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ABSTRACT 

Developing Machine Learning Methods for Network Anomaly 

Detection 

Habibu Shomari MUKHANDI 

M.Sc. in Electrical and Computer Engineering Department 

Supervisor: Dr. Zafer Aydın 

July-2018 

Machine learning refers to training of a computer (machine) to be able to acquire 

knowledge from data (i.e. experience) and improve itself on a given task. The field of 

machine learning has become a mainstream, improving hundreds of millions of lives. 

Fraudulent actions in computer networks, credit card transactions and website 

advertisement traffic might devastate large businesses and cause anually fiscal loss of 

billions of dollars around the globe. In this thesis, we propose various machine learning 

methods for three fraud detection problems: network anomaly detection, credit card 

fraud detection and detection of fraudulent clicks to advertisements on the internet. We 

design various classifiers such as logistic regression, k-nearest neighbors, decision tree, 

support vector machine, and ensemble classifiers such as random forest, bagging, 

stacking and AdaBoost. The hyper-parameters of the classifiers are optimized by 

performing cross-validation experiments on train sets. In the next step, the models are 

trained using the optimum hyper-parameter configurations and predictions are 

computed on test sets. Among the various methods compared the highest accuracy is 

obtained by ensemble learners. 

Keywords: Anomaly Detection, Fraud Detection, Network Anomaly Detection, Credit 

Card Fraud Detection, Fraud Detection for Advertisement Clicks, Machine Learning, 

Ensemble Classifiers 
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ÖZET 

BİLGİSAYAR AĞLARINDA ANORMAL DURUM TESPİTİ 

YAPAN ÖĞRENME YÖNTEMLERİNİN GELİŞTİRİLMESİ 

Habibu Shomari Mukhandi 

Elektrik ve Bilgisayar Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Dr. Zafer Aydın 

Temmuz-2018 

Makine öğrenmesi, verilerdeki bilginin bir bilgisayar ya da makina tarafından otomatik 

olarak öğrenilmesi ve karşılaşılan yeni durumlarda anlamlı bilgi ya da davranışların 

üretilmesini amaçlar. Bir çok uygulama alanı bulunan makine öğrenmesi daha önce hiç 

karşılaşılmamış olan sıradışı durumların tespit edilmesi için de kullanılmaktadır. 

Bilgisayar ağlarındaki siber saldırılar, kredi kartı dolandırıcılığı ve internet sitelerinin 

linklerine yapılan çok sayıda sahte tıklamalar dünya genelinde ekonomileri ciddi oranda 

zarara uğratabilecek niteliktedir. Bu tezde üç farklı anormal durum tespiti problemi 

üzerinde çalışılmıştır: bilgisayar ağlarında saldırı tespiti, kredi kartı dolandırıcılığı 

tespiti ve internet sitelerdeki linklere sahte tıklama tespiti. Anormal durum tespiti için 

geliştirilen ve optimize edilen modeller arasında rastgele orman, en yakın komşu, destek 

vektör makinası, logistic regresyon, karar ağacı, AdaBoost, çantalama ve yığınlama gibi 

sınıflandırma yöntemleri bulunmaktadır. Yöntemlerin hiper-parametreleri eğitim 

kümelerinde yapılan çapraz doğrulama deneyleri ile optimize edilmiştir. Bir sonraki 

aşamada optimum hiper-parametre konfigürasyonları kullanılarak eğitilen modeler ile 

test verilerinde tahmin sonuçları hesaplanmıştır. Bu deneyler neticesinde genel doğruluk 

oranı ve F-measure skorlarında yüksek başarı elde edilmiştir. Geliştirilen yöntemler 

arasında en başarılı sonuçlar topluluk modelleri ile elde edilmiştir. 

Keywords: Anormal Durum Tespiti, Dolandırıcılık Tespiti, Bilgisayar Ağlarında 

Anormal Durum Tespiti, Kredi Kartı Dolandırıcılığı Tespiti, İnternet Sitelerinde Sahte 

Tıklama Tespiti 
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Chapter 1 

Introduction 

As human population continues to grow and technology gets ubiquitous and 

more affordable, so does data about them. Ranging from business to many other fields 

including entertainment and medicine there is a need to analyze this large amounts of 

data to understand the needs and demands of people and improve the services provided. 

