
H
ab

ib
u

S

h
o
am

ari
i

M
u
k
h
an

d
i

Developing Machine Learning Methods

for Network Anomaly Detection

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF NATURAL SCIENCES OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER

By

Habibu Shomari Mukhandi

July 2018

D
ev

elo
p

in
g
 M

a
ch

in
e L

ea
rn

in
g
 M

eth
o
d

s fo
r N

etw
o
rk

 A
n

o
m

a
ly

 D
etectio

n

A
G

U

2
0
1
8

Developing Machine Learning Methods for

Network Anomaly Detection

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

AND THE GRADUATE SCHOOL OF NATURAL SCIENCES OF ABDULLAH

GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER

By

Habibu Shomari Mukhandi

July 2018

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules

and conduct, I have fully cited and referenced all materials and results that are not

original to this work.

Habibu Shomari Mukhandi

REGULATORY COMPLIANCE

M.Sc. thesis titled “Developing Machine Learning Methods for Network Anomaly

Detection” has been prepared in accordance with the Thesis Writing Guidelines of the

Abdullah Gül University, Graduate School of Engineering & Science.

 Prepared By Advisor

Habibu Shomari Mukhandi Dr. Zafer Aydın

Head of the Electrical and Computer Engineering Program

Assoc. Prof. Vehbi Çağrı GÜNGÖR

ACCEPTANCE AND APPROVAL

M.Sc. thesis titled Developing Machine Learning Methods for Network Anomaly

Detection and prepared by Habibu Shomari Mukhandi has been accepted by the jury in

the Electrical and Computer Engineering Graduate Program at Abdullah Gül University,

Graduate School of Engineering & Science.

……….. /……….. / ………..

 (Thesis Defense Exam Date)

JURY:

 Dr. Zafer Aydın :…………………..………. signature

Assoc. Prof. Çagrı Güngör :…………………............... signature

Dr. Mete Çelik :…………………............................ signature

Member :……………………………………. signature

Member :………………………………….… signature

APPROVAL:

The acceptance of this M.Sc. thesis has been approved by the decision of the Abdullah

Gül University, Graduate School of Engineering & Science, Executive Board dated

….. /….. / ……….. and numbered .…………..……. .

……….. /……….. / ………..

(Date)

Graduate School Dean

Name-Surname, Signature

i

ABSTRACT

Developing Machine Learning Methods for Network Anomaly

Detection

Habibu Shomari MUKHANDI

M.Sc. in Electrical and Computer Engineering Department

Supervisor: Dr. Zafer Aydın

July-2018

Machine learning refers to training of a computer (machine) to be able to acquire

knowledge from data (i.e. experience) and improve itself on a given task. The field of

machine learning has become a mainstream, improving hundreds of millions of lives.

Fraudulent actions in computer networks, credit card transactions and website

advertisement traffic might devastate large businesses and cause anually fiscal loss of

billions of dollars around the globe. In this thesis, we propose various machine learning

methods for three fraud detection problems: network anomaly detection, credit card

fraud detection and detection of fraudulent clicks to advertisements on the internet. We

design various classifiers such as logistic regression, k-nearest neighbors, decision tree,

support vector machine, and ensemble classifiers such as random forest, bagging,

stacking and AdaBoost. The hyper-parameters of the classifiers are optimized by

performing cross-validation experiments on train sets. In the next step, the models are

trained using the optimum hyper-parameter configurations and predictions are

computed on test sets. Among the various methods compared the highest accuracy is

obtained by ensemble learners.

Keywords: Anomaly Detection, Fraud Detection, Network Anomaly Detection, Credit

Card Fraud Detection, Fraud Detection for Advertisement Clicks, Machine Learning,

Ensemble Classifiers

ii

ÖZET

BİLGİSAYAR AĞLARINDA ANORMAL DURUM TESPİTİ

YAPAN ÖĞRENME YÖNTEMLERİNİN GELİŞTİRİLMESİ

Habibu Shomari Mukhandi

Elektrik ve Bilgisayar Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Dr. Zafer Aydın

Temmuz-2018

Makine öğrenmesi, verilerdeki bilginin bir bilgisayar ya da makina tarafından otomatik

olarak öğrenilmesi ve karşılaşılan yeni durumlarda anlamlı bilgi ya da davranışların

üretilmesini amaçlar. Bir çok uygulama alanı bulunan makine öğrenmesi daha önce hiç

karşılaşılmamış olan sıradışı durumların tespit edilmesi için de kullanılmaktadır.

Bilgisayar ağlarındaki siber saldırılar, kredi kartı dolandırıcılığı ve internet sitelerinin

linklerine yapılan çok sayıda sahte tıklamalar dünya genelinde ekonomileri ciddi oranda

zarara uğratabilecek niteliktedir. Bu tezde üç farklı anormal durum tespiti problemi

üzerinde çalışılmıştır: bilgisayar ağlarında saldırı tespiti, kredi kartı dolandırıcılığı

tespiti ve internet sitelerdeki linklere sahte tıklama tespiti. Anormal durum tespiti için

geliştirilen ve optimize edilen modeller arasında rastgele orman, en yakın komşu, destek

vektör makinası, logistic regresyon, karar ağacı, AdaBoost, çantalama ve yığınlama gibi

sınıflandırma yöntemleri bulunmaktadır. Yöntemlerin hiper-parametreleri eğitim

kümelerinde yapılan çapraz doğrulama deneyleri ile optimize edilmiştir. Bir sonraki

aşamada optimum hiper-parametre konfigürasyonları kullanılarak eğitilen modeler ile

test verilerinde tahmin sonuçları hesaplanmıştır. Bu deneyler neticesinde genel doğruluk

oranı ve F-measure skorlarında yüksek başarı elde edilmiştir. Geliştirilen yöntemler

arasında en başarılı sonuçlar topluluk modelleri ile elde edilmiştir.

Keywords: Anormal Durum Tespiti, Dolandırıcılık Tespiti, Bilgisayar Ağlarında

Anormal Durum Tespiti, Kredi Kartı Dolandırıcılığı Tespiti, İnternet Sitelerinde Sahte

Tıklama Tespiti

iii

Acknowledgements

I want to thank Dr. Zafer Aydin for believing in me and decided to be my supervisor

through out my master's degree. His guidance made it possible for me to conduct

tireless and fruitful research on different Machine learning algorithms on various areas.

I would like to thank you for your support, dedication and availability were

extraordinary. Definately a fantastic person.

To Assoc. Prof V. Cagri Gungor who help with providing data for anomalies detection

from Labris Networks which helped immeasurabely for training and testing different

algorithms.

Finally, a special thanks to my parents who have always supported me in all my

decisions and always encouraged me to be the best version of myself. For being models

of commitment and courage I dedicate this work to them. Also, to my two sisters and

my two brothers, I am so lucky to have you all.

iv

Table of Contents

Chapter 1 ...1

Introduction ...1

1.1 Problems ..1

1.1.1 Network Anomaly Detection ..1

1.1.1.2 KDDCup99 Dataset (Intrusion Detection Learning) ...4

Previous works ..5

1.1.2 Credit Card Fraud Detection ...9

1.1.3 TalkingData AdTracking Fraud Detection .. 11

Previous works .. 12

1.2 Objectives .. 13

1.3 Main Contributions .. 14

1.4 Structure .. 15

Chapter 2 ... 16

Methods ... 16

2.1 Stastical Methods ... 16

2.1.1 Mahalanobis distance .. 16

2.2 Classification Based Methods .. 17

2.2.1 k-NN classification algorithm ... 17

2.2.2 Logistic Regression .. 18

2.2.3 Decision Tree (i.e. J48 in Weka) ... 19

2.2.4 Naive Bayes ... 20

2.2.5 SVM ... 21

2.2.6 Bagging .. 21

2.2.7 Random Forest ... 22

2.2.8 AdaboostM1 ... 23

2.2.9 Stacking Ensemble of Classifiers on the whole data .. 24

2.2.9.1 Stacking Ensemble 1 .. 24

v

2.2.9.2 Stacking Ensemble 2 .. 24

2.2.10 Stacking Ensemble of Classifiers on the under-sampled data 25

2.2.10.1 Stacking Ensemble 3 .. 25

2.2.10.2 Stacking Ensemble 4 .. 25

2.2.10.3 Stacking Ensemble 5 .. 25

2.2.10.4 Stacking Ensemble 6 .. 25

2.3 Feature selection .. 26

2.4 Feature Normalization .. 26

2.5 Software... 27

2.5.1 Matlab .. 27

2.5.2 WEKA.. 27

2.5.3 Scikit Learn .. 27

Chapter 3 ... 29

3.1 Accuracy Metrics ... 29

3.1.1 Confusion Matrix .. 29

3.1.2 Overall Accuracy .. 29

3.1.3 Precision ... 30

3.1.4 Recall ... 30

3.1.5 Specificity .. 30

3.1.6 F-measure ... 30

3.1.7 AUC ... 30

3.1.8 MCC .. 31

3.2 Results on Credit Card Fraud Dataset ... 31

3.3 Results on KDD cup99 Dataset .. 34

3.3.1 Postprocessing and Validation .. 34

3.4.1 Mahalanobis distance .. 39

3.4.2 Chi-square .. 39

3.4.3 Simple Classifiers ... 40

3.4.4 Stacking ensemble of classifiers .. 42

3.4.5 Feature Normalization .. 43

vi

3.4.6 Results and Evaluation .. 43

3.4.7 Feature Selection ... 44

3.5 Results on TalkingData Adtrack Fraud Detection Dataset 44

Chapter 4 ... 46

Conclusion ... 46

Bibliography .. 47

vii

List of Figures

Figure 1.1.1.2.1: Results on KDD99 using 100 clusters [16]. 77

FIGURE 2.2.1.1: K-NEAREST NEIGHBOR ALGORITHM [42]. ... 18

FIGURE 2.2.2.1 LOGISTIC REGRESSION [43]... 19

FIGURE 2.2.3.1 DECISION TREE [35] .. 20

FIGURE 2.2.5.1 SUPPORT VECTOR MACHINE CLASSIFIER [45] .. 21

FIGURE 2.2.6.1 BAGGING ALGORITHM [46] ... 22

FIGURE 2.2.7.1 RANDOM FOREST [49] .. 23

FIGURE 2.2.8.1: ADABOOST [50] ... 24

viii

List of Tables

Table 1.1.1.1.1: Labris network anomaly detection dataset ..4

Table 1.1.2.1: Credit card fraud detection dataset ... 11

Table 1.1.2.1.1: Labris network anomaly detection dataset ..4

Table 1.1.3.1:Different attributes of the dataset.. 12

TABLE 3.2.1: THE ACCURACY MEASURES OF CLASSIFIERS FOR CREDIT CARD FRAUD

DETECTION. A 10-FOLD CROSS-VALIDATION IS PERFORMED ON THE TRAIN SET. 32

TABLE 3.2.2: THE ACCURACY MEASURES OF STACKING ENSEMBLES 1 AND 6 FOR CREDIT

CARD FRAUD DETECTION. LOGISTIC REGRESSION IS EMPLOYED AS THE META

LEARNER WITH AN L2 NORM REGULARIZER AND A NEWTON-CG SOLVER. A 10-FOLD

CROSS-VALIDATION IS PERFORMED ON THE TRAIN SET. ... 32

TABLE 3.4.3.1: BINARY CLASSIFICATION ACCURACY OF SIMPLE CLASSIFIERS. A 10-FOLD

CROSS-VALIDATION IS PERFORMED ON LABRIS TRAIN SET. 41

ix

This thesis is dedicated to my family

1

Chapter 1

Introduction

As human population continues to grow and technology gets ubiquitous and

more affordable, so does data about them. Ranging from business to many other fields

including entertainment and medicine there is a need to analyze this large amounts of

data to understand the needs and demands of people and improve the services provided.

