ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE MATERIALS SCIENCE AND MECHANICAL ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS | Course Title | Code | Semester | T+L Hours | Credit | ECTS | |--------------------------------------|----------|-------------|-----------|--------|------| | MACROMOLECULAR CHEMISTRY AND PHYSICS | MSME-603 | FALL-SPRING | 3 + 0 | 3 | 10 | ## Prerequisite Courses None | Туре | Selective | | | | |----------------------|--|--|--|--| | Language | English | | | | | Coordinator | Assoc. Prof. Hakan Usta | | | | | Instructor | Assoc. Prof. Hakan Usta | | | | | Adjunt | none | | | | | Aim | Teaching the general chemical structures, types, synthesis methods, chemical and physical properties of polymers in detail, and detailed examination of industrial and daily life applications of polymers. | | | | | Learning
Outcomes | Learning the bases of organic chemistry, functional groups, hybridization, bond theories Learning general chemical structures and types of polymers Learning chain size determination theory of polymers and experimental methods Learning working principles, mechanisms and types of polymerization reactions Learning step polymerization reaction mechanisms and working principles Learning insertion polymerization reaction mechanisms and working principles Learning industrial applications of polymers Learning radicalic polymerization reactions and examining the configuration properties of polymers Learning mechanical and physical properties of polymers and, chemical and external factors affecting these properties | | | | | Course Content | Definition of Organic Chemistry and Classification of Organic Compounds Bond Theories and Isomers Chemical Structures and Types of Polymers Polymer Size Properties and Determination Principles and Types of Polymerization Reactions Step Polymerization Reactions Addition Polymerization Reactions Industrial Applications Radicalic Polymerization Reactions Molecular Configurations of Polymers Mechanical and Physical Properties of Polymers Factors Determining the Mechanical Properties of Polymers | | | | | WEEKLY | WEEKLY TOPICS AND PRELIMINARY STUDY | | | | | | |--------|--|---|--|--|--|--| | Week | Topic | Preliminary Study | | | | | | 1 | Introduction to Organic Chemistry-I: Orbitals, Carbon hybridization, covalent bond types, single and multiple bonds. | The relevant articles from the literature | | | | | | 2 | Introduction to Organic Chemistry-II: Isomers, bond rotations, dipole moment, intermolecular bonds. | The relevant articles from the literature | | | | | | 3 | Chemical Structures of Polymers: Definition of polymer, general chemical structures, types and, properties of Nylon, polyurethane, polystyrene, polyethylene polymers. | | | | | | | 4 | Polymer Types: Thermoplastics, Elastomers, Thermosets, Homopolymers and Copolymers. | The relevant articles from the literature | | | | | | 5 | Polymer Size Properties and Determination: Molecular weight types, calculations, determination methods. | The relevant articles from the literature | | | | | | 6 | Fundamentals of Polymerization Reactions: Polymerization reaction principles, types, step polymerization, chain polymerization. | The relevant articles from the literature | | | | | | 7 | Step Polymerization Reactions: Linear step polymerization, polycondensation, polyester, polyamide, polyether, polysiloxane reactions | The relevant articles from the literature | | | | | | 8 | Addition Polymerization Reactions: Linear polyurethane synthesis, Polyurea synthesis, ladder type polymer synthesis, Carother theorem. | The relevant articles from the literature | | | | | | 9 | Industrial Applications: Industrial applications of Step and Addition polymerization reactions and gel point determination. | The relevant articles from the literature | | | | | | 10 | Midterm | The relevant articles from the literature | |----|--|---| | 11 | Radicalic Polymerization Reactions: Steps and working principles of free radical polymerization reactions. | The relevant articles from the literature | | 12 | Radicalic Reaction Initiators: Types and chemical properties of initiators in radical reactions | The relevant articles from the literature | | 13 | Molecular Configurations of