Furthermore, the huge growth of computer networks and their accessibility via variety 

of devices including PCs and mobile devices have increased the number of applications 

running on computer network platforms especially the internet. As a result of this the 

security of computer networks has gained considerable importance. According to 

Landwehr et al. [1], all computer systems are victims of security vulnerabilites which 

are both economically costly and technically difficult to resolve by the companies that 

produce computer systems. source of vulnerability is the fraudulent actions such as 

fraudulent ad clicks that Another might reduce profits and cause unnecessary load on 

the network. To address these issues, in this thesis, three anomaly detection problems 

are studied: network anomaly detection, credit card fraud detection and ad tracking 

fraud detection. 

 

1.1 Problems 

1.1.1 Network Anomaly Detection 

The first problem we studied is network anomaly detection for which we 

developed an Intrusion Detection System (IDS) that detects anomalies and attacks in a 

computer network. Computer intrusion is a collection of activities or actions that violate 

the security of a computer system [2]. The IDS typically contains a predictive model 

(i.e. a classifier) that has the capability of differentiating attacks (i.e. anomalies 

oroutliers) from normal samples. It can be limited to learn a two-class problem or a 
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multi-class problem as in KDDCup99 dataset. The two-class problem is based on 

discriminating attacks from normal patterns while the multi-class problem deals with 

the classification of different types of attacks that occur in a network and those that do 

not pose any threat to the network (i.e. normal packets). In all cases, the goal is to 

develop a classifier that will make accurate predictions on unseen instances (e.g. test 

data).  

Anomaly detection is an essential problem in intrusion detection systems. An 

anomaly is an object (an instance or an example) that deviates significantly from the 

rest of the objects, as if it were generated by a different distribution [3]. In network 

anomaly detection we try to find an object(s) (network connection(s)) that deviates from 

normal connection behaviour. These anomalies on a network are also called as attacks 

[4], which is defined as a series of operations that endagers and risks the security of a 

system and an anomaly is an event or an occurance that raises suspicion from the 

perspective of security. A network anomaly detection system can be classified as 

anomaly-based or signature-based. Based on the way these two categories view attack 

and anomaly, each has its own advantages and disadvantages. According to Jyothsna et 

al. [5], a signature-based system looks for signatures or patterns of provided data and an 

anomaly-based system tries to estimate or learn the normal characteristics of the system 

and generates an anomaly warning sign whenever the deviation between a new 

observed instance and the normal behavior surpasses a chosen threshold. An anomaly-

based system may also raise a warning when the difference between the new observed 

instance and the expected one falls below a given limit. A signature-based system can 

detect specified and well-known attacks well but does not have the ability to detect new 

and unfamiliar intrusions. On the other hand, an anomaly-based detection system can 

detect previous unseen attacks and intrusions but such systems the observed number of 

false positives (i.e events classified as attacks while they are not) is higher than in 

signature-based systems. In the litereature, the more explored category is the anomaly-

based detection system.  

 Different mechanisms and approaches are developed for the problem of network 

anomaly detection including: stastical approaches, knowledge-based systems whereby a 

human expert on the field analizes each individual connection to determine if it is an 

attack or not, and machine learning approaches, which include Bayesian networks [6], 

genetic algorithms [7], neural networks [8], Markov models, decision trees [9], 



3 

 

Adaboost [10], Multiboost [11], Bagging [3], support vector machines (SVM) [8] and 

other supervised and unsupervised algorithms.  According to Chandola et al. [12], many 

previous research does not employ similarity and distance meausures to determine the 

difference between a target (a newly observed instance) and the known type. According 

to the authors, more future research will explore this area even further to improve 

anomaly detection systems. The distance measure suggested are such as Kullback-

Leibler distance to rank features, the entropy measure, and measures for similarity such 

as the cosine similarity. 

 

1.1.1.1 Labris Dataset 

The first network anomaly detection data set we used in this thesis contains 

binary classes, in which 90% of the data set is labeled as normal and the remaining 10% 

as attack. There is also a second class attribute called Attack Type, which is used for 

multi-class classification. In total, there are 42 attributes and 9 attack types (i.e. classes 

including the normal). The types of classes are: (1) Syn ack ddos, a distributed Denial of 

Service attack that exploits normal TCP in the form of a three way handshake, (2) icmp 

ddos, also known as ping flood, which tries to put servers out of service by request for 

its response more than the ability of the server, (3) rst ack ddos, also known as three-

way handshake reset attack, which is used for sending a reseting bit ag to stop a TCP 

connection, (4) rst ddos, which is also a reset attack but with no handshake, (5) fin ddos, 

which sends a massive amount of TCP packets with fin bit enabled which makes the 

server busy dropping the incoming packets, (6) ack ddos, which is a distributed Denial 

of Service with three way handshake, (7) http get, which is introduced for attacking web 

servers, (8) syn ddos, and (9) normal, which is not considered an attack. 
 