Furthermore, the huge growth of computer networks and their accessibility via variety

of devices including PCs and mobile devices have increased the number of applications

running on computer network platforms especially the internet. As a result of this the

security of computer networks has gained considerable importance. According to

Landwehr et al. [1], all computer systems are victims of security vulnerabilites which

are both economically costly and technically difficult to resolve by the companies that

produce computer systems. source of vulnerability is the fraudulent actions such as

fraudulent ad clicks that Another might reduce profits and cause unnecessary load on

the network. To address these issues, in this thesis, three anomaly detection problems

are studied: network anomaly detection, credit card fraud detection and ad tracking

fraud detection.

1.1 Problems

1.1.1 Network Anomaly Detection

The first problem we studied is network anomaly detection for which we

developed an Intrusion Detection System (IDS) that detects anomalies and attacks in a

computer network. Computer intrusion is a collection of activities or actions that violate

the security of a computer system [2]. The IDS typically contains a predictive model

(i.e. a classifier) that has the capability of differentiating attacks (i.e. anomalies

oroutliers) from normal samples. It can be limited to learn a two-class problem or a

2

multi-class problem as in KDDCup99 dataset. The two-class problem is based on

discriminating attacks from normal patterns while the multi-class problem deals with

the classification of different types of attacks that occur in a network and those that do

not pose any threat to the network (i.e. normal packets). In all cases, the goal is to

develop a classifier that will make accurate predictions on unseen instances (e.g. test

data).

Anomaly detection is an essential problem in intrusion detection systems. An

anomaly is an object (an instance or an example) that deviates significantly from the

rest of the objects, as if it were generated by a different distribution [3]. In network

anomaly detection we try to find an object(s) (network connection(s)) that deviates from

normal connection behaviour. These anomalies on a network are also called as attacks

[4], which is defined as a series of operations that endagers and risks the security of a

system and an anomaly is an event or an occurance that raises suspicion from the

perspective of security. A network anomaly detection system can be classified as

anomaly-based or signature-based. Based on the way these two categories view attack

and anomaly, each has its own advantages and disadvantages. According to Jyothsna et

al. [5], a signature-based system looks for signatures or patterns of provided data and an

anomaly-based system tries to estimate or learn the normal characteristics of the system

and generates an anomaly warning sign whenever the deviation between a new

observed instance and the normal behavior surpasses a chosen threshold. An anomaly-

based system may also raise a warning when the difference between the new observed

instance and the expected one falls below a given limit. A signature-based system can

detect specified and well-known attacks well but does not have the ability to detect new

and unfamiliar intrusions. On the other hand, an anomaly-based detection system can

detect previous unseen attacks and intrusions but such systems the observed number of

false positives (i.e events classified as attacks while they are not) is higher than in

signature-based systems. In the litereature, the more explored category is the anomaly-

based detection system.

 Different mechanisms and approaches are developed for the problem of network

anomaly detection including: stastical approaches, knowledge-based systems whereby a

human expert on the field analizes each individual connection to determine if it is an

attack or not, and machine learning approaches, which include Bayesian networks [6],

genetic algorithms [7], neural networks [8], Markov models, decision trees [9],

3

Adaboost [10], Multiboost [11], Bagging [3], support vector machines (SVM) [8] and

other supervised and unsupervised algorithms. According to Chandola et al. [12], many

previous research does not employ similarity and distance meausures to determine the

difference between a target (a newly observed instance) and the known type. According

to the authors, more future research will explore this area even further to improve

anomaly detection systems. The distance measure suggested are such as Kullback-

Leibler distance to rank features, the entropy measure, and measures for similarity such

as the cosine similarity.

1.1.1.1 Labris Dataset

The first network anomaly detection data set we used in this thesis contains

binary classes, in which 90% of the data set is labeled as normal and the remaining 10%

as attack. There is also a second class attribute called Attack Type, which is used for

multi-class classification. In total, there are 42 attributes and 9 attack types (i.e. classes

including the normal). The types of classes are: (1) Syn ack ddos, a distributed Denial of

Service attack that exploits normal TCP in the form of a three way handshake, (2) icmp

ddos, also known as ping flood, which tries to put servers out of service by request for

its response more than the ability of the server, (3) rst ack ddos, also known as three-

way handshake reset attack, which is used for sending a reseting bit ag to stop a TCP

connection, (4) rst ddos, which is also a reset attack but with no handshake, (5) fin ddos,

which sends a massive amount of TCP packets with fin bit enabled which makes the

server busy dropping the incoming packets, (6) ack ddos, which is a distributed Denial

of Service with three way handshake, (7) http get, which is introduced for attacking web

servers, (8) syn ddos, and (9) normal, which is not considered an attack.

Class No.of

Instances

Instances in

Percentage

Normal 62124 91%

Syn_ack_ddos 562 0.80%

Icmp_ddos 17 0.024%

Rst_ack_ddos 1384 2%

Rst_ddos 920 1.46%

4

fin_ddos 9 0.131%

ack_ddos 404 0.641%

http_get 1477 2.16%

Syn_ddos 1525 2.17%

Table 1.1.1.1.1: Labris network anomaly detection dataset

1.1.1.2 KDDCup99 Dataset (Intrusion Detection Learning)

Intrusion is defined as an intentional illegal trial to access data, manipulate it, or

compromise a computer system’s veracity and or make its data unusable [13]. An

intruder may be from outside (i.e. a hacker) and an insider who knows the how the

system is designed (e.g. IT manager and system administrator). Sometimes, a company

may hire a penetration testing expert to behave like an intruder so that he/she can point

out and fix the holes (bugs and errors in the system) before a person with malicious

intent attempts to compromise it. Computer intrusion can be categorized into two types:

misuse intrusions and anomaly intrusions. Misuse intrusions are attacks on known weak

points of a computer system. Anomaly intrusions are based on observations of instances

that deviate from normal usage patterns. These include trying to break-in, hidden

attacks disguised as normal usages, denial of service, and malicious use of the system.

In KDD99 cup competition, the challenge was to develop a network intrusion

detection system (IDS), which is a classifier that can differentiate malicious connections

from the normal legitimate ones. A connection is a sequence of TCP packets starting

and ending at some well defined times, between which data flows to and from a source

IP address to a target IP address under some well defined protocol. The KDDCup99

dataset is the benchmark that contains a wide range of attacks that mimic real world

intrusions in an imitated real military network environment [14]. In 1998, MIT Lincoln

Lab prepared and managed the experiment to be able to simulate a wide range of

intrusion types and study them and build machine learning models that could learn and

protect the systems and environments from real world threats. Lincoln Labs set up an

environment for nine weeks to gather raw TCP connections for a local area network

(LAN). LAN was set to mimic a real world US Air Force LAN. The labs treated the set

up LAN as if it were a true Air Force environment but they perpertrated it with different

5

attacks imaginable that a hacker may conduct. The labs gathered about four gigabytes of

data for model training from the first seven weeks. The training set was later processed

into about five million connection records. The remaining two weeks were taken as test

data which produced about two million connection records.

The KDD training dataset used by Hormozi et al. [15] contains 10% of the whole

dataset which is 494,020 single connection instances each having 41 features labelled as

normal or attack and if it is an attack what kind of attack it is. A connection that

deviates from the normal pattern is considered as an attack or a malicious connection

[15]. A 10% portion is chosen due to memory sensitive algorithms, approximately 80%

of which contains attacks and the remaining 20% are normal connections.

Each connection is labeled as either normal, or as an attack, with exactly one

specific attack type. In this experiment every connection record was of size 100 bytes.

Furthermore, the recorded attacks were of 18 types which were categorized into four

categories, namely: DOS: denial-of-service, e.g. syn ood; R2L: an illegal attempt of

accessing from a remote computer, e.g. password; U2R: an illegal access to a systems

administator (or root) privileges, e.g., different types of "buffer overflow" attacks;

probing: surveillance and other probing, e.g., penetration testing through port scanning.

For a test data to be effective for testing it is essential that it comes from or generated by

a different probability distribution. There may be some attacks not in the train set. This

way the experiment tries to implement a real world scenario. Several intrusion experts

claim that most not yet seen attacks are forms and modifications of known and already

seen attacks and the known patterns of known attacks can be sufficient to detect novel

variants. The datasets features 24 attack types in the training set, and there is an

additional 14 new unseen attacks in the test set alone not included in the training set.

The attack types of the dataset are listed in Table 2.1.1.2.1.

Previous works

The authors, Salazar et al. [16], have conducted analysis and experiments of

attacks on the 10% portion of KDDCup 99 training set using Kmeans clustering

technique. They clustered the training set, which contains of 494,019 instances and

6

prepared 1000 clusters [16]. The clustering is used to determine and rank protocols

according to number of attacks.

The results are as follows:

Table 1.1.1.2.1: Number of Attacks Before and After Clustering [16]

7

Figure 1.1.1.2.1: Results on KDD99 using 100 clusters [16].

In the paper by Pang-Ning Tan et al. [17] first redudant records are removed

which may cause the learning algorithms to be inclined and favour the more frequent

records. Their solution was to first remove the redudant records and their results are

shown in Figure 1.1.2.2.1. J. Kevric et al. [18] achieved an accuracy of 89.24% with

hybrid of Random Tree and NB tree [19] on KDD99 cup test set. In another study by

Jaswal et al. [20], the authors uses a hybrid technique by using K means algorithm to

remove noise in the data set and remove duplicates and form an input for SVM. The

authors claim this hybrid approach was able to detect all the attacks in their database

and perfomed better in KDDCup 99 in which 22 attacks were detected compared to the

benchmark of 11 attacks from previous research works. KDDTest is the original

KDDCup test set. After removing redundancy, Tavallaee et al [21] generated

KDDTest+ and KDDTrain+ which include 22,544 and 125,973 instances, respectively.

