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ABSTRACT 

DIMENSIONALITY REDUCTION FOR PROTEIN 

SECONDARY STRUCTURE PREDICTION 

Yasin GÖRMEZ 

MSc. thesis in Graduate School of Engineering and Science 

Supervisor: Assist. Prof. Zafer AYDIN 

Co-Supervisor: Assoc. Prof. Oğuz KAYNAR 

July 2017 

 

Proteins are important for our lives and they execute essential metabolic processes. The 

functions of the proteins can be understood by looking at the three-dimensional 

structures of the proteins. Because the experimental detection of tertiary structure is 

costly computational systems that estimate the structure provides a convenient 

alternative. One of the important steps of protein structure estimation is the 

identification of secondary structure tags. As new feature extraction methods are 

developed, the data sets used for this estimation can have high dimensions and some of 

the attributes can contain noisy data. For this reason, choosing the right number of 

features and the right attributes is one of the important steps to achieve a good success 

rate. In this study, size reduction process is applied on two different datasets using a 

deep autoencoder and various dimension reduction and feature selection techniques 

such as basic component analysis, chi-square, information gain, gain ratio, correlation-

based feature selection (CFS) and the minimum redundancy maximum relevance 

algorithm as well as search strategies such as best first, genetic search, greedy 

algorithm. To evaluate the prediction accuracy, a support vector machine classifier is 

employed. 

Keywords: Protein Secondary Structure Prediction, Autoencoder, Deep Learning, 

Feature Selection, Dimension Reduction 
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ÖZET 

PROTEİN İKİNCİL YAPI TAHMİNİ İÇİN BOYUT 

KÜÇÜLTME 

 

Yasin GÖRMEZ 

 Elektrik ve Bilgisayar Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Zafer ADIN 

Eş Danışman: Doç. Dr. Oğuz KAYNAR 

Temmuz 2017 

 

Gerekli metabolik süreçleri yürüten proteinler insan hayatı için büyük önem 

taşımaktadır. Proteinlerin fonksiyonları ile üç boyutlu yapıları arasında yakın bir ilişki 

bulunmaktadır. Dört yapı düzeyi olan proteinlerin bir çoğunun, birincil yapı olarak da 

adlandırılan amino asit dizilimi bilinmekte ancak üçüncül yapıları bilinmemektedir. 

Üçüncül yapıların laboratuvar ortamında tespit edilmesinin çok maliyetli ve zor olması, 

amino asit dizilimini kullanarak yapı tahmini yapan sistemlerin geliştirilmesine neden 

olmuştur. Protein yapı tahmini yapan sistemlerin en önemli aşamalarından biri ise 

ikincil yapı etiketlerinin tanımlanması işlemidir. Yeni öznitelik çıkarma yaklaşımları 

geliştirildikçe yapısal özelliklerin tahmini için kullanılan veri setleri yüksek boyutlara 

sahip olabilmekte ve kullanılan özniteliklerden bazıları gürültülü veri içerebilmektedir. 

Bu nedenle uygun sayıda ve doğru öznitelikleri seçmek, iyi bir başarı oranı elde etmek 

için önemli aşamalardan biridir. Bu çalışmada iki farklı veri seti üzerinde derin oto 

kodlayıcı kullanılarak boyut düşürme işlemi uygulanmış, temel bileşen analizi, ki-kare, 

bilgi kazancı, kazanım oranı, korelasyon tabanlı öznitelik seçim teknikleri ve minimum 

fazlalık maksimum ilgi algoritması gibi çeşitli öznitelik seçim ve boyut düşürme 

teknikleri ayrıca genetik algoritma, aç gözlü algoritma ve en iyi ilk önce algoritması gibi 

çeşitli arama stratejileri ile birlikte kullanılarak elde edilen veri setleri ile 

karşılaştırılmıştır. İkincil yapı tahmin başarısının karşılaştırılması için destek vektör 

makinası kullanılmıştır. 

Anahtar kelimeler: Protein İkincil Yapı Tahmini, Oto Kodlayıcı, Derin Öğrenme, Boyut 

Düşürme, Öznitelik Seçimi 
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Chapter 1  

 

Introduction 
 

 

 

 

 

Proteins formed by combining twenty amino acids in different sequence and 

different numbers are building block of humans’ body. That’s why they have 

critical importance for our lives. Proteins can also be used for making medicines 

and are useful in many other situations. For molecular design and biological 

medicine design knowing protein function is very important. In structural 

biology, there is a strong association between protein’s function and protein’s 

three-dimensional (3D) structure. Because determining protein structure with 

experimental methods is costly, prediction of the three-dimensional structure 

from amino acid sequence provides an effective alternative and is one of the 

most important aims in theoretical chemistry and bioinformatics.  

Methods to predict three-dimensional structure of proteins are divided into two 

main categories such as; template-based modelling and free modelling. In 

template-based modelling, a protein, which has a specified similarity to target 

protein’s amino acid sequence, is detected. Then, three-dimensional structure 

prediction is computed using that protein as a template. If such a protein cannot 

be specified, three-dimensional structure is predicted with free modelling. 

According to the thermodynamic hypothesis used by comparative and free 

modelling, proteins are folded to have minimum free energy in physiological 

environment. Several one-dimensional structural characteristics like secondary 

structure, profile matrix, torsion angles, and solvent accessibility are used as 

features to predict the 3D structure of a protein. Inferring these one-dimensional 

(1D) characteristics with minimum error is important for three-dimensional 
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structure prediction. Until today many machine learning algorithms have been 

developed for predicting 1D properties of proteins. In machine learning dataset 

has critical importance for the accuracy and performance of classifier. Having 

too many features may increase training time and can cause overfitting, which 

reduces the accuracy on unseen data. Furthermore it can distort training due to 

noisy features. On the other hand a few features may not sufficient for 

satisfactory training, which is known as underfitting. Hence, proper and 

sufficient numbers of features have to be employed in machine learning models. 

To solve the aforementioned problems, dimensionality reduction techniques 

such as feature selection and projection methods can be used [1]. The main 

difference between these two techniques is that, in feature selection a subset of 

features are selected and used without any change, but in projection methods, 

the size of dataset is reduced by using all features with least information loss.  

In this thesis, principal component analysis (PCA) [2], autoencoder (AE) [3], 

ranker chi-square (X
2
) [4], ranker information gain [5], ranker gain ratio[6], 

minimum redundancy maximum relevance (MRMR) [7], correlation-based 

genetic feature selection (CFS-genetic) [8], correlation-based greedy feature 

selection (CFS-greedy) [9] and correlation-based best first feature selection 

(CFS-best first) [10] are used as dimension reduction techniques for protein 

secondary structure prediction (PSSP). To predict the secondary structure of 

proteins, a support vector machine from a two-stage classifier is employed. The 

organization of this thesis is as follows. Chapter 2 explains protein structure, 

protein structure prediction and includes literature review for protein secondary 

structure prediction; Chapter 3 presents methods developed in this study; 

Chapter 4 details the experiments and results; finally Chapter 5 provides 

concluding remarks and future work. 
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Chapter 2 

 

Structure of Protein 

 

Proteins form a major class of macromolecules found in every organism 

composed of consecutive attachment of amino acids by peptide bonds. There are 

twenty different amino acid types commonly found in nature. Amino acids are 

organic compounds that consist of a carbon atom (Ca), amine group (-NH2), 

carboxyl group (COOH), and a side chain molecule (R).  Figure 2.1 shows an 

example of an amino acid molecule. The amino acids are produced at the 

ribosomes and have different physical and chemical properties such as 

electrostatic charge they carry, the hydrophobic states, acid dissociation 

constants (pKa), molecular size and the functional group. These characteristics 

play an important role in determining the structure of proteins [11]. 

 

 Figure 2.1 Structure of a free amino acid  
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2.1 Protein Structure Levels 
 

Protein structure has four main levels: Primary structure, secondary structure, 

tertiary structure and quaternary structure. Primary structure is the amino acid 

sequence, secondary structure represents regular hydrogen bond patterns, 

tertiary structure is the three-dimensional structure of a single amino acid chain 

and quaternary structure is the three-dimensional structure of the protein, which 

might contains more than one amino acid chain. Figure 2.1.1 shows four levels 

of protein structure. 

 

Figure 2.1.1 primary, secondary, tertiary and quaternary structures in proteins [12] 

2.1.1 Primary Structure 

Primary structure is the amino acid sequence of a polypeptide chain. It stays 

together with peptide bonds that occur during protein synthesis. The primary 

structure of a protein is decided in vivo by the gene that encodes its amino acid 

content. The amino acid sequence is serves as a signature for the protein 

dictating its structure and function. While this sequence can be determined by 

methods such as mass spectrometry (MS) or Edman degradation, typically it is 

identified by directly reading the sequence from the encoding gene [11]. 
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2.1.2 Secondary Structure 

Secondary structure in proteins is formed by regular hydrogen bonds between 

neighboring amino acids with similar dihedral angles. There are two basic 

motifs that form the hydrogen bond pattern such as; rotation motif and bridge 

motif. In the rotation motif, also referred to as the n-rotation motif, there is a 

hydrogen bond between an amino acid at position 𝑖 and the amino acid at 

position 𝑖 + 𝑛 and 𝑛 typically takes values of 3, 4 or 5. In the bridge motif, there 

is usually hydrogen bonding between amino acids that are not closely related to 

each other in sequential order. Subsequent secondary structural elements are 

formed when the rotation and bridge motifs are successively brought to a certain 

layout. For example, the repeating 4-rotation motif forms the alpha helix and the 

repeating bridge motif forms beta strands and beta sheets. The three-dimensional 

structure of proteins can be thought of as the successive organization of 

secondary structural elements. 

2.1.2.1 Helix 

In this structure the protein backbone adopts a helical structure (Figure 

2.1.2.1.1). There are three types of helix: Alpha helix (α-helix), 310 helix and pi 

helix (π–helix).  Helices can have various functional roles. These may include 

the motifs connected to DNA (strand-coil-strand, leucine zipper, zinc finger) and 

structures passing through the cell membrane [13]. 
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Figure 2.1.2.1.1 Alpha helix [14] 

2.1.2.2 Beta Strands and Beta Sheets 

Beta strands are the second most common regular units that stabilize the 

structure of proteins (Figure 2.1.2.2.1). A beta strand consists of a polypeptide 

chain that has 3 to 10 amino acids. In beta-strands, the polypeptide typically has 

an extended conformation. Beta strands are aligned pairwise and consecutively 

in three dimensional space interacting through hydrogen bonds. As a result of 

this interaction, beta-sheets units are formed, which contain at least two beta-

strands. The interacting amino acid segments may be close to each other and 

linked by a short loop, or they may be separated by many other structures. Even 

though interacting beta strands are sequentially far from each other, they can 

come closer in the three-dimensional space as a result of the folding process. 