Class No.of 

Instances 

Instances in 

Percentage 

Normal 62124 91% 

Syn_ack_ddos 562 0.80% 

Icmp_ddos 17 0.024% 

Rst_ack_ddos 1384 2% 

Rst_ddos 920 1.46% 
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fin_ddos 9 0.131% 

ack_ddos 404 0.641% 

http_get 1477 2.16% 

Syn_ddos 1525 2.17% 

Table 1.1.1.1.1: Labris network anomaly detection dataset 

 

1.1.1.2 KDDCup99 Dataset (Intrusion Detection Learning) 

 

Intrusion is defined as an intentional illegal trial to access data, manipulate it, or 

compromise a computer system’s veracity and or make its data unusable [13]. An 

intruder may be from outside (i.e. a hacker) and an insider who knows the how the 

system is designed (e.g. IT manager and system administrator). Sometimes, a company 

may hire a penetration testing expert to behave like an intruder so that he/she can point 

out and fix the holes (bugs and errors in the system) before a person with malicious 

intent attempts to compromise it. Computer intrusion can be categorized into two types: 

misuse intrusions and anomaly intrusions. Misuse intrusions are attacks on known weak 

points of a computer system. Anomaly intrusions are based on observations of instances 

that deviate from normal usage patterns. These include trying to break-in, hidden 

attacks disguised as normal usages, denial of service, and malicious use of the system. 

In KDD99 cup competition, the challenge was to develop a network intrusion 

detection system (IDS), which is a classifier that can differentiate malicious connections 

from the normal legitimate ones. A connection is a sequence of TCP packets starting 

and ending at some well defined times, between which data flows to and from a source 

IP address to a target IP address under some well defined protocol. The KDDCup99 

dataset is the benchmark that contains a wide range of attacks that mimic real world 

intrusions in an imitated real military network environment [14]. In 1998, MIT Lincoln 

Lab prepared and managed the experiment to be able to simulate a wide range of 

intrusion types and study them and build machine learning models that could learn and 

protect the systems and environments from real world threats. Lincoln Labs set up an 

environment for nine weeks to gather raw TCP connections for a local area network 

(LAN). LAN was set to mimic a real world US Air Force LAN. The labs treated the set 

up LAN as if it were a true Air Force environment but they perpertrated it with different 
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attacks imaginable that a hacker may conduct. The labs gathered about four gigabytes of 

data for model training from the first seven weeks. The training set was later processed 

into about five million connection records. The remaining two weeks were taken as test 

data which produced about two million connection records. 

The KDD training dataset used by Hormozi et al. [15] contains 10% of the whole 

dataset which is 494,020 single connection instances each having 41 features labelled as 

normal or attack and if it is an attack what kind of attack it is. A connection that 

deviates from the normal pattern is considered as an attack or a malicious connection 

[15]. A 10% portion is chosen due to memory sensitive algorithms, approximately 80% 

of which contains attacks and the remaining 20% are normal connections. 

Each connection is labeled as either normal, or as an attack, with exactly one 

specific attack type. In this experiment every connection record was of size 100 bytes. 

Furthermore, the recorded attacks were of 18 types which were categorized into four 

categories, namely:  DOS: denial-of-service, e.g. syn ood; R2L: an illegal attempt of 

accessing from a remote computer, e.g. password; U2R: an illegal access to a systems 

administator (or root) privileges, e.g., different types of "buffer overflow" attacks; 

probing: surveillance and other probing, e.g., penetration testing through port scanning. 

For a test data to be effective for testing it is essential that it comes from or generated by 

a different probability distribution. There may be some attacks not in the train set. This 

way the experiment tries to implement a real world scenario. Several intrusion experts 

claim that most not yet seen attacks are forms and modifications of known and already 

seen attacks and the known patterns of known attacks can be sufficient to detect novel 

variants. The datasets features 24 attack types in the training set, and there is an 

additional 14 new unseen attacks in the test set alone not included in the training set. 

The attack types of the dataset are listed in Table 2.1.1.2.1. 

  

 

Previous works 

The authors, Salazar et al. [16], have conducted analysis and experiments of 

attacks on the 10% portion of KDDCup 99 training set using Kmeans clustering 

technique. They clustered the training set, which contains of 494,019 instances and 
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prepared 1000 clusters [16]. The clustering is used to determine and rank protocols 

according to number of attacks. 