Recent works with deep learning methods

8

Some of the previous works used deep learning techniques on the KDDCup99

data sets. The following paragraph summarize the methods used by different authors

and their reported accuracies. Aygun et al. [22] used two hybrid approaches. One was to

use an autoencoder in which it has one input layer and one or more hidden layers (the

authors used one hidden layer for this experiment) and one output layer. The number of

input units and output units are the same but the number of hidden units is less than the

number of units in input and output layers. The second hybrid approach used is called

denoising autoencoder where the input is more distorted than in the normal autoencoder

hybrid technique. The authors started with data preprocessing by taking 38 numeric

features of the data set and converting them to binary values by using 1-N encoding

approach. The autoencoders obtained an accuracy of 88.28% on KDDTest+ and for the

denoising autoencoder the accuracy was 88.65%. According to Vinayakumar et al. [23],

the performance of SVM on the binary classification (i.e a connection is normal or an

attack) was better than their multi layer perceptron (MLP) and deep belief network

(DBN). However, in multi-class classification problem their DBN setting with 4 layers

perfomed the best. Their DBN included 350 neurons in each layer and the training was

run till 1000 epochs with a fixed learning rate of 0.1. When the authors used 500

epochs, most of the connections were still classified as normal even though some were

attacks. The accuracy of DBN4 was 71.5%, with a true positive rate of 99.99% and a

false positive rate of 0.3% for normal connections and a true positive rate 92.8% and

false positive rate of 5.9% on DOS connections. When they increased the number of

layers to 8, the accuracy and the true positive rate increased but false positive rate

increased too. Furthemore, when the number of layers was increased to 12 layers the

accuracy decreased to 38.1%. Shone et al. [24] used a technique called non-symmetric

deep autoenconder (NDAE), which is a novel approach proposed by the authors. NDAE

differs from the conventional auto encoders by not having an encoder-decoder paradigm

only multi hidden layers of encoders (i.e. non symmetric) to facilitate unsupervised

feature selection and by removing a human expert control which can be prone to errors.

The authors claim NDAE reduces both computational and time overheads with little

cost on accuracy. The authors went a step further by stacking many NDAEs which

allows a machine to learn complex relationships among features. The NDAE is also a

powerful feature extractor algorithm. However, when the stacking of NDAEs was

9

trained with a softmax layer as in other deep learning algorithms, the results were worse

than the results of shallow classifiers such as SVM, RF, and k-NN. Therefore, the

authors replaced the softmax layer with RF because RF tend to do well with intrusion

detection problems. The stacking NDAEs included two layers of NDAEs with 3 hidden

layers on each NDAE. The accuracy was obtained as 99.5999%. Nguyen Thanh et al

[25] implemented DBN with stacked AEs and stacked restricted Boltzmann machines

(RBM) [26] during the pre-training phase of deep learning. Their approach has been

able to detect intrusions with a low error rate of less than 2%. The architecture of

stacked AEs contained one hidden layer with an output layer but each hidden layer is

connected to the input of the next AE and also to its own output and one of the hidden

layers of an MLP. For stacked RBMs, there are no output layers but each hidden layer

of an RBM is connected to the input layer of the next RBM and to a hidden layer of an

MLP.

1.1.2 Credit Card Fraud Detection

Credit card fraud is a misuse of a credit card that includes making a transaction

by swapping a stolen credit card, by fake cards, by copying and then faking of the card

information, by collection of personal information, by phishing (malicious websites) or

by employees who work in credit card companies [15]. An essential problem in credit

card transactions is the detection of fraud transactions. Fraud detection in credit card

financial activities is a huge problem impacting large financial companies and causing

cuts of profit margins in billions of dollars yearly [27]. In European Union alone,

according to European Central Bank (ECB), during 2010 the cost and losses caused by

fraud reached a monentary value of 1.26 billion in Euro Payment Area alone [28]. Fraud

detection is defined as the detection of illegal activites that occur in commercial and

financial organizations such as banks, credit card providing companies such American

Experess, insurance agencies such as SGK, stores, and cell phone companies, etc [12].

According to Yufeng Kou et al. [13], credit card fraud can be divided into two

main categories: online fraud and offline fraud. Offline fraud is defined as the fraud

committed by using a stolen or lost card at a store or a call center. This kind of fraud

can be dealt by the institution issuing the card to revoke the card before it is used by a

fraudster. Online fraud is committed through transactions done on the web (e.g. online

10

shopping). In this kind of fraud only the card’s information is demanded and client’s

signature is not needed or required.

 A fraudster may operate through a website which looks like a legitimate

website, on which he promotes products and services and sells goods at lower prices

than the actual market prices. The uninformed purchaser provides his/her credit card

information and makes a purchase. The fraudster then uses the obtained information to

conduct his personal transactions [29]. Credit cards are among the best targets of frauds,

since it cost little to steal a huge amount of money and in a little amount of time without

taking too much risk. This is because most of the time it takes days or even weeks to

detect credit card fraud crimes if they can be detected at all [15]. In real world

applications, transactions are scanned by automatic tools, which may approve financial

transactions as legitimate, send the most suspicious financial transactions to experts or

leaves them unclassified until a client comes to complain in given time frame, in which

case those transactions are labeled frauds otherwise they are labeled as legitimate [30].

In the past, financial institutes used to send SMS to users for every transaction held.

However, this method increased operational costs due to the fact that each SMS might

cost up to two dollar cents [29]. To reduce the unnecessary operational expenditures, the

financial institutes decided to start reporting transactions of 50 dollars and above. As a

result, many clients lost money and started migrating to competitors, which caused

significant revenue loss for the institutes.

The aim of credit card fraud detection is to automatically and efficiently detect

malicious use of a credit card. One approach is to use machine learning classifiers [28].

The challenge in this problem is the unbalanced data (genuine transactions by far

outnumber fraud transactions) [31]. In this thesis, we worked on the credit card fraud

detection dataset available in Kaggle [32]. The data set contains 30 attributes, including

the time (in seconds) when the transaction took place, the amount of the transactions (in

euros) and 28 attributes labeled as v1 to v28, which were obtained by applying PCA

transformation to the original set of features [33] [34]. The PCA is performed in order

to hide the sensitive information of the card holders due to legal and moral reasons

because credit card detection is considered highly confidential and most of the time data

related to card holders is not disclosed to public [35]. In our experiments, we removed

the time attribute because we realized that it does not contribute anything to the

classification. The credit card fraud detection data set is highly unbalanced: out of

11

284,807 transactions the positive class (frauds) account for 492 transactions, which

constitutes approximately 0.172% of the transactions (Table 1.1.2.1).

 Class No. of instances Percentage

Normal 284315 99.828%

Fraud 492 0.172%

Table 2.1.2.1: Credit card fraud detection dataset

1.1.3 TalkingData AdTracking Fraud Detection

TalkingData is one of the largest companies in China that provides independent

big data services. The company features over 70% of nation’s mobile devices. The

company receives upto three billion clicks per day, of which 90% can turnout to be

fraudulent. The company’s method to combat fraud is to check users’ profiles and flag

the IP addresses that have many clicks per day without any apps installed as frauds.

Using the acquired information, the company aims to generate an IP blacklist and

device blacklist. To achieve this goal, TalkingData has launched a competition recently

in Kaggle [4]. In this competition, the objective was to predict whether a user will

download an app after clicking a mobile app advertisement. The attributes of the dataset

are shown in the table below:

Attribute name Description Type

Ip IP address of device. Categorical

App application identifier for marketing. Categorical

Device device type id of client’s mobile device

(e.g., iphone 7, iphone 8, huawei mate 7,

Samsung galaxy s8 etc.)

Categorical

Os Operating system version id of the

mobile device used

Categorical

Channel channel id of mobile ad publisher Categorical

https://www.talkingdata.com/

12

click_time timestamp of click (in UTC) Time

attributed_time if user download the app for after

clicking an ad, this is the time of the app

download

Time

is_attributed The class attribute to be predicted if the

user has downloaded the app or not

Class

Table 1.1.3.1: Different attributes of the dataset

Previous works

When we were running the experiments on our workstation, it took more than

three weeks to run and the memory consumption was increasing. Therefore we had to

stop the experiments. However, we have been able to get results from the winner of the

competition who claims after undersampling he still had to use 100 GB of memory. The

following is what was done by the winning team.

Their solution depends on negative under-sampling, which means they use all

positive examples (i.e. is attributed == 1) and down-sampled negative examples on

model training. They down-sampled negative examples such that their size became

equal to the number of positive ones. It discarded about 99.8% of negative examples,

but they didn't observe deterioration in performance when they tested with their initial

features. Moreover, they stated that they could get better performance when creating a

submission by bagging five predictors trained on five sampled datasets created from

different random seeds. This technique enabled them to use hundreds of features while

keeping LGB training time less than 30 minutes. To extract features, first, they started

with features made available in Kaggle’s Kernels section. They did feature engineerings

using all the data examples instead of the down-sampled ones. The Five raw categorical

features (ip, os, app, channel, device), time categorical features (day, hour) and some

count features. Then, they created a bunch of features in a brute-force way. For each

combination of five raw categorical features (ip, os, app, channel, and device), they

created the following click series-based feature sets (i.e., each feature set consists of 31

(25 - 1 features): click count within next one/six hours, forward/backward click time

delta, and average attributed ratio of past clicks they didn't do feature selection. They

just added all of them to the model. At that point, the LGB model's score was 0.9808.

13

Next, they tried categorical feature embedding by using LDA/NMF/LSA. Here

is the pseudo code to compute latent Dirichlet allocation (LDA) topics of IPs related to

app [23]. This ended up with 100 new features. They also computed similar features

using NMF and PCA, in total 300 new features. 0.9821 with a single LGB. After that,

they removed all raw categorical features except app since they supposed embedding

features cover information available from them. Surprisingly, this minor change made

the public LB score jump up from 0.9821 to 0.9828. Besides features mentioned here,

they created higher dimensional LDA features and features that try to address the

duplicate sample problem. Those features somewhat improve their public LB score.