Protein aggregates and fibrils formed through combination of beta strands play a 

role in the formation of various diseases like Alzheimer's [15]. 
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Figure 2.1.2.2.1 Beta sheet [16] 

2.1.2.3 Loop 

Loops are structures usually located at the surface of the protein. They typically 

occur between helix and beta sheets with different lengths and configurations. 

Unlike the amino acids in the internal region of proteins, amino acids in loops 

are not exposed to spatial and environmental constraints. They also do not play 

an effective role in the regulation of secondary structural elements in the inner 

zone. That’s why there may be more mutations in the loops. Regions that have 

undergone this type of mutation in a series of alignments may indicate the loop 

structure.  Loops are more inclined to contain cyclic charged and polarized 

amino acids and are usually found in the functionally active regions [17]. There 

are three types of loops: curl, stitch and random coil. 

2.1.3 Tertiary Structure 

Tertiary Structure is the 3D structure of a single protein molecule. It can be 

defined as the coordinates of atoms in 3D space. The strands and sheets are 

folded to form a compact structure. This folding is guided by hydrophobic 

interactions however, to stabilize the overall structure certain regions of a 

protein may be fixed with specific tertiary interactions [11]. 
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2.1.4 Quaternary Structure 

Quaternary structure is the agglomeration which formed by several proteins or 

polypeptide chain. It is stabilized by non-covalent bonds and disulfide bonds 

which stabilize the tertiary structure. Most proteins do not have quaternary 

structure and they function as a monomer. An example of a quaternary structure 

is the hemoglobin protein, which carries oxygen in the blood and is composed of 

four chains [11]. 

2.2 Protein Structure Prediction 
 

Estimation of three-dimensional structure is understood when protein structure 

prediction is called. Since this is a rather difficult problem, instead of predicting 

the three-dimensional directly, the various structural properties of the protein are 

usually primarily estimated and then these characteristics will be used for three-

dimensional structure prediction. These include the secondary structure 

prediction, dihedral angles prediction and solvent accessibility prediction as a 

general work. 

2.2.1 Secondary Structure Prediction 

 

The secondary structure prediction is the identification of the secondary 

structural elements starting from the sequence information of the proteins. The 

aim of this problem is to assign secondary structural elements (helix, beta 

strands, loops) for each amino acid (Figure 2.1.1). To estimate secondary 

structure generally supervised learning approaches are used. For this, a model is 

trained by using proteins that have known secondary structure. Then unknown 

proteins are predicted. The first developed methods of secondary structure 

prediction were based on the tendency of each amino acid to form helices or 

leaves. Sometimes, in addition, rules to estimate the formation of secondary 

structural elements are included. These methods were successful at 60% to 

predict which of the three states (helix, strands, loop) an amino acid residue 
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would adopt. Subsequently, a significant increase in accuracy was achieved by 

using multiple sequence alignments and the success rate reached 80-82% [18], 

[19]. In addition to the multiple sequence alignment, the accuracy reached 84-

85% when structural profiles were used; if there are proteins with known 

secondary structure elements which have similarity in various levels [20], [21]. 

These accuracy rates make it possible to use secondary structure estimation 

information in many other problems. These problems include estimating the 

folding class, estimating the three-dimensional structure, classifying the 

structural motifs, and improving the alignment of the series. 

 

 

Figure 2.1.1 Three state protein secondary structure prediction. The first line is amino 

acid sequence. The second line is secondary structure 

 

2.3 Literature Review for Secondary Structure 

Prediction 
 

As mentioned earlier, the secondary structure prediction is defined as assigning 

a secondary structure label for each amino acid of a given protein. Various 

machine learning methods have been developed to estimate the secondary 

structure including artificial neural networks (ANN), support vector machines, 

dynamic Bayesian networks, random forests and ensemble techniques. Salamov 

and Solovyev employed artificial neural network and k nearest neighbor with a 

scoring matrix and obtained 72.2% Q3 accuracy [22]. Jones used neural 

networks on position specific scoring matrices (PSSM) computed by PSI-

BLAST algorithm and achieved an average Q3 score between 76.5% and 78.3% 

[23]. Jian-wei et al. proposed a neural network model for secondary structure 

prediction and compared it with traditional back propagation algorithm. As a 
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result, they obtained %9 improvement [24]. Yaseen and Li applied a neural 

network on a dataset that is obtained by using statistical-context based scores 

and achieved 82.74% Q3 score [25].  Yao et al. obtained 78.1% Q3 accuracy by 

a method called DBNN that use dynamic Bayesian network and neural network 

[26]. Pollastri et al. employed recurrent neural network with PSI-BLAST 

algorithm on both three and eight classes and their model obtained 78% correct 

prediction [27]. Mirabello and Pollastri create application based on bidirectional 

recurrent neural networks called Porter 4.0 and Paleale 4.0. Porter 4.0 got 82.2% 

Q3 accuracy and Paleale 4.0 got 80.0% Q3 accuracy [19].  

Among the other machine learning methods, k-nearest neighbor and minimum 

distance use a distance formula (e.g. Minkowski, Euclid etc.) to classify data. 

These algorithms do not require pre-training and test data are classified using 

training set each time. Ghosh and Parai applied k nearest neighbor, minimum 

distance and fuzzy k nearest neighbor algorithm on a dataset that contains amino 

acid sequence of protein and they compared these methods with multilayer 

neural networks. They showed that these methods give better accuracy than 

multilayer neural networks [28]. Yang at al. proposed a novel nearest neighbor 

method that uses non-homologous and both homologous characteristic of 

protein secondary structure and obtained 87.51% Q3 score [29].  

Support Vector Machines (SVM) is another widely used method to estimate 

protein secondary structure. In SVM algorithm, which will be described in detail 

in the next sections of study, data is divided into two classes with the help of a 

linear hyper plane. Hua and Sun applied an SVM on RS126 and CB513 datasets 

and obtained 73.5% Q3 score [30]. Aydin et al. used SVM and Dynamic 

Bayesian network on CB513 and achieved 80.3% Q3 score [18]. Huang and 

Chen used support vector machines on a dataset that is generated using PSSM 

values and four physicochemical features (net charges, conformation 

parameters, side chain mass, and hydrophobic), then obtained 79.52% Q3 

accuracy [31]. Wang et al. made parameter optimization for support vector 

machines for grid search and genetic algorithm. On the one hand model trained 
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by using grid search gave 76.08% Q3 score and the model learned by using 

genetic algorithm produced 76.11% Q3 score [32].  

Another machine learning technique used on protein secondary structure is 

Hidden Markov Model (HMM). It’s a technique to estimate future behavior 

based on current behavior. It’s widely used as a classifier in many fields such as 

hand-writing recognition, bioinformatics and image processing etc. Martin et al. 

considered finding optimal hidden Markov model for protein secondary 

structure prediction and obtained 75.5% Q3 accuracy [33]. Aydin et al. extended 

hidden semi-markov model to estimate secondary structure for single sequence 

and obtained 67.89% Q3 score [34].  

As previously defined, protein secondary structure prediction aims to assign 

secondary structural elements for each amino acid. Therefore the number of 

samples in the datasets will be equal to the number of amino acids, which can be 

large. In this case, the speed of the learning algorithm becomes very important. 

Extreme learning machine as a very fast algorithm is a derivative of fully-

connected neural network first proposed by Huang at al. [35]. Because of the 

speed of this algorithm, it may be used in a problem with large sample size. 

Wang et al. applied extreme learning machine on protein datasets CB513 and 

RS126 and reached 74.7% Q3 accuracy. They found that the accuracy of 

extreme learning machine is promising and because of the speed of algorithm, it 

may be used in secondary structure prediction [36].  

Although the classification algorithms sometimes make similar mistakes when 

compared to each other, in some cases it is possible to make mistakes belonging 

to a specific class. In order to avoid such types of errors, ensemble methods may 

be used, in which two or more classification algorithms are combined by using 

some mathematical or statistical techniques. Lin et al. combined several support 

vector machines and obtained 74.98% Q3 accuracy [37]. Bouziane et al. 

combined artificial neural networks and support vector machines with majority 

voting and ideal fold selection on CB513 dataset. The model that used majority 



12 

 

voting gave 76.58% Q3 accuracy and ideal fold selection 78.50% Q3 accuracy 

[38].  

In the artificial neural networks, the number of neurons in the hidden layers is 

important for the accuracy. If there is a few numbers of neurons, the model 

cannot separate the samples well. To learn highly non-linear relationships the 

number of hidden neurons should be sufficiently high, which requires a large 

number of data samples in training set. This increases the computational 

complexity of the learning phase. To solve this problem, deep learning 

approaches are proposed and applied successfully in many problems. Spencer et 

al. used deep belief networks for protein secondary structure with 80.7% Q3 

score [39]. Li and Yu developed cascade convolutional neural network on 3 

different dataset. They got the best 76.9% Q8 accuracy on CB513 [40]. Wang et 

al. employed deep convolutional neural fields on protein dataset and they 

obtained 84% Q3 accuracy [41].  

In machine learning, the feature set is very important. Dimension reduction and 

feature selection methods, which reduce the data set to a smaller size have been 

used in many studies to improve classification performance. Li et al. applied 

principal component analysis on a new dataset and obtained 86.7% Q3 accuracy 

by support vector machines [42]. Adamczak used t-statistics and information 

gain for feature selection and principal component analysis for dimension 

reduction. He trained a neural network with reduced data set and achieved 

79.1% Q3 accuracy [43].   

Researchers also applied other machine learning methods that are not widely 

used to estimate protein structure. Li et al. proposed a structural position-

specific scoring matrix and achieved 82.7% Q3 accuracy on EVAset [21]. 

Zongooei and Jalili used support vector regression and support vector regression 

based on non-dominated sorting genetic algorithm. The first algorithm gave 

85.79% and the second algorithm 84.94% Q3 accuracy on CB513 and 81.4% on 

an independent test data [44]. Fayech et al. proposed a technique called data 

mining for prediction and they obtained 78.2% Q3 accuracy [45]. 
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Chapter 3 

 

Methods 
 

 

3.1 Classification Methods 

3.1.1 Feature Extraction for One Dimensional Protein Structure 

Prediction 

Proteins with similar amino acid sequences typically have similar structure. 