The results are as follows: 

 

Table 1.1.1.2.1: Number of Attacks Before and After Clustering [16] 
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Figure 1.1.1.2.1: Results on KDD99 using 100 clusters [16]. 
 

In the paper by Pang-Ning Tan et al. [17] first redudant records are removed 

which may cause the learning algorithms to be inclined and favour the more frequent 

records. Their solution was to first remove the redudant records and their results are 

shown in Figure 1.1.2.2.1. J. Kevric et al. [18] achieved an accuracy of 89.24% with 

hybrid of Random Tree and NB tree [19] on KDD99 cup test set. In another study by 

Jaswal et al. [20], the authors uses a hybrid technique by using K means algorithm to 

remove noise in the data set and remove duplicates and form an input for SVM. The 

authors claim this hybrid approach was able to detect all the attacks in their database 

and perfomed better in KDDCup 99 in which 22 attacks were detected compared to the 

benchmark of 11 attacks from previous research works. KDDTest is the original 

KDDCup test set. After removing redundancy, Tavallaee et al [21] generated 

KDDTest+ and KDDTrain+ which include 22,544  and 125,973 instances, respectively. 

 

Recent works with deep learning methods 
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Some of the previous works used deep learning techniques on the KDDCup99 

data sets. The following paragraph summarize the methods used by different authors 

and their reported accuracies. Aygun et al. [22] used two hybrid approaches. One was to 

use an autoencoder in which it has one input layer and one or more hidden layers (the 

authors used one hidden layer for this experiment) and one output layer. The number of 

input units and output units are the same but the number of hidden units is less than the 

number of units in input and output layers. The second hybrid approach used is called 

denoising autoencoder where the input is more distorted than in the normal autoencoder 

hybrid technique. The authors started with data preprocessing by taking 38 numeric 

features of the data set and converting them to binary values by using 1-N encoding 

approach. The autoencoders obtained an accuracy of 88.28% on KDDTest+ and for the 

denoising autoencoder the accuracy was 88.65%. According to Vinayakumar et al. [23], 

the performance of SVM on the binary classification (i.e a connection is normal or an 

attack) was better than their multi layer perceptron (MLP) and deep belief network 

(DBN). However, in multi-class classification problem their DBN setting with 4 layers 

perfomed the best. Their DBN included 350 neurons in each layer and the training was 

run till 1000 epochs with a fixed learning rate of 0.1. When the authors used 500 

epochs, most of the connections were still classified as normal even though some were 

attacks. The accuracy of DBN4 was 71.5%, with a true positive rate of 99.99% and a 

false positive rate of 0.3% for normal connections and a true positive rate 92.8% and 

false positive rate of 5.9% on DOS connections. When they increased the number of 

layers to 8, the accuracy and the true positive rate increased but false positive rate 

increased too. Furthemore, when the number of layers was increased to 12 layers the 

accuracy decreased to 38.1%. Shone et al. [24] used a technique called non-symmetric 

deep autoenconder (NDAE), which is a novel approach proposed by the authors. NDAE 

differs from the conventional auto encoders by not having an encoder-decoder paradigm 

only multi hidden layers of encoders (i.e. non symmetric) to facilitate unsupervised 

feature selection and by removing a human expert control which can be prone to errors. 

The authors claim NDAE reduces both computational and time overheads with little 

cost on accuracy. The authors went a step further by stacking many NDAEs which 

allows a machine to learn complex relationships among features. The NDAE is also a 

powerful feature extractor algorithm. However, when the stacking of NDAEs was 
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trained with a softmax layer as in other deep learning algorithms, the results were worse 

than the results of shallow classifiers such as SVM, RF, and k-NN. Therefore, the 

authors replaced the softmax layer with RF because RF tend to do well with intrusion 

detection problems. The stacking NDAEs included two layers of NDAEs with 3 hidden 

layers on each NDAE. The accuracy was obtained as 99.5999%. Nguyen Thanh et al 

[25] implemented DBN with stacked AEs and stacked restricted Boltzmann machines 

(RBM) [26] during the pre-training phase of deep learning. Their approach has been 

able to detect intrusions with a low error rate of less than 2%.  The architecture of 

stacked AEs contained one hidden layer with an output layer but each hidden layer is 

connected to the input of the next AE and also to its own output and one of the hidden 

layers of an MLP. For stacked RBMs, there are no output layers but each hidden layer 

of an RBM is connected to the input layer of the next RBM and to a hidden layer of an 

MLP.   