 For the models, they used day 7 and 8 for training and day 9 for validation, and

chose the best number of iterations of LGB. Then, they trained a model on day 7, 8, and

9 with the obtained number of iterations for creating submission. After they finished

feature engineering, owlight's five-bagged LGB model reached 0.98333 on public LB

(and 0.98420 on private LB), which was trained on 646 features. The memory usage for

training this model was around 100 GB. They implemented a simple three layer NN

model as some kernels do. It scored worse than LGB models by 0.0013 points with

0.005 downsampling rate at first. The final three-bagged NN model scored 0.98258 on

public LB. They made their final submission with a rank-based weighted averaging. It is

composed of seven bagged LGB models and a single bagged NN. It scored 0.98343 on

public LB [36].

1.2 Objectives

The objective of this thesis is to increase prediction accuracy on the anomaly

detection problems including network anomaly detection, credit card fraud detection,

and ad tracking fraud detection. All of the above mentioned problems contain a highly

unbalanced classes, in which the number of samples belonging normal class is

comparatively much larger than the number of samples having abnormal class. We use

the F-measure (or F1-score) to optimize hyper-parameters of the models and to compare

the performance of different algorithms on test sets rather than looking at the overall

accuracy, which could be misleading. However, for some competitions such as Talking-

Data Adtracking Dataset in kaggle.com area under the ROC curve (AUROC or AUC) is

considered as the metric to score and rank the submissions made by the participants.

14

Therefore we also provide results on a range of accuracy metrics including AUC,

whenever possible.

1.3 Main Contributions

All above mentioned problems can be viewed as machine learning problems

because they have a data set, which can be used to train a learning model. Also, they all

fall under the classification category for instance, a transaction can be classified as

normal or fraud transaction. In the case of network anomaly detection, a connection can

be classified as a normal connection or an attack.

Most of the previous works in the literature on anomalies and outlier detection

apply feature selection methods on datasets and then use individual classifiers or a

clustering algorithm such as K-means [37] and its variations to predict a correct class of

outliers and anomalies. Others have also tried to undersample the number of examples

from the normal class so that they can be equal to the number of instances in the outlier

class. There are no papers which have explored stacking ensemble of classifiers

technique. Most have just used individual classifiers to detect outliers on the datasets

studied in this thesis.

As the main contribution of this thesis, various stacking ensembles are

developed and optimized to obtain the best F-measure for the aforementioned anomaly

detection problems. For example, the best stacking ensemble on credit card dataset

contained Naïve Bayes, IBK, Random Forest, and J48 as the base learners and a logistic

regression as the meta-learner with an L2-norm regularization employing Newton-CG

solver. We also applied the undersampling technique to equate the proportion of

negative and positive examples, feature selection, feature column normalization and

implemented different classification algorithms for comparison. In KDDCup99 dataset,

we improved the overall F-measure by more than 30% as compared to the literature. In

Labris dataset, the improvement in F-measure was 0.5-0.6% both on binary and multi-

class classificiation problems as compared to the literature. In credit card fraud

detection, we improved the F-measure by 5% with respect to the results posted on

Kaggle’s Kernel section. The best accuracy is obtained using the under-sampled dataset.

Other classifiers which are considered as ensembles of weak classifiers such as

Adaboost and Random Forest are also optimized in this thesis by performing 10-cross

validation experiments on train set. For Adaboost, we have used both decision trees and

15

decision stump. We have also included changing number of random seeds to obtain

higher metrics measures.

In addition to developing and optimizing ensembles we also implemented

statistical techniques proposed in the literature for outlier detection such as Mahalanobis

distance and 𝜒2-statistic measures.

1.4 Structure

The rest of the thesis is organized as follows:

Chapter 2

Chapter two describes the algorithms and methods developed for credit card fraud

detection and hyper-parameter optimization.

Chapter 3

Chapter three explains the results from the experiements conducted and comparisons to

the previous works in the literature.

Chapter 4

Chapter four concentrates on conclusion and future works by providing what can be

improved in terms of feature engineering and possibilities of employing deep learning

methods as more data is available.

16

Chapter 2

Methods

2.1 Stastical Methods

2.1.1 Mahalanobis distance

Mahalanobis distance is the generalization of how many standard deviations away is a

point from the mean of a certain distribution [38]. The distance is small if the point is

within the mean. The Mahalanobis distance can be computed as

𝑴 = (𝑶 − ō)𝑻𝑺−𝟏(𝑶 − ō) (2.1.1.1)

where o is the feature vector (i.e. a data sample) in test (or validation) data, ō is

the mean of the feature vectors in train data labeled as "normal", 𝑆−1 is the inverse of

the scatter matrix (i.e. covariance matrix) for samples labeled as "normal" in train data.

In the formula below, 𝑂 and ō are column vectors. The scatter matrix can be computed

as

𝑺 =
𝟏

𝑵
 ∑ (𝑶𝒏 − ō)𝑻(𝑶𝒏 − ō)𝑵

𝒏=𝟏 (2.1.1.2)

where 𝑂𝑛 is the 𝑛𝑡ℎ training data, ō the mean of the feature vectors in “normal"

labeled train data, and 𝑁 is the number of samples in train data [39]. The Mahalanobis

distance can be used to find outliers by measuring the distance between a data sample

and a distribution (or average of data samples) in such a way that when the distance is

greater than a threshold the data sample can be categorized as an outlier. Therefore one

can classify a test (or validation) data object 𝑜 as an outlier if

17

𝑴 > 𝝉𝑴 (2.1.13)

where 𝜏𝑀 is a threshold parameter [40]. Mahalanobis distances are computed

between data samples in validation set and samples labeled as “normal" in train set of

Labris data for different values of O (at least 10 different values). Then we used this

threshold to detect outliers using Mahalanobis distance on the test set and computed the

F-measure, overall accuracy, sensitivity, specificity and precision [3].

2.1.2 𝟀𝟐 -statistic

The 𝝌𝟐-statistic is used to measure whether there is a significant difference between

measured frequency and the expected frequency. It aims to measure if a certain point

falls within the expected distance and be classified as normal or otherwise be classified

as an outlier and it is computed as

𝝌𝟐 = ∑
(𝑶𝒊 − 𝑬𝒊)𝟐

𝑬𝒊

𝑫
𝒊=𝟏 (2.1.2.1)

where 𝑂𝑖 is the 𝑖𝑡ℎ feature value of the data object 𝑂 (i.e. sample), 𝐸𝑖 is the mean

of the 𝑖𝑡ℎ dimension among all samples labeled as “normal” in train set, 𝐷 is the number

of dimensions in each feature vector [3]. A data sample is classified as an outlier if its

𝜒2-statistic is greater than a threshold. 𝝌𝟐 -statistic is computed for validation set of

Labris data taking different values for X (at least 10 values). We found the optimum T

value that gives the best F-measure on this set. Then use the optimum threshold to

detect outliers using 𝜒2-statistic on test set and compute the F-measure, overall

accuracy, sensitivity, specificity and precision [3].

2.2 Classification Based Methods

2.2.1 k-NN classification algorithm

The k-nearest neighbor method computes the distance between the feature vector

of the test sample (whose class is unknown) and the feature vectors of the train set

samples [41]. It then makes a decision by combining votes from the k samples of the

train set that are closest to the test sample. For distance functions, Euclidean, Manhattan

18

or Minkowski measures can be used [3]. An example that shows how k-nearest

neighbor operates is given in Figure 2.2.1.1.

Figure 2.2.1.1: k-Nearest Neighbor algorithm [42].

We optimized the number of nearest neighbors (i.e. the k parameter) by

performing 10-fold cross-validation experiments on train sets, in which we maximized

the F-measure. Then we trained the models using these optimums and computed

predictions on test data.

2.2.2 Logistic Regression

Logistic regression is a linear classifier, in which the decision boundary is a

hyperplane. It may be attractive due to its short training times for problems that contain

many numeric features and when the samples that belong to different classes can be

separated by a hyperplane with high accuracy. Logistic regression can be applied both

to binary and multi-class classification problems [8]. An example showing how logistiic

regression works is provided in the figure below.

19

Figure 2.2.2.1 Logistic Regression [43]

In our experiments with logistic regression we optimized the ridge coefficient in

the log-likelihood by performing a 10-fold cross-validation experiments on train sets

maximizing the F-measure. Then we trained the models using these optimum values and

computed predictions on test data.

2.2.3 Decision Tree (i.e. J48 in Weka)

A decision tree is a supervised learning method, which starts from the root node,

performing a test on an attribute at each node and makes a classification decision when

it reaches to a leaf node [9]. An example of a decision tree is given in Figure 2.2.3.1. In

this thesis, we implemented the decision tree model J48 in WEKA and optimized the

number of seeds by performing 10-fold cross-validation experiments on train sets and

maximizing the F-measure. Then using the optimum number of seeds, we trained the

model on train set and computed predictions test data.

20

Figure 2.2.3.1 Decision tree [35]

2.2.4 Naive Bayes

The Naive Bayesian classifier is based on Bayes' theorem and it is called naïve

because of its assumptions that all features in a feature vector are independent from

each other given the class which is known as class conditional independence [6]. The

algorithm is simple and works well with high dimensional input data. To explain naïve

Bayes classifier well we can imagine a two class problem with one class having more

examples than the other. Naïve Bayes believes that the new unseen example will most

likely belong to the abundant class, this belief is modeled by the a priori probably

distribution 𝑃(𝑐). The classifier uses the Bayes formula to calculate the a posteriori

distribution 𝑃(𝑐|𝑥) given the likelihood 𝑃(𝑥|𝑐), the a priori distribution 𝑃(𝑐), and the

evidence distribution 𝑃(𝑥). Naive Bayes [44] is summarized in equations 2.2.4.1 and

2.2.4.2 below. We used naïve Bayes to understand how a simple classifier performs on

the anomaly detection problems studied in this thesis. After estimating the likelihood

terms and the a priori distribution, predictions can be computed on a test example as the

particular class that maximize the posterior distribution 𝑃(𝑐|𝑥).

𝑷(𝒄|𝒙) =
𝑷(𝒙|𝒄)𝑷(𝒄)

𝑷(𝒙)
 (2.2.4.1)

𝑷(𝒄|𝒙) = 𝑷(𝒙𝟏|𝒄) × 𝑷(𝒙𝟐|𝒄) × …. × 𝑷(𝒙𝒏|𝒄) × 𝑷(𝒄) (2.2.4.2)

21

2.2.5 SVM

A support vector machine classifier separates the classes by a hyperplane after

transforming the data to a higher dimensional space. It is among the max-margin

classifiers, which find the optimum hyperplane that maximize the margin distance [8,

see chapt 7]. Figure 2.2.5.1, below shows an example in which two classes are separated

by a hyperplane. In this thesis, we employed the SVM with and RBF kernel and

optimized the C (i.e. cost) and gamma parameters. This requires finding the best C,

gamma pair that gives the highest F-measure on train set. For this purpose, we chose a

grid of C, gamma values, and performed a 10-fold cross-validation experiment for each

pair. Then we selected the particular pair that gave the best F-measure on the train set.

