

Mean

Result
---- 0.837 0.758 0.849 0.897 0.828 0.771 0.825

Table 4.16 Accuracy measures of minimum redundancy maximum relevance evaluated by

7-fold cross validation experiment on EVAset

In the principal component analysis the number of dimensions is increased from

5 to 535 with increments of 5, and a one-versus-one SVM model is trained and

tested on each train set for optimization and validation set respectively. Then,

principal component analysis is applied in python pca library on train and test

datasets for the optimum number of dimensions [67] . Finally, for each fold a

one-versus-one SVM model is trained and tested by using the reduced datasets.

The results of the 7-fold cross-validation experiment on CB513 are shown in

43

Table 4.17 and 10-fold cross-validation experiment on EVAset is presented in

Table 4.18.

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 290 0.839 0.677 0.859 0.889 0.839 0.736 0.806

Fold-2 105 0.826 0.717 0.847 0.863 0.833 0.763 0.808

Fold-3 85 0.834 0.713 0.864 0.892 0.850 0.756 0.818

Fold-4 105 0.840 0.717 0.849 0.874 0.826 0.774 0.817

Fold-5 95 0.822 0.742 0.829 0.879 0.784 0.769 0.807

Fold-6 75 0.834 0.719 0.848 0.887 0.802 0.774 0.815

Fold-7 90 0.857 0.728 0.858 0.905 0.840 0.769 0.833

Mean

Result
---- 0.837 0.716 0.850 0.885 0.824 0.764 0.815

Table 4.17 Accuracy measures of principal component analysis evaluated by 7-fold cross

validation experiment on CB513

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 590 0.863 0.764 0.839 0.879 0.836 0.792 0.830

Fold-2 470 0.860 0.778 0.846 0.898 0.837 0.787 0.836

Fold-3 550 0.871 0.775 0.837 0.900 0.822 0.790 0.839

Fold-4 380 0.855 0.760 0.851 0.894 0.841 0.782 0.833

Fold-5 430 0.858 0.760 0.843 0.894 0.826 0.783 0.830

Fold-6 560 0.860 0.756 0.846 0.898 0.830 0.780 0.831

Fold-7 570 0.855 0.762 0.849 0.891 0.827 0.791 0.831

Fold-8 550 0.866 0.774 0.824 0.887 0.800 0.795 0.831

Fold-9 590 0.867 0.776 0.837 0.890 0.826 0.795 0.834

Fold-

10
580 0.856 0.743 0.852 0.897 0.832 0.779 0.830

Mean

Result
---- 0.861 0.765 0.843 0.893 0.828 0.787 0.833

Table 4.18 Accuracy measures of principal component analysis evaluated by 7-fold cross

validation experiment on EVAset

For the autoencoder the number of hidden neurons, which gives the dimension

of the reduced dataset, is increased from 75 to 525 with increments of 25.

Maximum epoch number is set to 1000, L2WeightRegularization parameter to

0.004, SparsityRegularization parameter to 4, SparsityProportion parameter to

44

0.15 and scaleData parameter to false. As in other methods, autoencoder is

applied in matlab [68] on train and test sets after finding the optimum number of

dimensions and one-versus-one SVM is trained and tested on the reduced

datasets. The results of the 7-fold cross-validation experiment on CB513 are

shown in Table 4.19 and 10-fold cross-validation experiment on EVAset is

given in Table 4.20.

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 175 0.827 0.620 0.882 0.897 0.860 0.718 0.799

Fold-2 225 0.824 0.674 0.865 0.863 0.862 0.754 0.811

Fold-3 275 0.828 0.659 0.876 0.891 0.862 0.743 0.813

Fold-4 275 0.830 0.697 0.866 0.877 0.847 0.771 0.820

Fold-5 225 0.823 0.710 0.852 0.878 0.826 0.767 0.817

Fold-6 250 0.834 0.684 0.867 0.893 0.826 0.771 0.819

Fold-7 275 0.851 0.684 0.873 0.908 0.861 0.759 0.831

Mean

Result
---- 0.832 0.675 0.869 0.888 0.849 0.755 0.820

Table 4.19 Accuracy measures of autoencoder evaluated by 7-fold cross validation

experiment on CB513

 Dimension
Recall

‘L’

Recall

‘H’

Recall

‘E’

Precision

‘L’

Precision

‘H’