Polymers: Stereoisomers, isotactic, syndiotactic, atactic configurations | The relevant articles from the literature | | 14 | Mechanical and Physical Properties of Polymers: Elasticity, stress-strain curves, elastic and plastic deformation, heat dependence, hardness, impact resistance, fatigue, tear strength. | The relevant articles from the literature | | 15 | Factors Determining the Mechanical Properties of Polymers: Chain Interactions, Molecular Weight, Crystallization Degree, Heat Application, Elastomer Deformation, Vulcanization, Glass Transition Range, Crystallization and Melting | The relevant articles from the literature | | 16 | Final Exam | | | SOURCES | | | | | | | | |---------------|--|--|--|--|--|--|--| | Lecture Notes | Lecture slides and notes | | | | | | | | | Course Textbook: "Introduction to Polymers, Third Edition", Robert J. Young, Peter A. Lovell, 3rd Edition, 2011, CRC Press. | | | | | | | | Other Sources | Additional Materials: | | | | | | | | | 1. "Polymer Chemistry", Paul C. Hiemenz, Timothy P. Lodge, 2nd Edition, 2007, CRC Press 2. "Polymer Physics", M. Rubinstein, Ralph H. Colby, 1st Edition, 2003, Oxford University Press. | | | | | | | | COURSE MATERIALS SHARING | | | | | | |--|---|--|--|--|--| | Documents Lecture notes, slides and molecular model set | | | | | | | Homeworks | Students will be given one homework each week | | | | | | Exams 1 Midterm and 1 Final Exam | | | | | | | EVALUATION SYSTEM | | | | | | | |--------------------------------|--------|--------------|--|--|--|--| | SEMESTER STUDY | NUMBER | CONTRIBUTION | | | | | | Midterm | 1 | 20 | | | | | | Homework | 14 | 25 | | | | | | Quiz | 14 | 25 | | | | | | SUB-TOTAL | | 70 | | | | | | Contribution of Semester Study | | 70 | | | | | | Contribution of Final Exam | 1 | 30 | | | | | | TOTAL | | 100 | | | | | | Course Category | | | | |--------------------------|-----|--|--| | Sciences and Mathematics | 60% | | | | Engineering | 40% | | | | Social Sciences | 0% | | | | RE | RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS | | | | | | |----|--|--------------------|---|---|---|---| | No | Program Qualifications | Contribution Level | | | | | | | | 1 | 2 | 3 | 4 | 5 | | 1 | Accessing knowledge, evaluating and interpreting information by doing scientific research in the field of Materials Science and Mechanical Engineering | | | | | x | | 2 | Ability to use science and engineering knowledge for development of new methods in Materials Science and Mechanical Engineering | | | | | x | | 3 | To be able to understand and analyze materials by using basic knowledge on Materials Science and Mechanical Engineering | | | | | x | | 4 | Design and implement analytical, modeling and experimental research | | | | X | | | 5 | Solve and interpret the problems encountered in experimental research | | | | | x | | 6 | Considering scientific and ethical values during the collection and interpretation of data | x | | |----|--|---|---| | 7 | Integrating knowledge of different disciplines with the help of scientific methods, and completion and implementation of scientific knowledge using data | | x | | 8 | To gain leadership ability and responsibility in disciplinary and interdisciplinary team works | x | | | 9 | To be able to contribute to the solution of social, scientific and ethical problems encountered in the field of Materials Science and Mechanical Engineering | | x | | 10 | To be able to define, interpret and create new information about the interactions between various discipline of Materials Science and Mechanical Engineering | x | | ^{*}Increasing from 1 to 5. | ECTS / WORK LOAD TABLE | | | | | | | |---|--------|---------------------|--------------------|--|--|--| | Activities | Number | Duration
(Hours) | Total Work
Load | | | | | Course Length (includes exam weeks: 16x total course hours) | 16 | 3 | 48 | | | | | Out-of-class Study Time (Pre-study, practice) | 16 | 6 | 96 | | | | | Internet search, library work, literature search | 16 | 4 | 64 | | | | | Presentation | 6 | 3 | 18 | | | | | Homework | 16 | 3 | 48 | | | | | Midterm | 1 | 20 | 20 | | | | | Final Exam | 1 | 20 | 20 | | | | | Total Work Load | | | 314 | | | | | Total Work Load / 30 | | | 314/30 | | | | | Course ECTS Credit | | | 10 | | | |