The following values are considered for the C parameter: 2−5, 2−3, 2−1, 21,23, …, 213,

215 and the following values for the gamma parameter: 2−15, 2−13 , ..., 2−1, 21, 23, 25.

After obtaining the best hyper-parameter combination we trained the SVM using the

optimums and computed predictions on test data.

 Figure 2.2.4.1 Support Vector Machine classifier [45]

2.2.6 Bagging

Bagging, which is the short form of bootstrap aggregating, is a meta-algorithm

which has the potential to increase the stability and accuracy of machine learning

22

algorithms. Bagging can be implemented both for regression and classification

problems. In addition, it minimizes inter class variance ameliorating the overfitting

problem. The algorithm generates different train sets from the data set with replacement

trains a different model for each of them and computes predictions on test data.

Ultimately the outputs from each learner is voted and a single output is obtained which

makes it an ensemble of classifiers [3]. The Figure 2.2.6.1 represents the bagging

algorithm.

 Figure 2.2.5.1 Bagging algorithm [46]

2.2.7 Random Forest

Random forest is a bagging variant, in which the base learners are decision trees

each trained utilizing a randomly selected subset of variables or features [47]. Random

forests are robust against overfitting and outliers. They can be used both in regression

and classification problems. Similar to bagging, the outputs of the base learners can be

combined by a voting procedure [3]. Figure 2.2.7.1 depicts how a random forest works.

23

 Figure 2.2.6.1 Random Forest [49]

In this thesis, we optimized the number of trees by performing 10-fold cross-

validation experiments on train sets maximizing the F-measure. We considered the

following values for the number of trees parameter: 10, 50, 100, 150, 200, 250, 500.

After finding the optimum number of trees we trained the random forest classifier using

the this optimum and computed predictions on test data.

2.2.8 AdaboostM1

AdaBoost is the abbreviation for "Adaptive Boosting" [10]. It is a meta

algorithm that can improve the performance by combining several weak learners.

Typically one-level desicion trees such as decision stumps are used as the base learners,

which are added to the ensemble one at a time in each iteration. In boosting, each train

sample has a weight, which represents how likely the sample will be selected in the next

iteration. Initially the weights of all the train samples are equal. After the first base

learner is trained by bootstrap sampling, predictions are computed for the train samples.

The weights of the samples that are misclassified are increased and the weights of those

that are classified correctly are decreased. The updated weights are used to form a new

bootstrap sample to train a new base learner in the next iteration. The outputs of

multiple-base learners are combined by a weighted voting approach, which uses higher

weights for accurate classifiers and lower weights for less accurate ones [3].

24

 Figure 2.2.7.1: Adaboost [50]

In this thesis, employed decision stump and decision tree as the base learners of

Adaboost. We optimized the number of seeds parameter by performing a 10-fold cross-

validation experiment on train sets maximizing the F-measure with different number of

seeds. We considered different number of seeds included 1, 2, 10, 15, 20, 30 seeds and

different. Then using this optimum, we generated predictions on test data.

2.2.9 Stacking Ensemble of Classifiers on the whole

data

After finding the optimum hyper-parameters for the individual classifiers on the

train sets we combined them as base classifiers of the stacking ensemble and chose one

of them as the meta learner.

2.2.9.1 Stacking Ensemble 1

This method employs k-NN, J48 which is the Java version of C4.5 [50], and

naïve Bayes as the base learners and logistic regression as the meta learner.

2.2.9.2 Stacking Ensemble 2

This version employs the naive Bayes and k-NN (i.e. IBK in WEKA) as the base

learners and logistic regression as the meta learner.

25

2.2.10 Stacking Ensemble of Classifiers on the under-

sampled data

Due to high imbalance nature of our datasets (i.e our minority class is less than

1%) we applied under-sampling to balance the proportion of positive and negative

examples.

2.2.10.1 Stacking Ensemble 3

This method employs naive Bayes, k-NN, J48, and random forest as the base

learners and logistic regression as the meta learner.

2.2.10.2 Stacking Ensemble 4

This ensemble uses naive Bayes, k-NN, J48, and logistic regression as the base

learners and random forest as the meta learner.

2.2.10.3 Stacking Ensemble 5

The fifth stacking ensemble combines naive Bayes [29], k-NN, random forest,

and logistic regression using J48 as the meta classifier.

2.2.10.4 Stacking Ensemble 6

The last stacking ensemble uses naive Bayes [29], k-NN, random forest, and J48

as the base learners and logistic regression as the meta learner. This ensemble is

implemented by scikit-learn employing various regularization techniques for logistic

regression including L1 norm, L2 norm with Newton-CG solver, L2 norm with SAG,

L2 norm with SAGA, L2 norm with LBFGS. The regularization coefficient C of logistic

regression is optimized by performing 10-fold cross-validation experiments on train

sets. The following values are considered for the C parameter: 0.000001, 0.00001,

0.0001, 0.001, 0.01,0.1, 1, 10, 100, 1000, 10000,100000.

26

2.3 Feature selection

 Reducing the dimensionality of the data by removing unwanted features has the

potential of improving the accuracy of machine learning algorithms. It also makes them

run faster. Furthermore, dimensionality reduction produces a more compact and more

understandable representation of the most relevant features.

 There are two techniques used in feature selection, namely: the filter technique

and the wrapper technique. Filter technique uses a metric to rank the features, which can

be combined with a search algorithm to find the best feature subset. Wrapper technique

uses a machine learning algorithm to produce a subset of desired features which will

ultimately be used for learning. Different search techniques can be used to find the

optimum feature subset such as forward selection, backward selection, and bidirectional

selection (i.e. a combination of forward and backward selection). We used both filter

and wrapper approaches to select the top five features and checked if the results

improve compared to the case that uses all the features. In WEKA, we use

WrapperSubsetEval attribute evaluator which employs by default a 5-fold cross

validation. Furthermore, WEKA has OneRAttributeEval which is based on OneR

classifier, InfoGainAttributeEval which is based on C4.5 classifier and information

gain, GainRatioAttributeEval which uses gain ratio,

SymmetricalUncertaintyAttributeEval, ChiSquaredAttributeEval which computes the χ2

statistic of each feature with respect to the class, ReliefFAttributeEval which is

example-based feature evaluator, SVMAttributeval which uses SVM to decide the value

of features, PrincipalComponents which uses principal components transform and

choose the largest eigenvectors, and LatentSemanticAnalysis that performs latent

semantic analysis and transformation. For CfsSubsetEval, an entropy metric is used

called symmetric uncertainty. CfsSbusetEval employs te correlation metric to assess the

inter-redudancy of the features.

2.4 Feature Normalization

We normalized features to interval [0,1]. We used

weka.filters.unsupervised.attribute.Discretize -B 10 -M -1.0 -R first-last –precision filter

27

in WEKA for this purpose. Normalization can use equal bining approach or equal

frequency approach to normalize features. Also, entropy based normalization is widely

used in the literature [51, see chapt. 7].

2.5 Software

2.5.1 Matlab

MATLAB is a non-open source programming language developed by

MathWorks. The name MATLAB is short form for matrix laboratory, which is a multi-

model environment that can solve a wide range of numerical problems that include

matrix computations. MATLAB contains libraries for machine learning, image

processing, computer vision, and data visualization as well as interfaces for programs

coded in other languages (e.g. C++). MATLAB also enables defining new user

interfaces [53].

2.5.2 WEKA

Weka stands for Waikato Environment for Knowledge Analysis developed at the

University of Waikato in New Zealand. It is an open source software written in Java and

licensed under the GNU General Public License. Weka contains hundreds of machine

learning algorithms for a wide range of tasks including pre-processing, regression,

classification, clustering, association rule mining and visualization [21]. It also allows

developers around the world to be able to develop and share new machine learning

algorithms.

2.5.3 Scikit Learn

Scikit-learn (formerly known as scikits.learn) [53] is an open source software

machine learning library for the Python programming language [54]. It contains a

variety of regression, clustering, and classification algorithms including ensemble

methods such as random forest, individual classifiers such as support vector machines,

28

gradient boosting, unsupervised algorithms such as DBSCAN and k-means. Scikit-learn

is made to work together with Python’s numerical and scientific libraries such as Scipy

and NumPy.

29

Chapter 3

Results

To assess the accuracy, different datasets have been prepared. The next section

explains the accuracy measures used in this thesis.

3.1 Accuracy Metrics

To evaluate the accuracy of classifiers, the following metrics have been

computed: confusion matrix, overall accuracy, precision, recall, specificity, F-measure,

AUC, and Matthew's correlation coefficient (MCC). Due to high imbalance of the

datasets used, F-measure is used to find the optimum hyper-parameters of the models.

The definitons of each metric are given below.

3.1.1 Confusion Matrix

Confusion matrix, which is also known as an error matrix, is a table used to

compute the accuracy of a classification algorithm. Figure below summarizes the

contents of a confusion matrix. The definitions of the terms on the figure are as follows:

TP = Number of samples predicted as positive and are labelled (i.e. actually) positive

TN = Number of samples predicted as negative and are labelled (i.e. actually) negative

FP = Number of samples predicted as positive but are labelled (i.e. actually) negative

FN = Number of samples predicted as negative but are labelled (i.e. actually) positive

3.1.2 Overall Accuracy

To calculate the overall classification accuracy, the predictions on the test set are

compared with the correct labels. The equation below formulates how this metric is

computed in percentage.

30

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝟏𝟎𝟎 ×
(𝑻𝑷 + 𝑻𝑵)

(𝑻𝑷 +𝑭𝑵+𝑭𝑷 +𝑻𝑵)
 (3.1.2.1)

3.1.3 Precision

Precision is a measure, which computes how many of the positive predictions

are correctly predicted as positive. It is formulate as follows

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝟏𝟎𝟎 ×
(𝑻𝑷)

(𝑻𝑷 +𝑭𝑷)
 (3.1.3.1)

3.1.4 Recall

Recall computes how many of the instances whose true labels are positive are

correctly predicted as positive. It is also known as the sensitivitiy or true positive rate. It

is formulated as

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 = 𝟏𝟎𝟎 ×
(𝑻𝑷)

(𝑻𝑷 +𝑭𝑵)
 (3.1.4.1)

3.1.5 Specificity

Specificity is a measure that computes how many of the examples for which the

true label is negative are correctly predicted as negative. Equation below formulates the

the specificity measure

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 = 𝟏𝟎𝟎 ×
(𝑻𝑵)

(𝑻𝑵 +𝑭𝑷)
 (3.1.5.1)

3.1.6 F-measure

Also known as the F-Score, F-measure is an accuracy metric that computes the

weighted harmonic mean of the recall and precision. It is formulated as

𝑭 − 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 = 𝟐 ×
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +𝑹𝒆𝒄𝒂𝒍𝒍)
 (3.1.6.1)

3.1.7 AUC

Area under the receiver operating characteristic (ROC) curve, which is obtained

as a plot of true positive rate versus false positive rate for different decision thresholds.