Precision

‘E’
Accuracy

Fold-1 450 0.857 0.737 0.849 0.881 0.844 0.777 0.832

Fold-2 375 0.821 0.717 0.862 0.899 0.833 0.752 0.819

Fold-3 425 0.831 0.736 0.853 0.892 0.827 0.763 0.823

Fold-4 425 0.841 0.707 0.845 0.882 0.829 0.755 0.819

Fold-5 450 0.847 0.761 0.851 0.903 0.821 0.778 0.832

Fold-6 400 0.838 0.720 0.856 0.895 0.840 0.755 0.825

Fold-7 425 0.838 0.754 0.856 0.897 0.845 0.766 0.831

Fold-8 450 0.853 0.730 0.853 0.893 0.836 0.768 0.830

Fold-9 425 0.841 0.719 0.856 0.892 0.842 0.759 0.825

Fold-

10
450 0.809 0.744 0.864 0.900 0.841 0.752 0.818

Mean

Result
---- 0.837 0.733 0.855 0.893 0.836 0.762 0.825

Table 4.20 Accuracy measures of autoencoder evaluated by 7-fold cross validation

experiment on EVAset

45

Training time of support vector machines for each fold is almost 7 hours for

CB513 and almost 6 days for Evaset when all the features are used. That means

total training time is almost 2 days for CB513 and almost 60 days for Evaset

(assuming that these jobs are executed serially). Ranking methods consist of

three different phases: ranking, finding the optimum number of features, and

classification. For CB513 the total ranking time in each method is almost 5

hours, the total optimization time is almost 2 days and the total classification

time is 15 hours. For EVAset the total ranking time is almost 4 days, total

optimizing time is almost 250 days and total classification time is almost 22

days. For the remaining feature selection algorithms there are two phases:

selection and classification. Except for the Genetic algorithm their running times

are similar to each other. For CB513 feature selection takes 2 days and

classification takes 5 hours. For EVAset feature selection takes 11 days and

classification takes 29 days. In the CFS algorithm, which uses genetic algorithm

as a search technique these times are longer than other feature selection

algorithms. For CB513 feature selection takes 140 hours and classification takes

almost 2 days. For Evaset selection takes 30 days and classification takes 55

days. Projection algorithms also have two phases: optimization and

classification. In principal component analysis, optimization takes 7 days and

classification takes 6 hours for CB513and for EVAset optimization takes 35

days and classification takes 50 days. In the deep autoencoder, for CB513

optimizing takes 6 days and classification takes 7 hours. For the Evaset set

optimizing takes 35 days and classification takes 41 days. To decrease these

times we sent each fold in parallel to different cores.

As shown in experiment results, feature selection and dimension reduction

algorithms can be used to reduce the number of dimensions considerably for

protein secondary structure prediction. For the two datasets (Evaset and CB513)

the proposed autoencoder models and other models received similar accuracy.

For CB513 deep autoencoder obtained the best overall accuracy (Q3) value of

0.820 and greedy, CFS and best first search strategy and minimum redundancy

maximum relevance algorithms reduced the dimension the most with the mean

46

number of dimensions equal to 15. Table 4.21 summarizes the percentage of

eliminated attributes for CB513 and table 4.22 contains the percentage of

eliminated attributes for EVAset. The best overall accuracy (Q3) for EVAset is

obtained by CFS-Genetic search algorithm and the highest reduction in number

of dimensions is achieved by CFS-MRMR algorithm with the mean number of

dimensions acress the 10 folds equal to 25. The fastest algorithms (including

optimization, selection and classification) are minimum CFS-MRMR, CFS-Best

First and CFS-Greedy, the slowest algorithms are ranker feature selection

algorithms for both two datasets.