When the amino acid sequence is different, there is usually no structural 

similarity however, there are proteins, which have similar structure but their 

amino acid sequence is considerably different. Since the amino acid content of 

structurally similar proteins may be different, statistical techniques are proposed 

to summarize this difference. One of these is the profile matrix such as position 

specific scoring matrix (PSSM) that is mainly a statistical score table that, is 

obtained by aligning proteins in the same family, it shows which position the 

amino acids is seen less or frequently and contains a likelihood score for 

observing the 20 amino acids in each position of the query protein. In this thesis, 

we use PSI-BLAST PSSM, HHMAKE PSSM, and structural profile matrices to 

predict secondary structure of proteins. 

3.1.1.1 PSI-BLAST 

The PSI-BLAST method can be thought of as the iterative version of the 

BLAST algorithm [46]. The query proteinis aligned with the proteins in the 

database and the remaining proteins above the threshold are selected. In the 

second and subsequent iterations, the proteins above the threshold are aligned by 

a multiple alignment method and a statistical profile matrix is calculated and 

aligned with proteins in the database. In each iteration, the profile matrix is 
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updated using proteins above the threshold. Usually 3-6 iterations are sufficient 

for convergence. The size of the profile matrix obtained by the PSI-BLAST 

method is 20*U, where U is the number of amino acids in the target (i.e. query) 

protein. With the use of profilers in alignment, proteins with structural similarity 

but without sequence similarity can be discovered and included to the profile 

matrix. The most widely used profile matrix derivation method for structure 

prediction is PSIBLAST. This can be due to the program's fast runtime, 

sensitivity at a certain level, easy access to the software, and regular updates on 

the software. Even if the PSI-BLAST method can detect more distant protein 

similarities, it also performs some mismatches. Therefore, profile matrices 

produced by using this method contain noise. The methods and databases are 

open for access and will be downloaded from the relevant internet address [47]. 

3.1.1.2 Profiles based on Hidden Markov Model 

Profiles derived from hidden Markov models (HMM) can also be used as input 

features for predicting structural properties of proteins [48]. Profiles based on 

hidden Markov models are known to be more sensitive than standard profiles 

and are able to discover more distant protein relations. In this thesis, hidden 

Markov models obtained from the first iteration of HHBlits method is 

transformed into position specific scoring matrices (PSSM) which, dimension of 

20*U and used as the second profile matrix. To generate HHMAKE profiles 

(position specific scroring matrix), in the first step, proteins are aligned against 

the NR database by the HHBlits algorithm and proteins above the threshold are 

multiply aligned. Then, an HMM-profile model is obtained from this multiple 

alignment and the distributions in match states are normalized to interval [0, 1] 

to derive the HHMAKE profile. The HHblits method and databases can be 

downloaded from the internet address of this software [49]. 

3.1.1.3 Structural Profiles 

In addition to profile matrices based on multiple alignments of amino acid 

sequences, structural profile matrices can also be used for 1D structure 
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prediction [50]. Structural profile matrices are constructed using structural 

sequences of proteins found by sequence alignment methods. Typically, the 

dimension of a structural profile matrix constructed for secondary structure 

estimation is 3 x U (U is the number of amino acids in the target protein and 

each column has the observation score of one of the three secondary structures 

for that amino acid). Structural profiles can be evaluated in separate categories 

from methods that use only sequence profiling, since they also use structural 

information of template proteins that are similar to the target protein. In another 

category, structure labels of target protein can be predicted by using secondary 

structure information of template proteins, for which the sequence similarity 

with the target is below a certain level. In this case, the use of structural profiles 

is in between these two categories.  

The accuracy of prediction is directly related to the similarity level between 

protein sequences used in constructing the structural profile matrix and the 

target protein. This similarity can also be local in which target resembles a sub-

region of a database protein. On this basis, structural information of local 

similarities can be used to estimate the structural properties of the target protein. 

In this thesis, the HMM-profile model obtained for each target is aligned with 

the HMM-profiles of the PDB proteins, which is achieved by the second phase 

of the HHBlits method. In the next step, those templates for which the 

percentage of sequence identity score is above 20% are eliminated. Then the 

structural profile matrix is derived by computing the average weighted 

frequency of secondary structure labels aligned to each amino acid of the target. 

Finally the profile matrix is normalized so that each column sums to 1 [51]. 

 

3.1.2 DSPRED Method 

The DSPRED method is a two-stage classifier that includes Dynamic Bayesian 

Networks (DBN) and a support vector machine classifier.A separate DBN is 

trained for each position specific scoring matrix produced by PSI-BLAST  [47] 
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and the first step of HHBlits [48] (PSIBLAST PSSM and HHMAKE PSSM). 

Then the predictions are combined with a structural profile matrix obtained from 

the second stage of the HHBlits method and sent as input to an SVM classifier. 

Figure 3.1.2.1 summarizes the steps of DSPRED. 

 

Figure 3.1.2.1 Steps of DSPRED method for 1D protein structure prediction 

In this figure, DBN-past represents the model, in which the profile vector in 

current position depends on the neighboring positions that come before, and 

DBN-future represents the model, in which the profile vector in current position 

depends on the positions that come after. Here the vectors are the columns of the 

profile matrix and there are as many columns as the number of amino acids. As 

a result, two types of DBN models are trained for each profile matrix (totally 

four). Then, the probability distributions for the secondary structure classes from 

these DBN classifiers are averaged over various combinations. For example, the 

average of the estimated distributions from the PSIBLAST profile matrices is 

Distribution 1, Dynamic Bayesian Network estimates by using HHMAKE 

profile matrix that is produced in the first phase of HHBlits is Distribution 2, 

and the average of Distribution 1, Distribution 2, and structural profile matrices 
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is Distribution 3. Structural profile matrix is produced in the second phase of 

HHBlits by aligning the HMM-profile matrix from the first phase to the HMM-

profile matrices of proteins in PDB [52] and normalizing the frequencies of the 

tag information of PDB proteins. In this thesis, dimension of distribution 1, 2, 

and 3 and structural profile matrix is 3*U because we make three state protein 

secondary structure prediction. Therefore, each column contains the estimated 

probabilities of the secondary structure classes at that position. In the second 

stage of DSPRED, the profile matrices (PSI-BLAST and HHMAKE) used for 

DBN are combined with Distributions 1, 2, and 3 and sent to a support vector 

machine. For this purpose, a sliding and symmetric window around each amino 

acid is selected and the columns of the profile matrices, distribution 1, 2, and 3 

corresponding to these windowed positions are used as input parameters. 

Finally, the support vector machine predicts the secondary structure class of the 

amino acid in the center of the window. 

3.1.3 Support Vector Machines 

Support Vector Machine (SVM) is a learning method proposed by Vapnik for 

the solution of classification and curve fitting problems, which takes advantage 

of statistical learning theory and the principle of minimizing the structural risk 

[53]. This method is commonly used for determining classes that are linearly 

separable but can also be used for nonlinear classification thanks to the kernel 

functions that map the input space to a higher-dimensional. Support vector 

machine are supervised machine learning methods aim to separate data in two 

classes by using a linear hyper plane. In the learning phase the parameters of 

these separators are determined then unknown classes are estimated using these 

parameters.  

The main purpose of the SVM is to determine the best separator that has the 

minimum error. As shown in figure 3.1.3.1, two support vectors that minimize 

the error are selected and the distance between the planes that pass through the 

closest support vectors is maximized. In the last step, the class value for new 

sample is calculated by using equation 3.1.3.1. In this equation y represents the 
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class value, x represents the new sample’s feature vector, w represents the 

weight vector that is perpendicular to the hyperplane and b represents the 

constant value. If y>0 the sample is assigned to the first class, otherwise it is 

assigned to the second class. 

                                                       𝑦 =  𝑤𝑡𝑥 + 𝑏                                               (eq. 3.1.3.1) 

 

Figure 3.1.3.1 Support vector machines and hyper plane selection 

Unlike other machine learning techniques, support vector machines can separate 

only two classes. For three or more classes, two techniques can be used: one 

versus all (OVA), or one versus one (OVO). In OVA, one class is selected as the 

first class and all the remaining classes as the second class. A separate model is 

trained for each class and predictions from individual classifiers are combined. 

In OVO, separate SVM is trained for each class pair and predictions from 

individual classifiers are combined. 

3.2 Feature Selection Techniques 

3.2.1 Chi Square (X
2
) 

The chi-square method, also known as X
2
 test, is developed by Randy Kerber in 

1992 and also by Huan Lui and Rudy Setiono in 1995. It can be used to 

determine whether variables are eligible to represent the dataset or not [4]. In a 
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chi-square test there are two hypotheses, 𝐻0 and 𝐻1. 𝐻0  represents that variables 

are not eligible (i.e. null model), and 𝐻1 represents that variables not eligible to 

represent the dataset. The chi-square method has two phases. In the first step, the 

chi-square statistic of the observed values with respect to the actual classes is 

calculated. X
2 

value can take values between zero and positive infinity. If this 

value is close to zero, the observed frequency values and the expected frequency 

values are comparably close. If this value is high, the observed frequency values 

and the expected frequency values differ significantly. For this reason, in the 

second stage, the X
2 

value is compared with a threshold value determined from 

the Chi-square distribution. This threshold value is determined based on the 

level of significance and the degree of freedom. The significance level 

represents the probability of obtaining a chi-square statistic greater than the 

threshold using the null model and the degree of freedom is calculated by 

subtracting one from the number of attributes being analyzed. The 𝐻1 hypothesis 

is accepted if the calculated value is greater than the specified value. 

Otherwise 𝐻0 is accepted. Equation 3.2.1.1 shows the formula of the chi square 

statistic. 

                                                                   𝑋2 =  ∑
(𝑜𝑖− 𝑒𝑖)2

𝑒𝑖

𝑖=𝑛
𝑖=1                                       (eq. 3.2.1.1) 

In this equation, 𝑛 represents the number of features in dataset;  𝑜𝑖 represents the 

observed frequency value for 𝑖𝑡ℎ feature, and 𝑒𝑖 represents the expected 

frequency value for 𝑖𝑡ℎ feature. 

3.2.2 Information Gain 

The information gain (IG) is one of the entropy-based metrics that can be used 

to calculate the estimated loss when the data set is divided by attributes [5]. 

Entropy is a value that determines the irregularity or uncertainty of the system. 