31

3.1.8 MCC

Matthews Correlation coefficient (MCC) is another accuracy metric used to

check the quality of a classifier. It uses the true positive, true negative, false positive

and false negative values to calculate the MCC. The equation below shows how this

measure is computed .

𝑴𝑪𝑪 =
𝑻𝑷 ×𝑻𝑵−𝑭𝑷 ×𝑭𝑵

√(𝑻𝑷+𝑭𝑷)(𝑻𝑷 +𝑭𝑵)(𝑻𝑵+𝑭𝑷)(𝑻𝑵+𝑭𝑵)
 (3.1.8.1)

3.2 Results on Credit Card Fraud Dataset

For AdaboostM1 [10], we used decision stump [56] as the base learner. For the

randomly generated test set (using stratified remove folds in WEKA) the overall

accuracy on the fraud class was 99.9136% and the overall cross-validation accuracy on

the fraud class was 99.92%. The other measures can be seen on the Tables 3.2.1 and

3.2.2. We also used J48 as the base classifiers and the results were the same.

Due to highly imbalance in class labels we also decided to use under-sampling

by choosing equal number of normal transactions as the number of fraud transactions

randomly. The reduced data set had 328 samples of the normal class and 328 samples of

the fraud class. The best performance according to F-measure was by logistic regression

with L2-norm regularizer and Newton-CG as the solver [56]. This method obtained an

F-measure of 94.86% and a recall of 98.06% as it can be seen on Table 3.2.2 followed

by the stacking ensemble 3 with an F-measure of 94.3% and recall of 92.7%.

Classifier Accuracy Recall F-

measure

FP

Rate

Precision ROC

Area

MCC

Stacking

Ensemble 3

94.36% 92.7% 94.3% 4.0% 95.9% 97.9% 88.8%

AdaboostM1 94.05% 92.1% 93.9% 0.4% 95.9% 97.4% 88.2%

Stacking

Ensemble 5

93.90% 90.2% 93.7% 2.4% 97.4% 94.4% 88.0%

32

Logistic

Regression

93.29% 91.5% 93.2% 4.9% 94.9% 97.4% 86.6%

Stacking

Ensemble 4

93.14% 88.7% 92.8% 2.4% 97.3% 97.0% 86.6%

Random Forest 94.82% 91.2% 94.6% 1.5% 98.4% 97.9% 89.9%

Stacking

Ensemble 1

99.97% 89.9% 93.2% 3.0% 96.7% 95.7% 87.1%

KNN 92.84% 88.1% 92.5% 2.4% 97.3% 95% 86.1%

Naïve Bayes 91.76% 86.3% 91.3% 2.7% 96.9% 95.6% 84.0%

Table 3.2.1: The accuracy measures of classifiers for credit card fraud detection. A 10-

fold cross-validation is performed on the train set.

Classifier Accuracy Recall F-

measure

FP

Rate

Precision ROC

Area

MCC

Stacking

Ensemble

6

93.03% 98.06% 94.86% 49.42% 98.73% 100% 87.95%

Stacking

Ensemble

1

93.00% 88.03% 93.15% 47.83% 96.48% 100% 84.98%

Table 3.2.2: The accuracy measures of stacking ensembles 1 and 6 for credit card fraud

detection. Logistic regression is employed as the meta learner with an L2 norm

regularizer and a Newton-CG solver. A 10-fold cross-validation is performed on the

train set.

Classifier Accuracy Recall F-

measure

FP Rate Precision ROC

Area

MCC

Stacking

Ensemble

1

99.97% 83% 90.4% 0.0% 100% 100% 90.8%

33

Stacking

Ensemble

2

99.97% 80.4% 89.1% 0.0% 100% 100% 89.7%

Random

Forest

99.90% 70% 72% 70% 0.0% 74% 96%

Adaboost 99.91% 74% 75% 0.0% 75.3% 98.2% 75%

KNN 99.92% 70% 74.4% 70% 0.0% 80% 97%

Logistic

Regression

99.93% 67.1% 75.9% 0.0% 87.3% 98.9% 76.5%

Table 3.2.3: The accuracy measures of classifiers for credit card fraud detection on test

set

Classifier Recall

Logistic Regression c = 0.01 94.92%

Logistic Regression c = 0.1 89.39%

Logistic Regression c = 1 91.28%

Logistic Regression c = 10 91.59%

Logistic Regression c = 100 91.59%

Table 3.2.4: The recall of logistic regression for credit card fraud detection. A 10-fold

cross-validation is performed on the under-sampled train set [32]

Classifier Recall

Logistic Regression c = 0.01 55.96%

Logistic Regression c = 0.1 59.93%

Logistic Regression c =1 61.26%

Logistic Regression c = 10 61.85%

34

Logistic Regression c =100 61.85%

Table 3.2.5: The recall of logistic regression for credit card fraud detection. A 10-fold

cross-validation is performed on the train set [32]

3.3 Results on KDD cup99 Dataset

3.3.1 Postprocessing and Validation

As mentioned earlier, a stratified 10-fold cross-validation is performed on train

set provided to optimize the hyper-parameters of the models. Then the models are

trained using the optimum hyper-parameter configurations and predictions are

computed on test data. For the KDD cup99 Dataset, the performance of the different

classifiers including simple classifiers gave astonishing results. Below are the results of

the random forest classifier with the number of trees set to 10.

Correctly

classified

examples

Incorreclty

classified

examples

K

coefficient

Mean

absolute

error

RMS

Error

RAE RRS

Errror

99.9964% 0.0036% 0.9999 0 0.0018 0.022% 1.126%

Table 3.3.1.1: Binary classification accuracy measures of random forest for network

intrusion detection on KDD Cup99 dataset. A 10-fold cross-validation is performed on

train set

35

Table 3.3.1.2: Multi-class classification accuracy measures of random forest for

network intrusion detection on KDD Cup99 train set. A 10-fold cross-validation is

performed on train set

Classifier Accuracy

J48 99.96%

Random Tree 99.95%

Adaboost 97.86%

Table 3.3.1.3: Binary classification accuracy of J48, random tree and Adaboost for

network intrusion detection on KDD Cup99 train set. A 10-fold cross-validation is

performed on train set

The results on Table 3.3.1.3 did not surprise us because most researchers claim decision

trees algorithms perform well on the KDDCup99 and other intrusion detection

problems. The following table summarizes results from other researchers.

36

Classifier J48 NB NB Tree RF Random

Tree

MLP SVM

Accuracy 93.82% 82.66% 93.51% 92.79% 92.53% 92.26% 65.01%

Table 3.3.1.4: Binary classification accuracy measures of various methods on KDDTest

[17]

Classifier J48 NB NB Tree RF Random

Tree

MLP SVM

Accuracy 81.05% 76.56% 82.02% 80.67% 81.59% 77.41% 69.52%

Table 3.3.1.5: Binary classification accuracy measures of various methods on

KDDTest+ [17]

Classifier J48 NB NB Tree RF Random

Tree

MLP SVM

Accuracy 63.97% 55.77% 66.16% 63.26% 58.51% 57.34% 42.29%

Table 3.3.1.6: Binary classification accuracy measures of various methods on

KDDTest-21 [17]

In addition, the Tavallaee et al. [21] ran experiments on an unseen test set called

KDDTest21, which consisted of 11,850 instances. Bolon-Canedo et al. [56] who use

feature selection algorithms on the data set states that the filter technique was selected

because of the size of the KDD Cup 99 dataset was large. The following is the

comparison of the results (in percentage) attained in binary classification problem on

the test set.

Method Error True

Positives

False

Positives

No. of

Features

37

EMD + Cons +

One layer

7.78 90.52 0.77 6

EMD + Cons +

PSVM

7.78 90.53 0.78 6

EMD + Cons +

FNN

8.01 90.18 0.54 6

EMD + INT +

C4.5

6.69 91.81 0.49 7

PKID + Cons +

NB

7.99 90.18 0.42 6

Table 3.3.1.7: Binary classification accuracy measures of naïve Bayes and C4.5 using a

subset of selected features on test set [56]

Method Error True

positives

False

Positives

No. of

Features

PKID + Cons +

C4.5(0.25)

5.15% 94.07% 1.90% 6

PKID + Cons +

C4.5(0.50)

5.14% 94.08% 1.92% 6

EMD + INT +

C4.5(0.25)

6.74% 91.73% 0.44% 7

EMD + INT +

C4.5(0.50)

6.69% 91.81% 0.46% 7

PKID + Cons +

NB

7.99% 90.18% 0.42% 6

Table 3.3.1.8: Binary classification accuracy measures of various methods on KDD Test

[57].

38

Combination Score according to cost

matrix [58]

No. of features

KDD winner 0.2331 41

EMD + INT + C4.5 0.2344 11

EMD + INT + C4.5 0.2324 15

Table 3.3.1.9: Binary classification accuracy of Decision tree (C4.5) with Entropy

minimization discretization (EMD) with Interact algorithm (INT) on KDDTest [57].

In the paper by Bolon-Canedo et al. [2] a hybrid approach that combines

different feature selection methods and discretization are employed to boost two class

classification performance. The best results are realized when seven attributes are

employed. This indicates that only those attributes, rather than of the whole set of 41

attributes, are relevant when the classification is implemented in a real world system.

These results are shown in the table 3.3.1.10 with Proportional k-Interval Discretization

(PKID) [56]

Method Error TP FP

PKID+Cons+C4.5(0.25) 5.15 94.07 1.90

PKID+Cons+C4.5(0.5) 5.14 94.08 1.92

EMD+INT+C4.5(0.25) 6.74 91.73 0.44

EMD+INT+C4.5(0.50) 6.69 91.81 0.49

KDD Winner 6.70 91.80 0.55

5FNs_poly 6.48 92.45 0.86

5FNs_fourier 6.69 92.72 0.75

5FNs_exp 6.70 92.75 0.75

SVM Linear 6.89 91.83 1.62

SVM 2poly 6.95 91.79 1.74

SVM 3poly 7.10 91.67 1.94

SVM RBF 6.86 91.83 1.43

ANOVA ens. 6.88 91.67 0.90

Pocket 2cl. 6.90 91.80 1.52

Pocket mcl. 6.93 91.86 1.96

39

Table 3.3.1.10: Binary classification accuracy measures of various methods on

KDDTest [2].