1.1.2 Credit Card Fraud Detection 

Credit card fraud is a misuse of a credit card that includes making a transaction 

by swapping a stolen credit card, by fake cards, by copying and then faking of the card 

information, by collection of personal information, by phishing (malicious websites) or 

by employees who work in credit card companies [15]. An essential problem in credit 

card transactions is the detection of fraud transactions. Fraud detection in credit card 

financial activities is a huge problem impacting large financial companies and causing 

cuts of profit margins in billions of dollars yearly [27]. In European Union alone, 

according to European Central Bank (ECB), during 2010 the cost and losses caused by 

fraud reached a monentary value of 1.26 billion in Euro Payment Area alone [28]. Fraud 

detection is defined as the detection of illegal activites that occur in commercial and 

financial organizations such as banks, credit card providing companies such American 

Experess, insurance agencies such as SGK, stores, and cell phone companies, etc [12].  

According to Yufeng Kou et al. [13], credit card fraud can be divided into two 

main categories: online fraud and offline fraud. Offline fraud is defined as the fraud 

committed by using a stolen or lost card at a store or a call center. This kind of fraud 

can be dealt by the institution issuing the card to revoke the card before it is used by a 

fraudster. Online fraud is committed through transactions done on the web (e.g. online 
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shopping). In this kind of fraud only the card’s information is demanded and client’s 

signature is not needed or required. 

 A fraudster may operate through a website which looks like a legitimate 

website, on which he promotes products and services and sells goods at lower prices 

than the actual market prices. The uninformed purchaser provides his/her credit card 

information and makes a purchase. The fraudster then uses the obtained information to 

conduct his personal transactions [29]. Credit cards are among the best targets of frauds, 

since it cost little to steal a huge amount of money and in a little amount of time without 

taking too much risk. This is because most of the time it takes days or even weeks to 

detect credit card fraud crimes if they can be detected at all [15]. In real world 

applications, transactions are scanned by automatic tools, which may approve financial 

transactions as legitimate, send the most suspicious financial transactions to experts or 

leaves them unclassified until a client comes to complain in given time frame, in which 

case those transactions are labeled frauds otherwise they are labeled as legitimate [30]. 

In the past, financial institutes used to send SMS to users for every transaction held. 

However, this method increased operational costs due to the fact that each SMS might 

cost up to two dollar cents [29]. To reduce the unnecessary operational expenditures, the 

financial institutes decided to start reporting transactions of 50 dollars and above. As a 

result, many clients lost money and started migrating to competitors, which caused 

significant revenue loss for the institutes.  

The aim of credit card fraud detection is to automatically and efficiently detect 

malicious use of a credit card. One approach is to use machine learning classifiers [28]. 

The challenge in this problem is the unbalanced data (genuine transactions by far 

outnumber fraud transactions) [31]. In this thesis, we worked on the credit card fraud 

detection dataset available in Kaggle [32]. The data set contains 30 attributes, including 

the time (in seconds) when the transaction took place, the amount of the transactions (in 

euros) and 28 attributes labeled as v1 to v28, which were obtained by applying PCA 

transformation to the original set of features [33] [34]. The PCA is performed in order 

to hide the sensitive information of the card holders due to legal and moral reasons 

because credit card detection is considered highly confidential and most of the time data 

related to card holders is not disclosed to public [35]. In our experiments, we removed 

the time attribute because we realized that it does not contribute anything to the 

classification. The credit card fraud detection data set is highly unbalanced: out of 
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284,807 transactions the positive class (frauds) account for 492 transactions, which 

constitutes approximately 0.172% of the transactions (Table 1.1.2.1).  

 

 Class No. of instances Percentage 

Normal 284315 99.828% 

Fraud 492 0.172% 

Table 2.1.2.1:  Credit card fraud detection dataset 

 

1.1.3 TalkingData AdTracking Fraud Detection  

TalkingData is one of  the largest companies in China that provides independent 

big data services. The company features over 70% of nation’s mobile devices. The 

company receives upto three billion clicks per day, of which 90% can turnout to be 

fraudulent. The company’s method to combat fraud is to check users’ profiles and flag 

the IP addresses that have many clicks per day without any apps installed as frauds. 