A high entropy value indicates that the system contains high information. To 

compute the information gain metric, the entropy value for class labels of a 

given data set is computed as formulated in equation 3.2.2.1. 
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                                                       𝐸 =  − ∑ (log2
𝑓𝑠(𝑖)

𝑁
) × 

𝑓(𝑖)

𝑁

𝑛
𝑖=1                                (eq. 3.2.2.1) 

In this equation, 𝑛  represents the number of class in dataset,  𝑓𝑠(𝑖) represent the 

number of sample for 𝑖𝑡ℎ  class, and 𝑁 represents the total number of samples. 

In the second phase of calculating information gain metric, the entropy value for 

each attribute is calculated and this new entropy value is subtracted from the 

value found in the first step to calculate the information gain for each attribute. 

Equation 3.2.2.2 shows the calculation of entropy value for each attribute, and 

equation 3.2.2.3 shows calculation of information gain value. 

                                      𝐸(𝑖) ∑
𝑠𝑠(𝑘)

𝑁

𝑛
𝑘=1  ×  ∑ −

𝑐𝑠𝑘(𝑘,𝑚)

𝑠𝑠(𝑘)
 (log2

𝑐𝑠𝑘(𝑘,𝑚)

𝑠𝑠(𝑖)
)𝑐𝑠

𝑚=1                  (eq. 3.2.2.2) 

                                                                  𝐵(𝑖) = 𝐸(𝑖) − 𝐸                                          (eq. 3.2.2.3) 

In the equations, 𝐸(𝑖) represents the entropy value for 𝑖𝑡ℎ feature, 𝑛 represents 

the number of unique value of the 𝑖𝑡ℎ feature, 𝑠𝑠(𝑘) represents the number of 

sample that belongs 𝑘𝑡ℎ value of 𝑖𝑡ℎ feature, 𝑁 represents the total number of 

sample in dataset, 𝑐𝑠 represents the number of class in dataset, 𝑐𝑠𝑘(𝑘, 𝑚) 

represents the number of sample that belongs the feature 𝑖, variable 𝑘 and class 

𝑚, 𝐵(𝑖) represents the information gain for 𝑖𝑡ℎ feature, and 𝐸 represents the 

value calculated in eq. 3.2.2.1. 

3.2.3 Gain Ratio 

The gain ratio (GR) is also one of the entropy-based metrics that can be used to 

calculate the estimated loss when the data set is divided by attributes. When an 

attribute in the dataset has many different values, the number of samples falling 

for each value is low for that attribute. For this reason, the entropy value 

calculated for that attribute becomes small and the information gain large. As 

explained in the information gain method, the large value of this variable 

indicates that the variable is good at defining the dataset. If there are a lot 

different values for an attribute, information gain methods select that attribute as 

a good separator. Although the system memorizes the training set well, it cannot 

separate the test set properly using that attribute. As a solution to this problem, 
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the gain ratio normalizes the information gain with the partitioning information 

for each attribute. If the gain ratio of an attribute is high, then this attribute is a 

good separator. Equation 3.2.3.1 formulates how partitioning information value 

is calculated and equation 3.2.3.2 shows the computation of gain ratio. 

                                                           𝑆(𝑖) =  − ∑
𝑠𝑠(𝑘)

𝑁

𝑛
𝑘=1  × (log2

𝑠𝑠(𝑘)

𝑁
)                     (eq. 3.2.3.1) 

                                                                           𝐾(𝑖) =
𝐵(𝑖)

𝑆(𝑖)
                                          (eq. 3.2.3.2) 

In the above equations, 𝑆(𝑖) represents the partitioning information value for  

𝑖𝑡ℎ    feature, 𝑛 represents the unique values for 𝑖𝑡ℎ feature, 𝑠𝑠(𝑘) represents the 

sample size that belongs the 𝑘𝑡ℎ value of 𝑖𝑡ℎ feature, 𝑁 represents the total 

number of samples, 𝐾(𝑖) represents the gain ratio value for 𝑖𝑡ℎ feature, and 𝐵(𝑖) 

represents the information gain value that calculated in eq. 3.2.2.3. 

3.2.4 Minimum Redundancy Maximum Relevance 

Minimum redundancy maximum relevance, which proposed by Ding and Peng, 

is a feature selection algorithm that aims to eliminate redundant attributes and 

selects the attribute that is the most related with the class labels [7]. In other 

words it selects the attributes that have minimum correlation with each other. In 

the first step of the algorithm, for each 𝑥, 𝑦 (two variables in the dataset) the 

mutual information value (I) is calculated as shown in equation 3.2.4.1. 

                                  𝐼(𝑋, 𝑌) =  ∑ ∑ 𝑝(𝑥𝑖 , 𝑦𝑗)𝑛
𝑗=1

𝑛
𝑖=1 ×  log

𝑝(𝑥𝑖,𝑦𝑗)

𝑝(𝑥𝑖)×𝑝( 𝑦𝑗)
                         (eq. 3.2.4.1) 

In this equation, n represents the number of samples in dataset, 𝑝(𝑥𝑖 , 𝑦𝑗) 

represents the dependent probability distribution value, 𝑝(𝑥𝑖) and 𝑝( 𝑦𝑗) 

represent marginal probabilities for the relevant sample. In this algorithm, two 

conditions must be provided by using 𝐼 value: Minimum redundancy (mRed), 

and maximum relevance (mRel). mRed and mRel values are calculated as 

shown in equations 3.2.4.2 and 3.2.4.3, respectively. 

                                                  𝑚𝑅𝑒𝑑 =  
1

𝑚2  ∑ ∑ 𝐼(𝑥𝑖 , 𝑦𝑗)𝑚
𝑗=1

𝑚
𝑖=1                                  (eq. 3.2.4.2) 

                                                        𝑚𝑅𝑒𝑙 =  
1

𝑚
 ∑ 𝐼(𝑥𝑖 , ℎ𝑖)𝑚

𝑖=1                                       (eq. 3.2.4.3) 
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In these equations, 𝑚 represents the dimension of the new feature set, and ℎ𝑖 

represents the class label for sample 𝑖. Finally, the features are selected to satisfy 

two conditions, max (𝑚𝑅𝑒𝑙 − 𝑚𝑅𝑒𝑑) and max (
𝑚𝑅𝑒𝑙

𝑚𝑅𝑒𝑑
).  

3.2.5 Search Methods 

3.2.5.1 Genetic Algorithm 

The genetic algorithm (GA) is a global search optimization technique that is 

inspired by natural selection, crossover, and mutation events in biology. In this 

method, firstly, a population, which is formed by candidate solutions, is 

produced and this population is updated through genetic processes called 

selection, crossover, and mutation until the specified stopping criterion is met. 

Genetic algorithm uses the idea of surviving the best while finding better 

solutions. Genetic algorithm is different from conventional non-linear 

optimization techniques in that it searches for a solution population by updating 

it, instead of gradually changing a single solution. Because conventional 

optimization algorithms deal with the local properties of the iteration points, 

they can easily be fitted to local extremum points. Conversely, genetic algorithm 

uses the random search operator in addition to the systematic search, therefore it 

is prevented from being attached to the local minimum or maximum point.  

Genetic algorithm starts with a series of solutions to optimize the parameters. 

Each parameter of the chromosomes that forms the solution is called the gene. 

Parameters can be encoded as a binary bit string, integer or real number. 

Without any prior knowledge, each chromosome in the first population is 

randomly generated using uniform distribution. Then fitness value for each 

solution is calculated by the determined function and solutions are sorted with 

respect to their fitness value. With the help of these sequential generations, new 

generations are produced using techniques such as mutation and crossover and 

these processes are repeated on new generations until the desired success rate is 

achieved. Because of these characteristics, a genetic algorithm may achieve a 

higher success rate even though it works slower than many algorithms. 



23 

 

3.2.5.2 Greedy Algorithm 

The aim of the algorithms that use the greedy approach is to choose the best 

component to reach the result. This approach, which is used in many problems 

as graph theory, can be used as a feature selection algorithm, which can be used 

in two ways such as; forward feature selection (FFS), and backward feature 

selection (BFS).  

Forward feature selection starts with the empty feature set and features are 

added to this set in each step, hence the name. In the first step of this algorithm 

the features are sorted based on a condition, which can be leave-one-out cross 

validation accuracy for each feature. Then, the algorithm adds the feature that 

has the best condition score to the empty set and calculates the condition score 

again. In the second step, the next feature from sorted feature set is added to the 

feature set and condition score is calculated again. If the new condition score is 

better than the previous one, this feature stays in the feature set, otherwise, it is 

not added. The second step is applied for each feature in the dataset and as a 

result a feature set which has less or equal number of dimensions than the 

original feature set is obtained. The aim of the backward feature selection is the 

same as that of the forward feature selection and its running phase very similar 

to forward feature selection but it works in reverse order. In the first step 

features are sorted as in the forward feature selection. Then the condition score 

is calculated for the full feature set. The feature that has the worst condition 

score is removed and the second condition score is calculated. If it is better than 

the first one, this feature is deleted from the feature set, otherwise, it is retained. 

These operations are applied iteratively for each feature and the final feature set 

is obtained. 

3.2.5.3 Best First Feature Selection 

Best first algorithm, which is proposed by Xu et al. as a feature selection 

algorithm, is very similar to greedy algorithm [10]. Unlike greedy algorithm, the 

best first algorithm can start from any point and search both in forward and 
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backward directions (by considering all possible single attribute additions and 

deletions at a given point) [54]. Direction and starting feature set is defined as a 

parameter in this algorithm, which is summarized in figure 3.2.5.3.1 [55]. 

 

Figure 3.2.5.3.1 Best first search algorithm 

In this figure, A is the classifier, T is the sample in dataset, Λ is the any ranking 

algorithm, and P is the selected feature set. The aim of the algorithm is to return 

best feature set that satisfy the condition. 

3.3 Projection Techniques 

3.3.1 Principal Component Analysis 

Principal component analysis (PCA) is a dimension reduction technique used to 

find the dependency between variables. The aim of this method is to minimize 

the loss while maximizing variance. In the first phase, the covariance between 

each variable pair is calculated as formulated in equation 3.3.1.1. The 

covariance represents the mutual exchange of two variables. If this value is 

positive, the two variables grow or shrink together. If it is negative, one of the 

variables grows while the other reduces. If zero, they are independent from each 

other [2]. 
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                                                     𝑐𝑜𝑣(𝑋, 𝑌) =  
∑ (𝑋𝑖− �̅�)𝑛

𝑖=1 × (𝑌𝑖− �̅�)

𝑛−1
                                (eq. 3.3.1.1) 

 

In this equation, 𝑋 and 𝑌 represent two variables (i.e. features), 𝑛 represents the 

sample size in dataset, 𝑋𝑖 and 𝑌𝑖 represent the value of the  𝑖𝑡ℎ sample for 𝑋 and 

𝑌, respectively, and �̅� and �̅� represent the mean value of 𝑋 and 𝑌, respectively. 