3.4 Results on Labris Dataset

3.4.1 Mahalanobis distance

Mahalanobis distance is good at detecting outliers, which are usually far away

from the mean of the normal examples. In this thesis, Mahalanobis distance based

classifier is implemented for binary classification problem. The optimum threshold for

classifying a data sample as an outlier or not is chosen at if its Mahalanobis distance is

75 percentile or below of all the samples distances and every instance’s Mahalanobis

distance beyond the threshold is classified as an attack. To assess prediction accuracy,

We randomly selected a subset of data samples from the training set (such as 20%) and

saved them into separate files. These were used as validation data to optimize model

configurations or hyper-parameters when necessary. We saved the remaining samples as

the new train data (excluding the validation data) in WEKA and then a script that

computes Mahalanobis distance is run in Matlab. Then the accuracies given in Table

3.4.1.1 are computed using Java. Based on these results, Mahalanobis distance based

classifier did not perform well in network anomaly detection on Labris data.

Classifier Accuracy F-measure Sensitivity Precision Specificity

Mahalanobis 70.39% 13.49% 25.05% 0.092% 74.99%

Table 3.4.1.1: Binary classification accuracy of Mahalanobis distance based outlier

detection method on Labris test set

3.4.2 Chi-square

Preprocessing

40

Similar to Mahalanobis distance, 𝜒2-statistic is used to discriminate attacks from normal

examples. We randomly selected a subset of data samples from the training set (such as

20%) and saved them into separate files. These were used as validation data to optimize

model configurations or hyper-parameters when necessary. We saved the remaining

samples as the new train data (excluding the validation data) in WEKA and then a

Matlab script was executed that computes the chi-square measure. The optimum

threshold to classify a data sample as attack is set to 75 percentile. Then, prediction

accuracies given in Table 3.4.2.1 are computed using Java. These results show that the

𝜒2-statistic does not perform well in network anomaly detection on Labris data.

Classifier Accuracy F-measure Sensitivity Precision Specificity

𝜒2-statistic 70.24% 13.078% 24.29% 0.089% 74.91%

Table 3.4.2.1: Binary classification accuracy measures of chi-square statistic based

outlier detection method on Labris test set

3.4.3 Simple Classifiers

We implemented simple classifiers for network anomaly detection on Labris

dataset including OneR, naïve Bayes and decision tree (J48). All three gave amazingly

high accuracies around 99% because are few attributes can be sufficient for achieving

high accuracy. Using attributeSelector in WEKA to learn these attributes and one by

one attributes were removed by single removal of one attribute at a time and differenct

combination of attributes removal but still the classifiers found high accuracy models

from the remaining set of attributes.

Classifier Accuracy

OneR 99.00%

Naïve Bayes 99.00%

Decision Tree (J48) 99.00%

41

Table 3.3.3.1: Binary classification accuracy of simple classifiers. A 10-fold cross-

validation is performed on Labris train set.

K-Nearest Neighbors

We optimized the number of nearest neighbors parameter (i.e. k) of the k-NN

method. We considered values from 1 to 10 with increments of 1 and performed a 10-

fold cross-validation on train set. The optimum k value is found as 1. The optimization

step took about 40 hours on the a computer with 4 core processor and 8 GB of memory.

All the values of k gave almost similar F-measure but WEKA suggested k = 1 as the

best hyper-parameter. The command for optimizing k is

“weka.classifiers.meta.CVParameterSelection -P "K 1.0 10.0 10.0" -X 10 -S 1-

weka.classifiers.lazy.IBk -K 1 -W 0 -A weka.core.neighboursearch.LinearNNSearch -A

“weka.core.EuclideanDistance -R first-last" 1.000 0.000 1.000 1.000 1.000 1.000

1.000”

Once the optimum k is found, predictions are computed on test data using this optimum.

Table 3.4.3.2 below include the accuracy measures of k-NN method on Labris test data.

Class TP Rate FP Rate Recall F-measure MCC ROC Area

Normal 100.0% 0.00% 100.0% 100.0% 99.9% 100.0%

Syn ack

ddos

64.4% 0.03% 67.5% 65.9% 65.7% 98.3%

icmp ddos 100% 0.00% 100.0% 100.0% 100% 100%

rst ack

ddos

88.2% 0.04% 81.1% 84.5% 84.2% 99.8%

rst ddos 69.6% 0.00% 79.4% 74.2% 74.0% 99.3%

Fin ddos 0.00% 0.00% 0.00% 0.00% 0.00% 72.9%

ack ddos 81.9% 0.01% 77.0% 79.4% 79.3% 98.7%

http get 99.8% 0.00% 100.0% 99.9% 100% 100%

syn ddos 87.2% 0.03% 87.0% 87.1% 86.8% 99.5%

Table 3.4.3.2: Multi-class classification accuracy of k-NN on Labris test set

42

Logistic Regression

 We performed a 10-fold cross-validation experiment on the Labris train set. Table

3.4.3.3 below shows various accuracy measures.

Support Vector Machines

The best C, gamma pair is found as: C = 21, and gamma = 215 and the results

are shown on the Table 3.4.3.3.

Random Forest

We considered different values for the number of trees but all of them gave

similar F-measure. We selected this parameter as 200 and computed predictions on test

data. Table 3.4.3.3 show accuracy measures of random forest.

Classifier Accuracy F-measure Sensitivity Specificity Precision

Random

Forest

98.7% 98.7% 98.7% 99.99% 98.7%

SVM 98.02% 97.8% 98.6% 98% 100%

Stacking

ensemble

99.14% 99.1% 99.1% 100% 99.2%

Logistic

Regression

97.77% 97.5% 97.8% 98% 98.0%

Table 3.4.3.3: Binary classification accuracy measures of different classifiers. A 10-fold

cross-validation is performed on Labris train set

3.4.4 Stacking ensemble of classifiers

We employed logistic regression as the meta learner, J48, Naïve Bayes, k-NN

as the base learners. We run with J48 as a base classifier, Naive Bayes as a base

classifier, and Naive Bayes with KNN as base classifiers. Also, the combination of all

of the above, i.e. the combination of logistic regression as meta learner and J48, Naïve

43

Bayes, K-NN, and SVM as base classifiers gave the best perfomance. The results were

as shown in Table 3.4.3.3.

3.4.5 Feature Normalization

k-NN classifier (i.e. IBK in WEKA) was chosen for the normalized attributes.

All of the tested classifiers’ performance dropped a little when the features were

normalized.

Accuracy F-measure Precision Sensitivity Specificity

98.5% 98.5% 98.47% 98.5% 99.99%

Table 3.4.5.1: Binary classification accuracy measures of k-NN on non-normalized

features. A 10-fold cross-validation is performed on Labris train set

Accuracy F-measure Precision Sensitivity Specificity

98.47% 98.6% 98.6% 98.6% 99.99%

Table 3.4.5.2: Binary classification accuracy measures of k-NN on normalized features.

A 10-fold cross-validation is performed on Labris train set

3.4.6 Results and Evaluation

Mahalanobis distance and Chi-Square based classifiers did not perform well on

this data set because there were many overlaps of data points of anomaly and normal

data. SVM performed well on the anomalies. All classifiers predicted correctly the

normal class data point i.e. TP rate was 1.00 due to big difference in ratio of normal and

attacks, the overall accuracies of classifiers are obtained as high.

Classifier Accuracy F-measure Sensitivity Precision ROC area

Logistic

Regression

98.99% 90.3% 88.5% 92.2% 99.99%

k-NN 98.47% 98.6% 98.6% 98.6% 99.99%

SVM 98.02% 97.8% 98.0% 98.6% 100%

RF 98.7% 98.7% 98.7% 98.7% 99.99%

Stacking 99.13% 99.1% 99.1% 99.2% 99.99%

44

Ensemble 1

Normalized

k-NN

98.47% 98.5% 98.5% 98.5% 74.91%

Table 3.4.6.1: Binary classification accuracy measures of various classifiers. A 10-fold

cross-validation is performed on Labris train set

3.4.7 Feature Selection

There were four main feature selection methods implemented namely:

CfsSubsetEval [59], ClassifierAttributeEval, InfoGainAttributeEval, and Classifier

subset evaluator. Out of 41 features, 9 features were selected using CfsSubsetEval [60]

as the ones which are relevant to classifiers. However, the features selected did not

improve the classifiers perfomances. The selected features are: network_service,

dst_bytes, tw_shConnectionCount, tw_shSYNErrorRate, cw_shConnectionCount,

cw_shResetRate, cw_shSameServiceRate, cw_ssSYNErrorRate, cw_ssResetRate. The

results are as shown in the Table 3.4.7.1.

Classifier Accuracy F-measure Sensitivity Precision ROC Area

Random

Forest (Tree

= 200)

98.8074 % 98.8% 98.8% 98.8% 100.0%

KNN (k = 1) 98.7504% 98.7% 98.8% 98.7% 99.8%

Table 3.4.7.1: Binary classification accuracy measures of various classifiers after

feature selection is performed. A 10-fold cross-validation is performed on Labris train

set

3.5 Results on TalkingData Adtrack Fraud Detection

Dataset

Due to the bulk of dataset (i.e. about 185 milllion instances with seven

attributes). This dataset is recent we are still working on it

45

Previous works

Submissions were evaluated using the area under the ROC curve measure in Kaggle.

The highest AUC score was 0.9843223.

46

Chapter 4

Conclusion

In this thesis, different classiffcation algorithms have been implemented

including basic classifiers and more complex ones. Moreover, other techniques such as

normalization, under-sampling and feature selection were also employed. Techniques

such as normalization did not yield better results than the unnormalized data and feature

selection for most of the experiments did not improve the results either. Under-sampling

has proven to work better than non-undersampled data because of the class imbalance

problem present in the data sets we worked on for outlier detection.

Stacking ensemble of classifiers technique has improved the results

considerably, although it is computationally more expensive as it includes training

several base learners.

For future work, we propose other ways of feature engineering as it has been

done by the winning team of TalkingData Adtracking dataset challenge, where other

advanced features such as LDA/NMF/LSA, SOM, are employed. We can consider

trying different combinations of features to form new feature vectors. In addition, trying

different classifiers with different features and combinining the classifiers as in stacking

ensemble of classifiers can be another field which could be tested. This technique of

training different classifiers using different sets of features has started to emerge in

object dectections in images and videos. As another future direction, we can consider

applying deep learning techniques to anomaly detection problems studied in this thesis

and incorporate them to the ensemble models.