 X
2

IG GR Greddy Genetic
CFS-

Bestfist
MRMR PCA Autoencoder

Fold-

1
84.9 84.9 84.6 97.0 55.4 97.0 97.0 46.1 67.5

Fold-

2
83.1 83.1 83.1 97.0 56.0 97.0 97.0 80.5 58.2

Fold-

3
85.5 85.5 85.7 97.2 57.5 97.2 97.2 84.2 48.9

Fold-

4
1.48 19.8 0.55 97.0 54.5 97.0 97.0 80.5 48.9

Fold-

5
25.0 25.6 72.1 97.4 58.0 97.0 97.4 82.3 58.2

Fold-

6
97.5 98.1 97.4 97.0 57.6 97.0 97.0 86.0 53.6

Fold-

7
10.0 10.0 5.75 97.2 52.3 97.2 97.2 83.3 48.9

Mean

Result
55,5 58,2 61,4 97,1 55,9 97,0 97,1 77,4 54,9

Table 4.21 Percentage of eliminated attributes for CB513

47

 X
2
 IG GR Greddy Genetic

CFS-

Bestfist
MRMR PCA Autoencoder

Fold-

1
83.9 84.5 81.3 96.8 51.6 96.3 97.5 36.6 51.6

Fold-

2
87.0 86.4 85.6 96.7 52.2 96.7 97.4 49.5 59.7

Fold-

3
86.0 84.6 84.3 96.9 53.4 96.4 97.4 40.9 54.3

Fold-

4
80.2 80.7 83.5 96.9 51.7 96.6 97.3 59.1 54.3

Fold-

5
66.8 65.5 71.1 96.7 56.1 96.7 97.3 53.8 51.6

Fold-

6
54.7 52.5 52.3 97.0 55.5 96.3 97.3 39.8 57.0

Fold-

7
80.1 81.8 85.7 96.4 52.8 96.5 97.0 38.7 54.3

Fold-

8
42.1 43.1 43.8 96.8 52.8 96.8 97.2 40.9 51.6

Fold-

9
87.6 83.9 89.2 96.7 51.5 96.4 97.2 36.6 54.3

Fold-

10
69.2 89.4 74.0 96.3 54.8 96.3 97.0 37.7 51.6

Mean

Result
74,0 75,4 75,3 96,7 53,2 96,5 97,2 43,4 54,0

Table 4.22 Percentage of eliminated attributes for EVAset

48

Chapter 5

Conclusions

In this thesis we employ deep autoencoder for dimension reduction and compare

it with the traditional feature selection and dimension reduction techniques in

protein secondary structure prediction on two benchmark datasets. In addition

we compare the accuracy obtained after dimension reduction with the accuracy

from the original feature set. As the classification method we use support vector

machine, which is the second classifier of a two-stage predictor. As a result,

feature selection and dimension reduction techniques achieved similar success

rates compared to the accuracy obtained with the original feature set. They can

be useful for protein structure prediction because they decrease the number of

dimensions considerably. For each feature selection and projection algorithms,

the classification phase is significantly than classification in original dimension.

In addition some feature selection algorithms achieve better accuracy than the

models trained using the original feature set. The proposed autoencoder model

has similar success rate to the other models and it can be more ameliorative than

the other models because of its several parameters. Furthermore, it takes the best

accuracy value on the CB513 dataset and eliminates more than half of the

features in both datasets. We can conclude that in most of the cases the

autoencoder has better accuracy than other feature selection algorithms and

projection methods except for the CFS-Genetic method. The disadvantages of

the genetic algorithm are such that it takes longer time and cannot reduce the

dimension considerably. Because of these reasons deep autoencoder is more

useful as a dimension reduction algorithm. As a future work, we will apply the

49

same methods to dihedral angle and solvent accessibility prediction, and analyze

the improvement in accuracy and running times of the classification method.

50

BIBLIOGRAPHY

 [1] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.

Elsevier, 2011.

[2] S. Wold, K. Esbensen, and P. Geladi, ‘Principal component analysis’,

Chemom. Intell. Lab. Syst., vol. 2, no. 1, pp. 37–52, Aug. 1987.

[3] G. E. Hinton, M. Revow, and P. Dayan, ‘Recognizing Handwritten Digits

Using Mixtures of Linear Models’, in Proceedings of the 7th International

Conference on Neural Information Processing Systems, Cambridge, MA, USA,

1994, pp. 1015–1022.

[4]T. Kavzoğlu, E. K. Şahin, and İ. Çölkesen, ‘Heyelan Duyarlılık Analizinde

Ki-Kare Testine Dayalı Faktör Seçimi’, presented at the V. Uzaktan Algılama ve

Coğrafi Bi lgi Sistemleri Sempozyumu (UZAL CBS 2014), 2014.

[5] P. Ozarkar and M. Patwardhan, ‘Efficient Spam Classification by

Appropriate Feature Selection’, Glob. J. Comput. Sci. Technol. Softw. Data E

Ngineering, vol. 1 3, no. 5, 2013.

[6] K. O. Jeppson, ‘Modeling the influence of the transistor gain ratio and the

input-to-output coupling capacitance on the CMOS inverter delay’, IEEE J.

Solid-State Circuits, vol. 29, no. 6, pp. 646–654, Jun. 1994.

[7] C. Ding and H. Peng, ‘Minimum redundancy feature selection from

microarray gene expression data’, J. Bioinform. Comput. Biol., vol. 03, no. 02,

pp. 185–205, Nisan 2005.