Then, the covariance matrix shown in figure 3.3.1.1 is constructed using the 

covariance values found in step one. 

 

Figure 3.3.1.1 Covariance matrix 

In the third step, eigenvalues and eigenvectors of this matrix are calculated and 

are sorted from highest to smallest to obtain the component matrix. The purpose 

of this sorting is to rank variables according to the representation capacity of the 

dataset. In the last step, the components having the highest representative value 

are selected. In this step number of components can be determined any value 

between 1 to number of feature in dataset. By multiplying this selected matrix 

with the feature matrix, the new feature vector that has lower dimension is 

obtained. 

3.3.2 Deep Autoencoders 

The autocoder (AE), a derivative of artificial neural networks, was first 

proposed by the Hinton and PDB groups in the 1990s [3]. In 2016, it became 

one of the main topics in machine learning when the deep learning architecture 
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became more popular [56]. The autocoder is a fully connected artificial neural 

network consisting of three layers: input layer, the hidden layer and the output 

layer. The number of neurons in the input layer and output layer are the same 

and equal to the number of features in the dataset. The number of neurons in the 

hidden layer can be determined as desired, which is an important factor affecting 

the performance of the network. An example autoencoder architecture with 3 

neurons in the hidden layer for a data set with 5 attributes is shown in figure 

3.3.2.1. 

 

Figure 3.3.2.1 Autoencoder architecture 

Autoencoder does not need any class label because it uses the input data as the 

output data. That’s why it is an unsupervised learning method. The network 

determines the optimal weight values using the backpropagation algorithm 

during training to match the input data to the same data at the output. For this 

reason, the method is also referred to as the backpropagation algorithm without 

a teacher [57]. The autocoder operates as a coder that maps its input data to itself 

with minimal loss. If there are fewer neurons in the middle layer than the output 

and input layer, the reduced data is derived from the middle layer. The forward 

propagation from one layer to the next is formulated in equation 3.3.2.1.  
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                                                              𝑦𝑗 = 𝑓(∑ 𝑥𝑖 × 𝑤𝑖𝑗
𝑛
𝑖=1 ) + 𝑏                              (eq. 3.3.2.1) 

In equation 3.3.2.1,  𝑥𝑖 represents the value of 𝑖𝑡ℎ neuron in the current layer, 𝑦𝑗 

represents the value of 𝑗𝑡ℎ neuron in the next layer, 𝑤𝑖𝑗 represents the weights 

value that connect the 𝑥𝑖 to 𝑦𝑗, 𝑛 represents the number of neurons in the current 

layer, 𝑏 represents the bias value (that is constant for each layer), and 𝑓 

represents the activation function (gauss, sigmoid, softmax etc. ). 

                                                                    min (∑ (𝑦𝑗
′ − 𝑦𝑗)2𝑛

𝑖=1 )                                (eq. 3.3.2.2) 

During model training the weights are updated to minimize difference between 

the actual values and the output values expressed in equation 3.3.2.2. In equation 

3.3.2.2, 𝑦𝑗
′ represents the actual value and 𝑦𝑗 represents the value that is 

produced by the network. 

The deep autoencoder (deepAE) is obtained by connecting several auto encoders 

one after another. As shown in figure 3.3.2.2, the values obtained from the 

hidden layer of the first autoencoder model are connected to the input layer of 

the second autoencoder. In deep auto encoders, each autoencoder model is 

trained one after another. Standard autoencoder reduces the data in one step. 

Hence either the dimension reduces suddenly or the reduction is little. In this 

case, the deep auto-encoders can be used to reduce data to lower dimensions 

gradually, which enables more complex datasets to be separated. This is the 

most important advantage of deep auto encoders. 

 

Figure 3.3.2.2 Deep autoencoder architecture 

In each autoencoder model, weights that connect neurons in input layer to 

neurons in hidden layer are called the encoder weights, and weights that connect 
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neurons in hidden layer to neurons in output layer are called the decoder 

weights. After training, data that has reduced dimension can be obtained using 

encoder weights. The aim of the decoder weights is to reproduce data in the 

original dimension. However new data produced at the output layer may not be 

exactly the same as the original data. In deep autoencoder model, training of 

each autoencoder model independently may cause a decrease in the success rate. 

This problem can be solved by a method called fine tuning. There are two 

approaches for fine tuning. In the first one, input layer of the first autoencoder 

model is connected to the input layer of the second autoencoder by using the 

encoder weights of the first autoencoder. Then for the second and third 

autoencoders, these steps are repeated and new network that has m layers (m 

represents the number of autoencoders) is obtained by applying these steps to 

each auto-encoder model. After this, the input layer of the last autoencoder is 

connected to the hidden layer of last autoencoder by using encoder weights of 

the last autoencoder. Then, output layer with n neurons (n represents the number 

of unique class labels) is generated and is connected to the new network with 

random weights (Shown in figure 3.3.2.3). In the final step this new network is 

trained by using dataset that has the class labels. In this way, deep autoencoder 

also becomes dependent with class label. This approach generates neural 

networks with initial weights, which can also be used to initiate weights for 

escaping local minimum in neural networks structure [58]. 
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Figure 3.3.2.3 Transefer of deep autoencoder to neural network with class label for 

finetuning 

 

To perform finetuning using the first approach, an additional classification layer 

(e.g. softmax) is needed, so the model becomes supervised. However in this 

approach the decoder weights cannot be updated. The second approach can be 

used to do finetuning without making the model supervised by updating decoder 

weights.  Firstly, the input layer of the first autoencoder is connected to the input 

layer of the second autoencoder by using encoder weights of the first 

autoencoder.  Then for the second and third autoencoders, these steps are 

repeated and new network that has m layers (m represents the number of 

autoencoder) is obtained. Finally, the input layer of the last autoencoder is 

connected to the hidden layer of last autoencoder by using encoder weights of 

the last autoencoder. These steps are similar to the first approach but, instead of 

a defining an output layer for class label, the last layer of the new network (it is 

the same as the hidden layer of the last autoencoder) is connected to the output 

layer of the last autoencoder by using decoder weights of the last autoencoder, 

then output layer of the last autoencoder is connected to the output layer of 

penultimate autoencoder by using decoder weights of the penultimate layer. 

These steps are repeated progressively till the first layer and a network with 2 × 

m + 1 layers is obtained (figure 3.3.2.4). Finally this network is trained by using 

the dataset without labels. 
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Figure 3.3.2.4 Transefer of deep autoencoder to neural network without class label for 

finetuning 

In these type of autoencoders, the goal is to in the output layer, so that the 

training set may be memorized by the network. In some cases, this approach 

may not have high accuracy rate on the test data. To solve this problem, 

denoising autoencoder is used, which is a stochastic version of the autoencoder 

[59]. In order to enforce the hidden layer to discover more robust features and 

prevent it from simply learning the identity, the autoencoder is trained to 

reconstruct the input from a corrupted version of it. There are two main steps in 

the denoising autoencoder: encode the input data and decode the encoded data to 

the noisy version of the input data. To generate noisy data there are many 

methods such as adding Gaussian noise to input data. Vincent et al. randomly 

select some sample and they also randomly select some features from the 

selected sample. Then, they set the value of those features to the zero to make 

denoising autoencoder [60]. The system can also learn data with different 

patterns that are not in training data thanks to the autoencoder. In this thesis we 

transfer of deep autoencoder to neural network without class label forfinetuning. 
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Chapter 4 

 

Experiments and Analysis  
 

 

In this thesis, deep autoencoder is used as a dimensionality reduction technique 

for protein secondary structure prediction and is compared with the traditional 

feature selection and dimension reduction techniques. As well as with the model 

that is trained with the original dataset. As the protein dataset CB513 produced 

by Cuff and Barton [61] and Evaset [62] are used. For all train-test models, a 

one-versus-one support vector machine is used as the classifier. Q3 accuracy, 

precision, and recall [63] is used as the performance measures. 

In this thesis cross validation [64] is used to evaluate the prediction accuracy. A 

7-fold cross-validation experiment is performed on CB513 and a 10-fold cross-

validation on EVAset. Proteins are randomly assigned to train and test sets for 

each fold. Then, from each train set 10% of the proteins are chosen randomly to 

form validation set and the rest is saved as the train set for optimization (i.e. 

model optimization or to optimize the number of dimensions). This train set 

contains approximately 90% of the proteins in the original train set of the cross-

validation. To further reduce the sample size and speed up the optimizations, 

each train set for optimization is further reduced by selecting 25% of the 

proteins randomly. Similarly, 50% of proteins are selected randomly from each 

validation set. As a result, 4 different dataset created for each fold (totally 

7×4+10 ×4 = 68): such as, train set, test set, train set for optimization set and 

validation set for optimization.  

True secondary structure labels of proteins in CB513 and EVAset are computed 

by the DSSP program [65] starting from 3D coordinate information in PDB. 
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Then for each protein PSSM and structural profiles are extracted using PSI-

BLAST and HHBlits as explained in Section 3.1.1. In the next step, the 

secondary structure is predicted using the first phase of DSPRED method and a 

total of three distributions are obtained as described in Section 3.1.2. As a result, 

three distributions with length L ×3 and two PSSM matrixes in length L ×20 are 

obtained for each dataset (L representsthe number of amino acids in target 

protein). To extract feature for each amino acid a symmetric window of size 11 

is chosen around each amino acid for CB513 dataset and a window of size 19 

for Evaset. 

That means for each amino acid in CB513 there are 20×11=220 HHMAKE 

PSSM values, 20×11=220 PSIBLAST PSSM values, 3×11=33 predicted 

distribution by DBNs using PSIBLAST PSSMs (distribution 1), 3×11=33 

predicted distribution by DBNs using HHMAKE PSSMs (distribution 2) and 3 

×11=33 average of predicted distributions and structural profile matrix 

(distribution 3). Totally there are 539 features for CB513. For each amino acid 

in EVAset there are 20×19=380 HHMAKE PSSM values, 20×19=380 

PSIBLAST PSSM values, 3×19=57 predicted distribution by DBNs using 

PSIBLAST PSSMs (distribution 1), 3×19=57  predicted distribution by DBNs 

using HHMAKE PSSMs (distribution 2), and 3×19=57 average of predicted 

distributions and structural profile matrix (distribution 3).  Totally there are 931 

features for EVAset. And in CB513 there are 84119 amino acid samples and in 

Evaset there are 584595 amino acid samples.  