47

Bibliography

[1] Carl E Landwehr et al. “A taxonomy of computer program security

aws". In: ACM Computing Surveys (CSUR) 26.3 (1994), pp. 211-

254.

[2] Veronica Bolon-Canedo, Noelia Sanchez-Marono, and Amparo Alonso-

Betanzos. “A combination of discretization and filter methods for improving

classification performance in KDD Cup 99 dataset". In: Neural Networks, 2009. IJCNN

2009. International Joint Conference on. IEEE. 2009, pp. 359-366.

[3] University of Waikato. Weka. 2018. url: https://www.cs.waikato.ac.

nz/ml/weka/.

[4] Kaggle. Adtracking dataset. 2018. url: https://www.kaggle.com/c/

talkingdata-adtracking-fraud-detection/data.

[5] Jyothsna, V. V. R. P. V., Prasad, V. R., & Prasad, K. M. (2011). A review of

anomaly based intrusion detection systems. International Journal of Computer

Applications, 28(7), 26-35.

[6] Richard O Duda, Peter E Hart, and David G Stork. Pattern classi_ca-

tion. John Wiley & Sons, 2012.

[7] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine

learning. Machine learning, 3(2), 95-99.

[8] Chris Bishop, Christopher M Bishop, et al. Neural networks for pattern

recognition. Oxford university press, 1995.

[9] James H Steiger, Alexander Shapiro, and Michael W Browne. \On

the multivariate asymptotic distribution of sequential chi-square statistics".

In: Psychometrika 50.3 (1985), pp. 253-263.

[10] Andrea Dal Pozzolo et al. “Credit Card Fraud Detection: a Realistic

Modeling and a Novel Learning Strategy". In: IEEE Transactions on

Neural Networks and Learning Systems (Accepted)(2017) (2017).

[11] dataaspirant. rf image. 2018. url: http://dataaspirant.com/2017/

05/22/random-forest-algorithm-machine-learing/.

48

[12] Roy De Maesschalck, Delphine Jouan-Rimbaud, and D_esir_e L Massart. “The

mahalanobis distance". In: Chemometrics and intelligent laboratory systems 50.1

(2000), pp. 1-18.

[13] dni. bagging image. 2018. url: http : / / dni - institute . in / blogs /

bagging-algorithm-concepts-with-example/.

[14] Documentation. Scikit. 2018. url: http://scikit-learn.org/stable/

documentation.html.

[15] Elham Hormozi et al. “Accuracy evaluation of a credit card fraud detection

system on Hadoop MapReduce". In: Information and Knowledge

Technology (IKT), 2013 5th Conference on. IEEE. 2013, pp. 35-39.

 [16] Ekrem Duman, Ayse Buyukkaya, and Ilker Elikucuk. “A novel and

successful credit card fraud detection system Implemented in a Turkish

Bank". In: Data Mining Workshops (ICDMW), 2013 IEEE 13th

International Conference on. IEEE. 2013, pp. 162-171.

[17] Pang-Ning Tan et al. Introduction to data mining. Pearson Education

India, 2006.

[18] J. Kevric, S. Jukic, and A. Subasi, An effective combining classifier approach

using tree algorithms for network intrusion detection, Neural Computing and

Applications, pp. 1-8, 2016.

[19] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, A detailed analysis of the

KDD CUP 99 data set, in Proc. 2nd IEEE International Conference on Computational

Intelligence for Security and Defense Applications, USA: IEEE Press, pp. 53-58, 2009.

[20] Kalpana Jaswal, Praveen Kumar, and Seema Rawat. “Design and development of a

prototype application for intrusion detection using data mining". In: Reliability,

Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions), 2015

4th International Conference on. IEEE. 2015, pp. 1-6.

[21] Mahbod Tavallaee et al. ”A detailed analysis of the KDD CUP 99 dataset". In:

Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009.

IEEE Symposium on. IEEE. 2009, pp. 1-6.

[22] R Can Aygun and A Gokhan Yavuz. “Network anomaly detection with

stochastically improved autoencoder based models". In: Cyber Security and Cloud

49

Computing (CSCloud), 2017 IEEE 4th International Conference on. IEEE. 2017, pp.

193-198.

[23] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. “Evaluating

effectiveness of shallow and deep networks to intrusion detection system". In: Advances

in Computing, Communications and Informatics (ICACCI), 2017 International

Conference on. IEEE. 2017, pp. 1282-1289.

[24] Nathan Shone et al. “A deep learning approach to network intrusion detection". In:

IEEE Transactions on Emerging Topics in Computational Intelligence 2.1 (2018), pp.

41-50.

[25] Nguyen Thanh Van, Tran Ngoc Thinh, and Le Thanh Sach. “An anomalybased

network intrusion detection system using deep learning". In: System Science and

Engineering (ICSSE), 2017 International Conference on. IEEE. 2017, pp. 210-214.

[26] Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. “The recurrent temporal

restricted boltzmann machine". In: Advances in neural information processing systems.

2009, pp. 1601-1608.

[27] saed. naive image. 2018. url: http : / / www . saedsayad . com / naive _

bayesian.htm.

[28] Alejandro Correa Bahnsen et al. “Cost sensitive credit card fraud detection

using Bayes minimum risk". In: Machine Learning and Applica-

tions (ICMLA), 2013 12th International Conference on. Vol. 1. IEEE.

2013, pp. 333-338.

[29] Addisson Salazar et al. “Automatic credit card fraud detection based on non-linear

signal processing". In: Security Technology (ICCST), 2012 IEEE International

Carnahan Conference on. IEEE. 2012, pp. 207-212.

[30] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting

algorithm". In: Icml. Vol. 96. 1996, pp. 148-156.

[31] Anusorn Charleonnan. “Credit card fraud detection using RUS and MRN

algorithms". In: Management and Innovation Technology International Conference

(MITicon), 2016. IEEE. 2016, MIT-73.

[32] kaggleuser. Fraud Table. 2018. url: https://www.kaggle.com/mlg-

ulb/creditcardfraud/home.

[33] Kyungnam Kim. “Face recognition using principle component analysis".

In: International Conference on Computer Vision and Pattern

50

Recognition. Vol. 586. 1996, p. 591.

[34] Ian T Jollie. “Principal Component Analysis and Factor Analysis" In: Principal

component analysis. Springer, 1986, pp. 115-128.

[35] N Malini and M Pushpa. “Analysis on credit card fraud identification techniques

based on KNN and outlier detection". In: Advances in Electrical, Electronics,

Information, Communication and Bio-Informatics (AEEICB), 2017 Third International

Conference on. IEEE. 2017, pp. 255-258.

[36] kaggle. fork notebook kaggle. 2018. url: https://www.kaggle.com/

yuliagm/talkingdata-eda-plus-time-patterns.

[37] Adil M Bagirov, Julien Ugon, and Dean Webb. “Fast modified global k-means

algorithm for incremental cluster construction". In: Pattern recognition 44.4 (2011), pp.

866-876.

[38] Shiming Xiang, Feiping Nie, and Changshui Zhang. “Learning a Mahalanobis

distance metric for data clustering and classification". In: Pattern Recognition 41.12

(2008), pp. 3600-3612.

[39] Varun Chandola. Anomaly Detection: A Survey Varun Chandola, Arindam

Banerjee, and Vipin Kumar. 2007.

[40] Goeffrey J McLachlan. “Mahalanobis distance". In: Resonance 4.6 (1999),

pp. 20-26.

[41] David W Aha, Dennis Kibler, and Marc K Albert. “Instance-based

learning algorithms". In: Machine learning 6.1 (1991), pp. 37-66.

[42] adatanalyst. knn image. 2018. url: http://adataanalyst.com/machine-

learning/knn/.

[43] researchgate. tree image. 2018. url: https://www.researchgate.net/

figure/Cost-sensitive-decision-tree_fig3_289283385.

[44] George H John and Pat Langley. “Estimating continuous distributions

in Bayesian classifiers". In: Proceedings of the Eleventh conference on

Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.

1995, pp. 338-345.

[45] J Ross Quinlan. “C4. 5: Programming for machine learning". In: Mor-

gan Kauffmann 38 (1993).

51

[46] Yufeng Kou et al. “Survey of fraud detection techniques". In: Networking, sensing

and control, 2004 IEEE international conference on.Vol. 2. IEEE. 2004, pp. 749-754.

[47] Leo Breiman. “Random forests". In: Machine learning 45.1 (2001),

pp. 5-32.

[48] Webb, G. I. (2000). Multiboosting: A technique for combining boosting and

wagging. Machine learning, 40(2), 159-196.

[49] in_nitescript. adaboost image. 2018. url: https://infinitescript.

com/2016/09/adaboost/.

[50] Yinsheng Qu et al. “Boosted decision tree analysis of surface-enhanced

laser desorption/ionization mass spectral serum profiles discriminates

prostate cancer from noncancer patients". In: Clinical chemistry 48.10

(2002), pp. 1835-1843.

[51] Ian H Witten et al. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2016.

[52] matlab. matlab documentation. 2018. url: https://es.mathworks.

com/products/matlab.html.

[53] Sergio Moro, Raul Laureano, and Paulo Cortez. “Using data mining for

bank direct marketing: An application of the crisp-dm methodology".

In: Proceedings of European Simulation and Modelling Conference-ESM'2011.

EUROSIS-ETI. 2011, pp. 117-121.

[54] mit. Kddcup99 dataset. 2018. url: http://kdd.ics.uci.edu/databases/

kddcup99/kddcup99.html.

[55] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python". In:

Journal of machine learning research 12.Oct (2011), pp. 2825-2830.

[56] Jun Liu, Jianhui Chen, and Jieping Ye. “Large-scale sparse logistic regression".

In: Proceedings of the 15th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. ACM. 2009, pp. 547-

556.

[57] Veronica Bolon-Canedo, Noelia Sanchez-Marono, and Amparo Alonso-

Betanzos. “Feature selection and classification in multiple class datasets:

An application to KDD Cup 99 dataset". In: Expert Systems with Applications 38.5

(2011), pp. 5947-5957.

52

[58] Alexey Grigorev. (2018, July 21). Cost Matrix. Retrieved from

http://mlwiki.org/index.php/Cost_Matrix

[59] Hall, M. A. (1998). Correlation-based feature subset selection for machine

learning. Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy at the University of Waikato.

[60] Mohammad Khubeb Siddiqui and Shams Naahid. “Analysis of KDD CUP 99

dataset using clustering based data mining". In: International Journal of Database

Theory and Application 6.5 (2013), pp. 23-34.

http://alexeygrigorev.com/

53