[8] W. Siedlecki and J. Sklansky, ‘A note on genetic algorithms for large-scale

feature selection’, Pattern Recognit. Lett., vol. 10, no. 5, pp. 335–347, Nov.

1989.

[9] N. Kwak and C.-H. Choi, ‘Input feature selection for classification

problems’, IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 143–159, Jan. 2002.

51

[10] L. Xu, P. Yan, and T. Chang, ‘Best first strategy for feature selection’, in

[1988 Proceedings] 9th International Conference on Pattern Recognition, 1988,

pp. 706–708 vol.2.

[11] ‘Protein yapısı’, http://tr.wikipedia.org/wiki/Protein_yapısı. (Jun 2017)

[12] ‘Protein - Primary, Secondary, Tertiary and Quaternary structure’,

http://biology4alevel.blogspot.com.tr/2014/08/12-protein-primary-secondary-

tertiary.html. (Jun 2017)

[13] ‘Alfa sarmal’, http://tr.wikipedia.org/wiki/Alfa_sarmal. (Jun 2017)

[14] ‘Difference Between Alpha Helix and Beta Pleated Sheet’,

http://pediaa.com/difference-between-alpha-helix-and-beta-pleated-sheet/. (Jun

2017)

[15] ‘Beta yaprak’, http://tr.wikipedia.org/wiki/Beta_yaprak. (Jun 2017)

[16] ‘Structure,Classification and Function Of Protein’,

http://www.biologynoteshelp.com/primary-structuresecondary-structure-of-

protein/. (Jun 2017)

[17] ‘Protein structure prediction’,

http://en.wikipedia.org/wiki/Protein_structure_prediction. (Jun 2017)

[18] Z. Aydin, A. Singh, J. Bilmes, and W. S. Noble, ‘Learning sparse models

for a dynamic Bayesian network classifier of protein secondary structure’, BMC

Bioinformatics, vol. 12, p. 154, 2011.

[19] C. Mirabello and G. Pollastri, ‘Porter, PaleAle 4.0: high-accuracy

prediction of protein secondary structure and relative solvent accessibility’,

Bioinformatics, vol. 29, no. 16, pp. 2056–2058, Aug. 2013.

[20] G. Pollastri, A. J. Martin, C. Mooney, and A. Vullo, ‘Accurate prediction of

protein secondary structure and solvent accessibility by consensus combiners of

sequence and structure information’, BMC Bioinformatics, vol. 8, p. 201, 2007.

http://tr.wikipedia.org/wiki/Protein_yapısı
http://biology4alevel.blogspot.com.tr/2014/08/12-protein-primary-secondary-tertiary.html
http://biology4alevel.blogspot.com.tr/2014/08/12-protein-primary-secondary-tertiary.html
http://tr.wikipedia.org/wiki/Alfa_sarmal
http://pediaa.com/difference-between-alpha-helix-and-beta-pleated-sheet/
http://www.biologynoteshelp.com/primary-structuresecondary-structure-of-protein/
http://www.biologynoteshelp.com/primary-structuresecondary-structure-of-protein/
http://en.wikipedia.org/wiki/Protein_structure_prediction

52

[21] D. Li, T. Li, P. Cong, W. Xiong, and J. Sun, ‘A novel structural position-

specific scoring matrix for the prediction of protein secondary structures’,

Bioinformatics, vol. 28, no. 1, pp. 32–39, Jan. 2012.

[22] A. A. Salamov and V. V. Solovyev, ‘Prediction of Protein Secondary

Structure by Combining Nearest-neighbor Algorithms and Multiple Sequence

Alignments’, J. Mol. Biol., vol. 247, no. 1, pp. 11–15, Mar. 1995.

[23] D. T. Jones, ‘Protein secondary structure prediction based on position-

specific scoring matrices1’, J. Mol. Biol., vol. 292, no. 2, pp. 195–202, Eylül

1999.

[24] L. Jian-wei, C. Guang-hui, L. Hai-en, L. Yuan, and L. Xiong-lin,

‘Prediction of protein secondary structure using multilayer feed-forward neural

networks’, in 2013 25th Chinese Control and Decision Conference (CCDC),

2013, pp. 1346–1351.

[25] A. Yaseen and Y. Li, ‘Context-Based Features Enhance Protein Secondary

Structure Prediction Accuracy’, J. Chem. Inf. Model., vol. 54, no. 3, pp. 992–

1002, Mar. 2014.

