ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE MATERIALS SCIENCE AND MECHANICAL ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS								
Course Title Code Semester T+L Hours Credit ECTS								
COMPOSITE MATERIALS	MSME-605	FALL-SPRING	3 + 0	3	10			

Prerequisite Courses None

Туре	Selective			
Language	English			
Coordinator	Assist. Prof. Hatice Sinem Şaş Çaycı			
Instructor	Assist. Prof. Hatice Sinem Şaş Çaycı			
Adjunt	none			
Aim	Learning the principles of composite materials processing techniques and modeling tools and micro and macro mechanics of composite materials with failure types.			
Learning Outcomes	 Learning the classification of composite materials with applications Learning the basic composite manufacturing processing techniques Practicing the composite modeling methods and tools by adapting the basic governing equations: mass, momentum and energy conservation Learning the mechanics of orthotropic lamina Learning the mechanics of laminated composites Understanding the different failure mechanisms of composite materials 			
Course Content	 Introduction to Composite Materials Introduction to Composite Manufacturing Processes Issues and Challenges of Advanced Composite Manufacturing Transport Equations for Composite Processing Modeling Philosophy and Tools for Composite Processing Case Studies on Composite Process Modeling Behavior of Unidirectional Composites Short Fiber Composites Analysis of Orthotropic Lamina Analysis of Laminated Composite Materials: Short and Long fibers Processing and Properties of Nanocomposites New Technologies and Applications on Composite Materials 			

WEEKLY TOPICS AND PRELIMINARY STUDY

Week	Торіс	Preliminary Study			
1	Introduction to Composite Materials	The relevant articles from the literature			
2	Introduction to Composite Manufacturing Processes	The relevant articles from the literature			
3	Issues and Challenges of Advanced Composite Manufacturing	The relevant articles from the literature			
4	Transport Equations for Composite Processing	The relevant articles from the literature			
5	Modeling Philosophy and Tools for Composite Processing	The relevant articles from the literature			
6	Case Studies on Composite Process Modeling	The relevant articles from the literature			
7	Behavior of Unidirectional Composites	The relevant articles from the literature			
8	Short Fiber Composites	The relevant articles from the literature			
9	Midterm	The relevant articles from the literature			
10	Analysis of Orthotropic Lamina	The relevant articles from the literature			
11	Analysis of Laminated Composites	The relevant articles from the literature			
12	Failure Analysis of Composite Materials: Short and Long fibers	The relevant articles from the literature			
13	Processing and Properties of Nanocomposites	The relevant articles from the literature			
14	New Technologies and Applications on Composite Materials	The relevant articles from the literature			
SOURCES					

Í

Lecture Notes	Lecture slides					
Other Sources	 Course Textbooks: "Process Modeling in Composite Manufacturing" by S. G. Advani and E. M. Sözer, CRC Press; 2nd edition, ISBN 9781420090826. "Analysis and Performance of fiber Composites" by B. D. Agarwal, L. J. Broutman, and K. Chandrashekhara, Wiley; 3rd edition, ISBN 978-0-471-26891-8 Additional Materials: "Mechanics of Composite Materials" by A. K. Kaw, Taylor & Francis; 2nd edition, ISBN 9780849313431 "Mechanics of Composite Materials" by R.M. Jones, Taylor & Francis Group; 2nd edition, ISBN-10: 156032712X "Principles of Composite Materials Mechanics" by R. F. Gibson, Mc Graw-Hill; 3rd edition, ISBN-10: 1439850054 					

COURSE MATERIALS SHARING				
Documents	Lecture notes, slides and molecular model set			
Homeworks	Students will be given 5 homework assignments			
Exams	1 Midterm and 1 Final Exam			

EVALUATION SYSTEM					
SEMESTER STUDY	NUMBER	CONTRIBUTION			
Midterm	1	25			
Homework	5	25			
Project	1	20			
SUB-TOTAL		70			
Contribution of Semester Study		70			
Contribution of Final Exam	1	30			
TOTAL		100			

Course Category				
Sciences and Mathematics	30%			
Engineering	70%			
Social Sciences	0%			

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS						
		Contribution Level					
INO	Program Qualifications		2	3	4	5	
1	Accessing knowledge, evaluating and interpreting information by doing scientific research in the field of Materials Science and Mechanical Engineering					x	
2	Ability to use science and engineering knowledge for development of new methods in Materials Science and Mechanical Engineering					x	
3	To be able to understand and analyze materials by using basic knowledge on Materials Science and Mechanical Engineering					x	
4	Design and implement analytical, modeling and experimental research					x	
5	Solve and interpret the problems encountered in experimental research			x			
6	Considering scientific and ethical values during the collection and interpretation of data				х		
7	Integrating knowledge of different disciplines with the help of scientific methods, and completion and implementation of scientific knowledge using data					x	
8	To gain leadership ability and responsibility in disciplinary and interdisciplinary team works					x	
9	To be able to contribute to the solution of social, scientific and ethical problems encountered in the field of Materials Science and Mechanical Engineering					x	
10	To be able to define, interpret and create new information about the interactions between various discipline of Materials Science and Mechanical Engineering					x	

*Increasing from 1 to 5.

r

ECTS / WORK LOAD TABLE						
Activities	Number	Duration (Hours)	Total Work Load			
Course Length (includes exam weeks: 16x total course hours)	14	3	42			
Out-of-class Study Time (Pre-study, practice)	15	5	75			
Internet search, library work, literature search	15	4	60			
Project	1	24	24			
Homework	5	12	60			
Midterm	1	20	20			
Final Exam	1	25	25			
Total Work Load			306			
Total Work Load / 30			306/30			
Course ECTS Credit			10			