In the third phase, for each each fold a one-vs-one SVM is trained in original 

dimension (539 features for CB513, 931 features for Evaset) on train sets. 

Gamma parameter is set to 0.00781 for each fold and C parameter is set to 1, 

which were optimized by Aydin et al. for CB513 [6]. Then predictions are 

computed on test sets. The accuracy values for 7-fold cross-validation 

experiment on CB513 is shown in Table 4.1 and the accuracy values for 10-fold 

cross-validation on EVAset is summarized on Table 4.2. 
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Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 0.837 0.671 0.860 0.890 0.838 0.732 0.804 

Fold-2 0.818 0.711 0.850 0.869 0.836 0.754 0.805 

Fold-3 0.824 0.698 0.871 0.896 0.848 0.748 0.814 

Fold-4 0.828 0.710 0.853 0.880 0.823 0.763 0.812 

Fold-5 0.812 0.741 0.826 0.880 0.780 0.761 0.802 

Fold-6 0.821 0.720 0.853 0.891 0.808 0.767 0.814 

Fold-7 0.853 0.719 0.855 0.903 0.841 0.760 0.828 

Mean 

Result 
0.829 0.710 0.852 0.888 0.824 0.756 0.812 

Table 4.1 Accuracy measures in original dimension evaluated by 10-fold cross validation 

experiment on CB513 

 

 

 

 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 0.865 0.772 0.840 0.880 0.840 0.796 0.833 

Fold-2 0.862 0.796 0.847 0.898 0.845 0.795 0.841 

Fold-3 0.876 0.785 0.839 0.899 0.832 0.797 0.843 

Fold-4 0.861 0.779 0.854 0.896 0.852 0.792 0.841 

Fold-5 0.861 0.780 0.843 0.894 0.836 0.793 0.837 

Fold-6 0.862 0.774 0.848 0.900 0.836 0.789 0.837 

Fold-7 0.859 0.779 0.855 0.892 0.842 0.800 0.839 

Fold-8 0.869 0.777 0.827 0.888 0.809 0.798 0.834 

Fold-9 0.870 0.793 0.839 0.891 0.833 0.804 0.839 

Fold-10 0.859 0.760 0.854 0.899 0.840 0.787 0.836 

Mean 

Result 
0.865 0.780 0.845 0.894 0.837 0.795 0.838 

Table 4.2 Accuracy measures in original dimension evaluated by 10-fold cross validation 

experiment on EVAset 

In the fourth phase, ranker feature selection techniques (Chi-square, Information 

Gain, and Gain Ratio) are applied on the each train set for optimization 

separately and features are sorted according to the calculated rank values by 
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using train set for optimization. Then, features are selected by using all feature 

selection methods. In this phase, CFS used with search techniques such as: 

genetic algorithm, greedy algorithm, best first algorithm, and minimum 

redundancy maximum relevance are applied on the train set for optimization to 

find best feature set followed by selecting the same features in the corresponding 

validation set. As a test data, validation set is used if necessary. For each ranker 

method, a wrapper approach is applied, in which an SVM is trained with one-

dimensional train set for optimization that has the feature with the best rank 

value only, and tested on the validation set that has the same feature only. Then, 

other features added one by one in to the datasets according to the rank order, 

and train and test steps are repeated for these new sets. Finally, the feature set 

that gives the best prediction accuracy on validation set is found. In minimum 

redundancy maximum relevance algorithm firstly features are ranked by using 

MRMR metric then best features selected with forward feature selection 

techniques by using correlation based feature selection algorithm. The feature 

selection steps described above are repeated for each fold of the cross-validation 

experiment. We used following command lines for feature selection algorithms 

[66].  

Chi-Square: weka.filters.supervised.attribute.AttributeSelection -b -i 

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E 

"weka.attributeSelection.ChiSquaredAttributeEval" –S 

“weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1” 

Information gain: weka.filters.supervised.attribute.AttributeSelection -b -i 

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E 

"weka.attributeSelection.InfoGainAttributeEval" –S 

“weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1” 

Gain ratio: weka.filters.supervised.attribute.AttributeSelection -b -i 

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E 

"weka.attributeSelection.GainRatioAttributeEval" –S 

“weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1” 
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Genetic algorithm: weka.filters.supervised.attribute.AttributeSelection -b -i 

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E 

"weka.attributeSelection.CfsSubsetEval -M" -S 

"weka.attributeSelection.GeneticSearch -Z 20 -G 20 -C 0.6 -M 0.033 -R 20 -S 1"  

Greedy algorithm: weka.filters.supervised.attribute.AttributeSelection -b -i 

$train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E 

"weka.attributeSelection.CfsSubsetEval -M” -S 

"weka.attributeSelection.GreedyStepwise -T -1.7976931348623157E308 -N -1"  

CFS and best first strategy: weka.filters.supervised.attribute.AttributeSelection -

b -i $train_set_file -o $train_out_file -r $test_set_file -s $test_out_file -E 

"weka.attributeSelection.CfsSubsetEval -M” -S 

"weka.attributeSelection.BestFirst -D 1 -N 5"  

Minimum Redundancy Maximum Relevance Algorithm: 

weka.filters.supervised.attribute.AttributeSelection -b -i $train_set_file -o 

$train_out_file  -r $test_set_file -s $test_out_file  -E 

"weka.attributeSelection.CfsSubsetEval -M"   -S 

"weka.attributeSelection.RerankingSearch -method 2 -blocksize 20 

rankingMeasure 0 -search \"weka.attributeSelection.GreedyStepwise -T -

1.7976931348623157E308 -N -1 -num-slots 1\"" 

After the attributes are selected, for each fold of the cross-validation experiment 

an SVM is trained on the original train set and class labels of test set are 

predicted. The experiment results on test data are shown in Tables 4.3 – 4.16. 
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 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 81 0.836 0.676 0.860 0.888 0.836 0.737 0.805 

Fold-2 91 0.822 0.727 0.844 0.865 0.830 0.763 0.808 

Fold-3 78 0.822 0.724 0.861 0.890 0.843 0.755 0.816 

Fold-4 531 0.828 0.711 0.853 0.880 0.823 0.763 0.812 

Fold-5 404 0.815 0.743 0.830 0.884 0.783 0.764 0.806 

Fold-6 13 0.825 0.735 0.834 0.870 0.797 0.775 0.810 

Fold-7 485 0.853 0.723 0.857 0.905 0.842 0.762 0.830 

Mean 

Result 
---- 0.830 0.720 0.848 0.884 0.821 0.760 0.813 

Table 4.3 Accuracy measures of chi-square method evaluated by 7-fold cross validation 

experiment on CB513 

 

 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 149 0.851 0.752 0.840 0.876 0.836 0.782 0.824 

Fold-2 121 0.851 0.779 0.847 0.896 0.840 0.780 0.833 

Fold-3 130 0.862 0.766 0.840 0.898 0.826 0.782 0.835 

Fold-4 184 0.852 0.764 0.850 0.891 0.846 0.781 0.833 

Fold-5 309 0.862 0.773 0.846 0.895 0.838 0.790 0.836 

Fold-6 421 0.860 0.770 0.850 0.900 0.837 0.786 0.836 

Fold-7 185 0.848 0.765 0.855 0.889 0.840 0.789 0.832 

Fold-8 539 0.870 0.774 0.829 0.888 0.810 0.797 0.834 

Fold-9 115 0.861 0.775 0.840 0.889 0.830 0.791 0.832 

Fold-

10 
286 0.856 0.751 0.857 0.897 0.844 0.782 0.834 

Mean 

Result 
---- 0.858 0.767 0.846 0.892 0.835 0.786 0.833 

Table 4.4 Accuracy measures of chi-square method evaluated by 7-fold cross validation 

experiment on EVAset 
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 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 81 0.836 0.676 0.860 0.888 0.836 0.737 0.805 

Fold-2 91 0.822 0.727 0.844 0.865 0.830 0.763 0.808 

Fold-3 78 0.822 0.724 0.861 0.890 0.843 0.755 0.816 

Fold-4 432 0.825 0.714 0.853 0.880 0.825 0.763 0.812 

Fold-5 401 0.815 0.739 0.829 0.884 0.782 0.762 0.804 

Fold-6 10 0.826 0.735 0.840 0.878 0.800 0.775 0.812 

Fold-7 485 0.853 0.723 0.857 0.905 0.842 0.762 0.830 

Mean 

Result 
---- 0.830 0.720 0.849 0.885 0.822 0.760 0.813 

Table 4.5 Accuracy measures of information-gain method evaluated by 7-fold cross 

validation experiment on CB513 

 

 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 144 0.851 0.754 0.840 0.877 0.836 0.782 0.825 

Fold-2 126 0.853 0.779 0.846 0.895 0.840 0.783 0.833 

Fold-3 143 0.862 0.766 0.839 0.898 0.825 0.782 0.834 

Fold-4 179 0.851 0.764 0.850 0.891 0.846 0.781 0.832 

Fold-5 321 0.862 0.773 0.846 0.895 0.838 0.789 0.836 

Fold-6 442 0.861 0.771 0.850 0.900 0.837 0.787 0.837 

Fold-7 169 0.848 0.762 0.853 0.888 0.838 0.788 0.831 

Fold-8 529 0.870 0.775 0.828 0.888 0.810 0.798 0.834 

Fold-9 149 0.862 0.776 0.840 0.889 0.829 0.793 0.833 

Fold-

10 
284 0.856 0.751 0.858 0.898 0.845 0.782 0.835 

Mean 

Result 
---- 0.858 0.767 0.845 0.892 0.835 0.786 0.833 

Table 4.6 Accuracy measures of information-gain method evaluated by 7-fold cross 

validation experiment on EVAset 
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 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 83 0.835 0.674 0.860 0.888 0.835 0.735 0.804 

Fold-2 91 0.823 0.726 0.844 0.865 0.829 0.763 0.808 

Fold-3 77 0.822 0.726 0.862 0.890 0.846 0.756 0.817 

Fold-4 536 0.827 0.711 0.852 0.880 0.823 0.763 0.812 

Fold-5 150 0.809 0.751 0.832 0.883 0.785 0.765 0.806 

Fold-6 14 0.830 0.734 0.844 0.882 0.801 0.777 0.815 

Fold-7 508 0.854 0.721 0.857 0.904 0.845 0.761 0.830 

Mean 

Result 
---- 0.830 0.720 0.850 0.886 0.823 0.761 0.814 

Table 4.7 Accuracy measures of gain ratio method evaluated by 7-fold cross validation 

experiment on CB513 

 