[26] X.-Q. Yao, H. Zhu, and Z.-S. She, ‘A dynamic Bayesian network approach

to protein secondary structure prediction’, BMC Bioinformatics, vol. 9, p. 49,

2008.

[27] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, ‘Improving the prediction

of protein secondary structure in three and eight classes using recurrent neural

networks and profiles’, Proteins Struct. Funct. Bioinforma., vol. 47, no. 2, pp.

228–235, May 2002.

[28] A. Ghosh and B. Parai, ‘Protein secondary structure prediction using

distance based classifiers’, Int. J. Approx. Reason., vol. 47, no. 1, pp. 37–44,

Ocak 2008.

[29] W. Yang, K. Wang, and W. Zuo, ‘A fast and efficient nearest neighbor

method for protein secondary structure prediction’, in 2011 3rd International

Conference on Advanced Computer Control, 2011, pp. 224–227.

53

[30] S. Hua and Z. Sun, ‘A novel method of protein secondary structure

prediction with high segment overlap measure: support vector machine

approach1’, J. Mol. Biol., vol. 308, no. 2, pp. 397–407, Nisan 2001.

[31] Y. F. Huang and S. Y. Chen, ‘Protein secondary structure prediction based

on physicochemical features and PSSM by SVM’, in 2013 IEEE Symposium on

Computational Intelligence in Bioinformatics and Computational Biology

(CIBCB), 2013, pp. 9–15.

[32] Y. Wang, J. Cheng, Y. Liu, and Y. Chen, ‘Prediction of protein secondary

structure using support vector machine with PSSM profiles’, in 2016 IEEE

Information Technology, Networking, Electronic and Automation Control

Conference, 2016, pp. 502–505.

[33] J. Martin, J.-F. Gibrat, and F. Rodolphe, ‘Analysis of an optimal hidden

Markov model for secondary structure prediction’, BMC Struct. Biol., vol. 6, p.

25, 2006.

[34] Z. Aydin, Y. Altunbasak, and M. Borodovsky, ‘Protein secondary structure

prediction for a single-sequence using hidden semi-Markov models’, BMC

Bioinformatics, vol. 7, p. 178, 2006.

[35] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘Extreme learning machine:

Theory and applications’, Neurocomputing, vol. 70, no. 1–3, pp. 489–501,

Aralık 2006.

[36] G. Wang, Y. Zhao, and D. Wang, ‘A protein secondary structure prediction

framework based on the Extreme Learning Machine’, Neurocomputing, vol. 72,

no. 1–3, pp. 262–268, Aralık 2008.

[37] L. Lin, S. Yang, and R. Zuo, ‘Protein secondary structure prediction based

on multi-SVM ensemble’, in 2010 International Conference on Intelligent

Control and Information Processing, 2010, pp. 356–358.

[38] H. Bouziane, B. Messabih, and A. Chouarfia, ‘Effect of simple ensemble

methods on protein secondary structure prediction’, Soft Comput., vol. 19, no. 6,

pp. 1663–1678, Jun. 2015.

54

[39] M. Spencer, J. Eickholt, and J. Cheng, ‘A Deep Learning Network

Approach to ab initio Protein Secondary Structure Prediction’, IEEE/ACM

Trans. Comput. Biol. Bioinform., vol. 12, no. 1, pp. 103–112, Ocak 2015.

[40] Z. Li and Y. Yu, ‘Protein Secondary Structure Prediction Using Cascaded

Convolutional and Recurrent Neural Networks’, ArXiv160407176 Cs Q-Bio,

Apr. 2016.

[41] S. Wang, J. Peng, J. Ma, and J. Xu, ‘Protein Secondary Structure Prediction

Using Deep Convolutional Neural Fields’, Sci. Rep., vol. 6, Jan. 2016.

[42] Z. Li, J. Wang, S. Zhang, Q. Zhang, and W. Wu, ‘A new hybrid coding for

protein secondary structure prediction based on primary structure similarity’,

Gene, vol. 618, pp. 8–13, Haziran 2017.

[43] R. Adamczak, ‘Dimensionality reduction of PSSM matrix and its influence

on secondary structure and relative solvent accessibility predictions’, presented

at the World Academy of Science, Engineering and Technology 58, 2009.

[44] M. H. Zangooei and S. Jalili, ‘Protein secondary structure prediction using

DWKF based on SVR-NSGAII’, Neurocomputing, vol. 94, pp. 87–101, Ekim

2012.