 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 174 0.853 0.756 0.841 0.877 0.839 0.784 0.826 

Fold-2 134 0.853 0.780 0.846 0.895 0.840 0.784 0.834 

Fold-3 146 0.863 0.766 0.840 0.897 0.827 0.783 0.835 

Fold-4 153 0.851 0.761 0.850 0.891 0.845 0.779 0.831 

Fold-5 269 0.860 0.773 0.746 0.895 0.837 0.788 0.835 

Fold-6 444 0.861 0.770 0.849 0.899 0.837 0.786 0.836 

Fold-7 133 0.846 0.759 0.854 0.887 0.840 0.786 0.830 

Fold-8 523 0.870 0.775 0.828 0.887 0.810 0.798 0.834 

Fold-9 100 0.860 0.774 0.841 0.889 0.830 0.791 0.832 

Fold-

10 
242 0.854 0.750 0.857 0.897 0.844 0.781 0.833 

Mean 

Result 
---- 0.857 0.766 0.845 0.892 0.835 0.786 0.833 

Table 4.8 Accuracy measures of gain ratio method evaluated by 7-fold cross validation 

experiment on EVAset 
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 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 240 0.836 0.673 0.858 0.890 0.833 0.733 0.804 

Fold-2 237 0.817 0.716 0.848 0.868 0.833 0.756 0.805 

Fold-3 229 0.818 0.710 0.868 0.892 0.851 0.748 0.814 

Fold-4 245 0.828 0.710 0.852 0.877 0.825 0.764 0.812 

Fold-5 226 0.809 0.745 0.829 0.884 0.779 0.762 0.804 

Fold-6 228 0.823 0.721 0.852 0.889 0.807 0.769 0.814 

Fold-7 257 0.851 0.717 0.855 0.906 0.833 0.759 0.827 

Mean 

Result 
---- 0.827 0.713 0.852 0.888 0.822 0.757 0.812 

Table 4.9 Accuracy measures of genetic algorithm evaluated by 7-fold cross validation 

experiment on CB513 

 

 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 450 0.859 0.769 0.840 0.879 0.837 0.791 0.830 

Fold-2 445 0.857 0.790 0.849 0.899 0.844 0.790 0.839 

Fold-3 433 0.871 0.780 0.840 0.900 0.829 0.792 0.841 

Fold-4 449 0.854 0.773 0.854 0.894 0.851 0.786 0.837 

Fold-5 408 0.859 0.777 0.843 0.895 0.833 0.789 0.835 

Fold-6 414 0.856 0.771 0.848 0.899 0.834 0.783 0.834 

Fold-7 439 0.851 0.772 0.856 0.890 0.841 0.794 0.835 

Fold-8 439 0.865 0.769 0.826 0.886 0.804 0.792 0.830 

Fold-9 451 0.866 0.785 0.841 0.892 0.832 0.798 0.837 

Fold-

10 
420 0.853 0.753 0.856 0.898 0.839 0.781 0.833 

Mean 

Result 
---- 0.859 0.774 0.845 0.894 0.835 0.790 0.835 

Table 4.10 Accuracy measures of genetic algorithm evaluated by 7-fold cross validation 

experiment on EVAset 
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 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 16 0.836 0.669 0.852 0.879 0.833 0.732 0.800 

Fold-2 16 0.822 0.724 0.837 0.855 0.827 0.762 0.804 

Fold-3 15 0.826 0.708 0.856 0.879 0.844 0.752 0.811 

Fold-4 16 0.825 0.718 0.838 0.860 0.816 0.766 0.806 

Fold-5 14 0.806 0.748 0.825 0.877 0.780 0.761 0.801 

Fold-6 16 0.826 0.728 0.840 0.879 0.794 0.774 0.811 

Fold-7 15 0.849 0.717 0.839 0.894 0.819 0.756 0.820 

Mean 

Result 
---- 0.828 0.716 0.841 0.876 0.816 0.758 0.808 

Table 4.11 Accuracy measures of greedy algorithm evaluated by 7-fold cross validation 

experiment on CB513 

 

 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 29 0.837 0.748 0.845 0.884 0.831 0.772 0.820 

Fold-2 30 0.838 0.775 0.852 0.900 0.839 0.773 0.829 

Fold-3 28 0.849 0.765 0.844 0.903 0.821 0.774 0.831 

Fold-4 28 0.836 0.759 0.855 0.896 0.842 0.770 0.827 

Fold-5 30 0.837 0.759 0.848 0.898 0.826 0.771 0.825 

Fold-6 27 0.832 0.752 0.851 0.899 0.829 0.764 0.822 

Fold-7 33 0.832 0.757 0.858 0.892 0.838 0.777 0.826 

Fold-8 29 0.842 0.756 0.832 0.890 0.800 0.774 0.821 

Fold-9 30 0.848 0.775 0.846 0.895 0.828 0.785 0.830 

Fold-

10 
34 0.830 0.743 0.856 0.900 0.831 0.768 0.825 

Mean 

Result 
---- 0.839 0.759 0.849 0.896 0.829 0.773 0.826 

Table 4.12 Accuracy measures of greedy algorithm evaluated by 7-fold cross validation 

experiment on EVAset 
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 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 16 0.836 0.669 0.852 0.879 0.833 0.732 0.800 

Fold-2 16 0.822 0.724 0.837 0.855 0.827 0.762 0.804 

Fold-3 15 0.826 0.708 0.856 0.879 0.844 0.752 0.811 

Fold-4 16 0.825 0.718 0.838 0.860 0.816 0.766 0.806 

Fold-5 16 0.811 0.749 0.826 0.879 0.778 0.765 0.804 

Fold-6 16 0.826 0.728 0.840 0.879 0.794 0.774 0.811 

Fold-7 15 0.849 0.717 0.839 0.894 0.819 0.756 0.820 

Mean 

Result 
---- 0.839 0.716 0.841 0.876 0.815 0.759 0.808 

Table 4.13 Accuracy measures of CFS and BestFirst search strategy evaluated by 7-fold 

cross validation experiment on CB513 

 

 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 34 0.838 0.749 0.844 0.882 0.833 0.773 0.821 

Fold-2 30 0.838 0.775 0.852 0.900 0.839 0.773 0.829 

Fold-3 33 0.851 0.764 0.844 0.902 0.822 0.774 0.831 

Fold-4 31 0.836 0.758 0.855 0.896 0.842 0.770 0.827 

Fold-5 30 0.837 0.759 0.848 0.898 0.826 0.771 0.825 

Fold-6 34 0.835 0.753 0.850 0.897 0.831 0.765 0.823 

Fold-7 32 0.832 0.756 0.858 0.892 0.838 0.777 0.826 

Fold-8 29 0.842 0.756 0.832 0.890 0.800 0.774 0.821 

Fold-9 33 0.849 0.775 0.846 0.895 0.828 0.786 0.831 

Fold-

10 
34 0.837 0.743 0.856 0.900 0.831 0.768 0.825 

Mean 

Result 
---- 0.840 0.759 0.849 0.896 0.829 0.773 0.826 

Table 4.14 Accuracy measures of CFS and BestFirst search strategy evaluated by 7-fold 

cross validation experiment on EVAset 
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 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 16 0.836 0.669 0.852 0.879 0.833 0.732 0.800 

Fold-2 16 0.822 0.724 0.837 0.855 0.827 0.762 0.804 

Fold-3 15 0.826 0.708 0.856 0.879 0.844 0.752 0.811 

Fold-4 16 0.825 0.718 0.838 0.860 0.816 0.766 0.806 

Fold-5 14 0.806 0.748 0.825 0.877 0.780 0.761 0.801 

Fold-6 16 0.826 0.728 0.840 0.879 0.794 0.774 0.811 

Fold-7 15 0.849 0.717 0.839 0.894 0.819 0.756 0.820 

Mean 

Result 
---- 0.828 0.716 0.841 0.876 0.816 0.758 0.808 

Table 4.15 Accuracy measures of minimum redundancy maximum relevance evaluated by 

7-fold cross validation experiment on CB513 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 23 0.833 0.748 0.845 0.885 0.829 0.770 0.819 

Fold-2 24 0.837 0.776 0.852 0.901 0.839 0.773 0.829 

Fold-3 24 0.847 0.764 0.846 0.904 0.822 0.772 0.830 

Fold-4 25 0.834 0.757 0.856 0.898 0.842 0.768 0.827 

Fold-5 25 0.834 0.757 0.849 0.900 0.825 0.768 0.823 

Fold-6 25 0.832 0.752 0.851 0.900 0.830 0.763 0.822 

Fold-7 27 0.829 0.757 0.858 0.892 0.836 0.775 0.825 

Fold-8 26 0.844 0.753 0.832 0.890 0.799 0.774 0.821 

Fold-9 26 0.847 0.772 0.846 0.896 0.827 0.783 0.829 

Fold-

10 
27 0.835 0.742 0.856 0.901 0.828 0.767 0.824 

Mean 

Result 
---- 0.837 0.758 0.849 0.897 0.828 0.771 0.825 

Table 4.16 Accuracy measures of minimum redundancy maximum relevance evaluated by 

7-fold cross validation experiment on EVAset 

In the principal component analysis the number of dimensions is increased from 

5 to 535 with increments of 5, and a one-versus-one SVM model is trained and 

tested on each train set for optimization and validation set respectively. Then, 

principal component analysis is applied in python pca library on train and test 

datasets for the optimum number of dimensions [67] . Finally, for each fold a 

one-versus-one SVM model is trained and tested by using the reduced datasets. 

The results of the 7-fold cross-validation experiment on CB513 are shown in 
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Table 4.17 and 10-fold cross-validation experiment on EVAset is presented in 

Table 4.18. 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 290 0.839 0.677 0.859 0.889 0.839 0.736 0.806 

Fold-2 105 0.826 0.717 0.847 0.863 0.833 0.763 0.808 

Fold-3 85 0.834 0.713 0.864 0.892 0.850 0.756 0.818 

Fold-4 105 0.840 0.717 0.849 0.874 0.826 0.774 0.817 

Fold-5 95 0.822 0.742 0.829 0.879 0.784 0.769 0.807 

Fold-6 75 0.834 0.719 0.848 0.887 0.802 0.774 0.815 

Fold-7 90 0.857 0.728 0.858 0.905 0.840 0.769 0.833 

Mean 

Result 
---- 0.837 0.716 0.850 0.885 0.824 0.764 0.815 

Table 4.17 Accuracy measures of principal component analysis evaluated by 7-fold cross 

validation experiment on CB513 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 590 0.863 0.764 0.839 0.879 0.836 0.792 0.830 

Fold-2 470 0.860 0.778 0.846 0.898 0.837 0.787 0.836 

Fold-3 550 0.871 0.775 0.837 0.900 0.822 0.790 0.839 

Fold-4 380 0.855 0.760 0.851 0.894 0.841 0.782 0.833 

Fold-5 430 0.858 0.760 0.843 0.894 0.826 0.783 0.830 

Fold-6 560 0.860 0.756 0.846 0.898 0.830 0.780 0.831 

Fold-7 570 0.855 0.762 0.849 0.891 0.827 0.791 0.831 

Fold-8 550 0.866 0.774 0.824 0.887 0.800 0.795 0.831 

Fold-9 590 0.867 0.776 0.837 0.890 0.826 0.795 0.834 

Fold-

10 
580 0.856 0.743 0.852 0.897 0.832 0.779 0.830 

Mean 

Result 
---- 0.861 0.765 0.843 0.893 0.828 0.787 0.833 

Table 4.18 Accuracy measures of principal component analysis evaluated by 7-fold cross 

validation experiment on EVAset 

For the autoencoder the number of hidden neurons, which gives the dimension 

of the reduced dataset, is increased from 75 to 525 with increments of 25. 

Maximum epoch number is set to 1000, L2WeightRegularization parameter to 

0.004, SparsityRegularization parameter to 4, SparsityProportion parameter to 



44 

 

0.15 and scaleData parameter to false.  As in other methods, autoencoder is 

applied in matlab [68] on train and test sets after finding the optimum number of 

dimensions and one-versus-one SVM is trained and tested on the reduced 

datasets. The results of the 7-fold cross-validation experiment on CB513 are 

shown in Table 4.19 and 10-fold cross-validation experiment on EVAset is 

given in Table 4.20.  

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 175 0.827 0.620 0.882 0.897 0.860 0.718 0.799 

Fold-2 225 0.824 0.674 0.865 0.863 0.862 0.754 0.811 

Fold-3 275 0.828 0.659 0.876 0.891 0.862 0.743 0.813 

Fold-4 275 0.830 0.697 0.866 0.877 0.847 0.771 0.820 

Fold-5 225 0.823 0.710 0.852 0.878 0.826 0.767 0.817 

Fold-6 250 0.834 0.684 0.867 0.893 0.826 0.771 0.819 

Fold-7 275 0.851 0.684 0.873 0.908 0.861 0.759 0.831 

Mean 

Result 
---- 0.832 0.675 0.869 0.888 0.849 0.755 0.820 

Table 4.19 Accuracy measures of autoencoder evaluated by 7-fold cross validation 

experiment on CB513 

 Dimension 
Recall 

‘L’ 

Recall 

‘H’ 

Recall 

‘E’ 

Precision 

‘L’ 

Precision 

‘H’ 

Precision 

‘E’ 
Accuracy 

Fold-1 450 0.857 0.737 0.849 0.881 0.844 0.777 0.832 

Fold-2 375 0.821 0.717 0.862 0.899 0.833 0.752 0.819 

Fold-3 425 0.831 0.736 0.853 0.892 0.827 0.763 0.823 

Fold-4 425 0.841 0.707 0.845 0.882 0.829 0.755 0.819 

Fold-5 450 0.847 0.761 0.851 0.903 0.821 0.778 0.832 

Fold-6 400 0.838 0.720 0.856 0.895 0.840 0.755 0.825 

Fold-7 425 0.838 0.754 0.856 0.897 0.845 0.766 0.831 

Fold-8 450 0.853 0.730 0.853 0.893 0.836 0.768 0.830 

Fold-9 425 0.841 0.719 0.856 0.892 0.842 0.759 0.825 

Fold-

10 
450 0.809 0.744 0.864 0.900 0.841 0.752 0.818 

Mean 

Result 
---- 0.837 0.733 0.855 0.893 0.836 0.762 0.825 

Table 4.20 Accuracy measures of autoencoder evaluated by 7-fold cross validation 

experiment on EVAset 
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Training time of support vector machines for each fold is almost 7 hours for 

CB513 and almost 6 days for Evaset when all the features are used. That means 

total training time is almost 2 days for CB513 and almost 60 days for Evaset 

(assuming that these jobs are executed serially). Ranking methods consist of 

three different phases: ranking, finding the optimum number of features, and 

classification. For CB513 the total ranking time in each method is almost 5 

hours, the total optimization time is almost 2 days and the total classification 

time is 15 hours. For EVAset the total ranking time is almost 4 days, total 

optimizing time is almost 250 days and total classification time is almost 22 

days. For the remaining feature selection algorithms there are two phases: 

selection and classification. Except for the Genetic algorithm their running times 

are similar to each other. For CB513 feature selection takes 2 days and 

classification takes 5 hours. For EVAset feature selection takes 11 days and 

classification takes 29 days. In the CFS algorithm, which uses genetic algorithm 

as a search technique these times are longer than other feature selection 

algorithms. For CB513 feature selection takes 140 hours and classification takes 

almost 2 days. For Evaset selection takes 30 days and classification takes 55 

days. Projection algorithms also have two phases: optimization and 

classification. In principal component analysis, optimization takes 7 days and 

classification takes 6 hours for CB513and for EVAset optimization takes 35 

days and classification takes 50 days. In the deep autoencoder, for CB513 

optimizing takes 6 days and classification takes 7 hours. For the Evaset set 

optimizing takes 35 days and classification takes 41 days. To decrease these 

times we sent each fold in parallel to different cores.  

As shown in experiment results, feature selection and dimension reduction 

algorithms can be used to reduce the number of dimensions considerably for 

protein secondary structure prediction. For the two datasets (Evaset and CB513) 

the proposed autoencoder models and other models received similar accuracy. 

For CB513 deep autoencoder obtained the best overall accuracy (Q3) value of 

0.820 and greedy, CFS and best first search strategy and minimum redundancy 

maximum relevance algorithms reduced the dimension the most with the mean 
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number of dimensions equal to 15. Table 4.21 summarizes the percentage of 

eliminated attributes for CB513 and table 4.22 contains the percentage of 

eliminated attributes for EVAset. The best overall accuracy (Q3) for EVAset is 

obtained by CFS-Genetic search algorithm and the highest reduction in number 

of dimensions is achieved by CFS-MRMR algorithm with the mean number of 

dimensions acress the 10 folds equal to 25. The fastest algorithms (including 

optimization, selection and classification) are minimum CFS-MRMR, CFS-Best 

First and CFS-Greedy, the slowest algorithms are ranker feature selection 

algorithms for both two datasets.  

 X
2 

IG GR Greddy Genetic 
CFS-

Bestfist 
MRMR PCA Autoencoder 

Fold-

1 
84.9 84.9 84.6 97.0 55.4 97.0 97.0 46.1 67.5 

Fold-

2 
83.1 83.1 83.1 97.0 56.0 97.0 97.0 80.5 58.2 

Fold-

3 
85.5 85.5 85.7 97.2 57.5 97.2 97.2 84.2 48.9 

Fold-

4 
1.48 19.8 0.55 97.0 54.5 97.0 97.0 80.5 48.9 

Fold-

5 
25.0 25.6 72.1 97.4 58.0 97.0 97.4 82.3 58.2 

Fold-

6 
97.5 98.1 97.4 97.0 57.6 97.0 97.0 86.0 53.6 

Fold-

7 
10.0 10.0 5.75 97.2 52.3 97.2 97.2 83.3 48.9 

Mean 

Result 
55,5 58,2 61,4 97,1 55,9 97,0 97,1 77,4 54,9 

Table 4.21 Percentage of eliminated attributes for CB513 
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 X
2
 IG GR Greddy Genetic 

CFS-

Bestfist 
MRMR PCA Autoencoder 

Fold-

1 
83.9 84.5 81.3 96.8 51.6 96.3 97.5 36.6 51.6 

Fold-

2 
87.0 86.4 85.6 96.7 52.2 96.7 97.4 49.5 59.7 

Fold-

3 
86.0 84.6 84.3 96.9 53.4 96.4 97.4 40.9 54.3 

Fold-

4 
80.2 80.7 83.5 96.9 51.7 96.6 97.3 59.1 54.3 

Fold-

5 
66.8 65.5 71.1 96.7 56.1 96.7 97.3 53.8 51.6 

Fold-

6 
54.7 52.5 52.3 97.0 55.5 96.3 97.3 39.8 57.0 

Fold-

7 
80.1 81.8 85.7 96.4 52.8 96.5 97.0 38.7 54.3 

Fold-

8 
42.1 43.1 43.8 96.8 52.8 96.8 97.2 40.9 51.6 

Fold-

9 
87.6 83.9 89.2 96.7 51.5 96.4 97.2 36.6 54.3 

Fold-

10 
69.2 89.4 74.0 96.3 54.8 96.3 97.0 37.7 51.6 

Mean 

Result 
74,0 75,4 75,3 96,7 53,2 96,5 97,2 43,4 54,0 

Table 4.22 Percentage of eliminated attributes for EVAset 
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Chapter 5 

 

Conclusions  
 

 

In this thesis we employ deep autoencoder for dimension reduction and compare 

it with the traditional feature selection and dimension reduction techniques in 

protein secondary structure prediction on two benchmark datasets. In addition 

we compare the accuracy obtained after dimension reduction with the accuracy 

from the original feature set. As the classification method we use support vector 

machine, which is the second classifier of a two-stage predictor. As a result, 

feature selection and dimension reduction techniques achieved similar success 

rates compared to the accuracy obtained with the original feature set. They can 

be useful for protein structure prediction because they decrease the number of 

dimensions considerably. For each feature selection and projection algorithms, 

the classification phase is significantly than classification in original dimension. 

In addition some feature selection algorithms achieve better accuracy than the 

models trained using the original feature set. The proposed autoencoder model 

has similar success rate to the other models and it can be more ameliorative than 

the other models because of its several parameters. Furthermore, it takes the best 

accuracy value on the CB513 dataset and eliminates more than half of the 

features in both datasets. We can conclude that in most of the cases the 

autoencoder has better accuracy than other feature selection algorithms and 

projection methods except for the CFS-Genetic method. The disadvantages of 

the genetic algorithm are such that it takes longer time and cannot reduce the 

dimension considerably. Because of these reasons deep autoencoder is more 

useful as a dimension reduction algorithm. As a future work, we will apply the 
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same methods to dihedral angle and solvent accessibility prediction, and analyze 

the improvement in accuracy and running times of the classification method. 
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