[45] S. Fayech, N. Essoussi, and M. Limam, ‘Data mining techniques to predict

protein secondary structures’, in 2013 5th International Conference on

Modeling, Simulation and Applied Optimization (ICMSAO), 2013, pp. 1–5.

[46] S. Altschul, ‘Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs’, Nucleic Acids Res., vol. 25, no. 17, pp. 3389–3402,

Sep. 1997.

[47]‘BLAST+ executables’,

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&

DOC_TYPE=Download. (Jun 2017)

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download

55

[48] M. Remmert, A. Biegert, A. Hauser, and J. Söding, ‘HHblits: lightning-fast

iterative protein sequence searching by HMM-HMM alignment’, Nat. Methods,

vol. 9, no. 2, pp. 173–175, ubat 2012.

[49] ‘HH-suite download’, ftp://toolkit.genzentrum.lmu.de/pub/HH-suite/. (Jun

2017)

[50] T. Zhou, N. Shu, and S. Hovmöller, ‘A novel method for accurate one-

dimensional protein structure prediction based on fragment matching’,

Bioinformatics, vol. 26, no. 4, pp. 470–477, Feb. 2010.

[51] Z. Aydin, D. Baker, and W. S. Noble, ‘Constructing Structural Profiles for

Protein Torsion Angle Prediction’:, 2015, pp. 26–35.

[52] ‘RCSB Protein Data Bank - RCSB PDB’,

https://www.rcsb.org/pdb/home/home.do. (Jun 2017)

[53] V. Vapnik, The Nature of Statistical Learning Theory. Springer Science &

Business Media, 2013.

[54]‘BestFirst’,

http://weka.sourceforge.net/doc.dev/weka/attributeSelection/BestFirst.html. (Jun

2017)

[55] V. Dang and W. B. Croft, ‘Feature Selection for Document Ranking Using

Best First Search and Coordinate Ascent’, presented at the Sigir workshop on

feature generation and selection for information retrieval, 2010.

[56] P. Baldi, ‘Autoencoders, Unsupervised Learning, and Deep Architectures’,

presented at the Workshop on Unsupervised and Transfer Learning, 2012.

[57] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Vol. 1’, D. E.

Rumelhart, J. L. McClelland, and C. PDP Research Group, Eds. Cambridge,

MA, USA: MIT Press, 1986, pp. 318–362.

ftp://toolkit.genzentrum.lmu.de/pub/HH-suite/
https://www.rcsb.org/pdb/home/home.do

56

[58]‘Autoencoders, Tied Weights and Dropout’,

http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/algorit

hms/autoencoders.html. (Jun 2017)

[59] ‘Denoising Autoencoders’ http://deeplearning.net/tutorial/dA.html. (Jun

2017)

[60] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, ‘Extracting and

Composing Robust Features with Denoising Autoencoders’, in Proceedings of

the 25th International Conference on Machine Learning, New York, NY, USA,

2008, pp. 1096–1103.

[61] J. A. Cuff and G. J. Barton, ‘Evaluation and improvement of multiple

sequence methods for protein secondary structure prediction’, Proteins Struct.

Funct. Bioinforma., vol. 34, no. 4, pp. 508–519, Mar. 1999.

[62] I. Y. Y. Koh, ‘EVA: evaluation of protein structure prediction servers’,

Nucleic Acids Res., vol. 31, no. 13, pp. 3311–3315, Jul. 2003.

[63] ‘Precision and recall’, https://en.wikipedia.org/wiki/Precision_and_recall.

(Jun 2017)

[64] ‘Cross-validation (statistics)’, https://en.wikipedia.org/wiki/Cross-

validation_(statistics). (Jun 2017)

[65] ‘DSSP’, http://swift.cmbi.ru.nl/gv/dssp/ (Jun 2017)

[66]‘Performing attribute selection’,

http://weka.wikispaces.com/Performing%20attribute%20selection (Jun 2017)

[67]‘Principal components analysis (PCA)’, http://scikit-

learn.org/stable/auto_examples/decomposition/plot_pca_3d.html (Jun 2017)

[68]’trainAutoencoder’,

https://www.mathworks.com/help/nnet/ref/trainautoencoder.html (Jun 2017)

http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/algorithms/autoencoders.html
http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/algorithms/autoencoders.html
http://deeplearning.net/tutorial/dA.html
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://swift.cmbi.ru.nl/gv/dssp/
http://weka.wikispaces.com/Performing%20attribute%20selection