Using the acquired information, the company aims to generate an IP blacklist and 

device blacklist. To achieve this goal, TalkingData has launched a competition recently 

in Kaggle [4]. In this competition, the objective was to predict whether a user will 

download an app after clicking a mobile app advertisement. The attributes of the dataset 

are shown in the table below: 

Attribute name Description Type 

Ip IP address of device. Categorical 

App application identifier for marketing. Categorical 

Device device type id of client’s mobile device 

(e.g., iphone 7, iphone 8, huawei mate 7, 

Samsung galaxy s8 etc.) 

Categorical 

Os Operating system version id of the  

mobile device used 

Categorical 

Channel channel id of mobile ad publisher Categorical 

https://www.talkingdata.com/
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click_time timestamp of click (in UTC) Time 

attributed_time if user download the app for after 

clicking an ad, this is the time of the app 

download 

Time 

is_attributed  The class attribute to be predicted if the 

user has downloaded the app or not 

Class 

Table 1.1.3.1: Different attributes of the dataset 

Previous works 

When we were running the experiments on our workstation, it took more than 

three weeks to run and the memory consumption was increasing. Therefore we had to 

stop the experiments. However, we have been able to get results from the winner of the 

competition who claims after undersampling he still had to use 100 GB of memory. The 

following is what was done by the winning team. 

Their solution depends on negative under-sampling, which means they use all 

positive examples (i.e. is attributed == 1) and down-sampled negative examples on 

model training. They down-sampled negative examples such that their size became 

equal to the number of positive ones. It discarded about 99.8% of negative examples, 

but they didn't observe deterioration in performance when they tested with their initial 

features. Moreover, they stated that they could get better performance when creating a 

submission by bagging five predictors trained on five sampled datasets created from 

different random seeds. This technique enabled them to use hundreds of features while 

keeping LGB training time less than 30 minutes. To extract features, first, they started 

with features made available in Kaggle’s Kernels section. They did feature engineerings 

using all the data examples instead of the down-sampled ones. The Five raw categorical 

features (ip, os, app, channel, device), time categorical features (day, hour) and some 

count features. Then, they created a bunch of features in a brute-force way. For each 

combination of five raw categorical features (ip, os, app, channel, and device), they 

created the following click series-based feature sets (i.e., each feature set consists of 31 

(25 - 1 features):  click count within next one/six hours, forward/backward click time 

delta, and average attributed ratio of past clicks they didn't do feature selection. They 

just added all of them to the model. At that point, the LGB model's score was 0.9808. 
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Next, they tried categorical feature embedding by using LDA/NMF/LSA. Here 

is the pseudo code to compute  latent Dirichlet allocation  (LDA) topics of IPs related to 

app [23]. This ended up with 100 new features. They also computed similar features 

using NMF and PCA, in total 300 new features. 0.9821 with a single LGB. After that, 

they removed all raw categorical features except app since they supposed embedding 

features cover information available from them. Surprisingly, this minor change made 

the public LB score jump up from 0.9821 to 0.9828. Besides features mentioned here, 

they created higher dimensional LDA features and features that try to address the 

duplicate sample problem. Those features somewhat improve their public LB score.

 For the models, they used day 7 and 8 for training and day 9 for validation, and 

chose the best number of iterations of LGB. Then, they trained a model on day 7, 8, and 

9 with the obtained number of iterations for creating submission. After they finished 

feature engineering, owlight's five-bagged LGB model reached 0.98333 on public LB 

(and 0.98420 on private LB), which was trained on 646 features. The memory usage for 

training this model was around 100 GB. They implemented a simple three layer NN 

model as some kernels do. It scored worse than LGB models by 0.0013 points with 

0.005 downsampling rate at first. The final three-bagged NN model scored 0.98258 on 

public LB. They made their final submission with a rank-based weighted averaging. It is 

composed of seven bagged LGB models and a single bagged NN. It scored 0.98343 on 

public LB [36]. 

1.2 Objectives 

The objective of this thesis is to increase prediction accuracy on the anomaly 

detection problems including network anomaly detection, credit card fraud detection, 

and ad tracking fraud detection. All of the above mentioned problems contain a highly 

unbalanced classes, in which the number of samples belonging normal class is 

comparatively much larger than the number of samples having abnormal class. We use 

the F-measure (or F1-score) to optimize hyper-parameters of the models and to compare 

the performance of different algorithms on test sets rather than looking at the overall 

accuracy, which could be misleading. However, for some competitions such as Talking- 

Data Adtracking Dataset in kaggle.com area under the ROC curve (AUROC or AUC) is 

considered as the metric to score and rank the submissions made by the participants. 
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Therefore we also provide results on a range of accuracy metrics including AUC, 

whenever possible. 

1.3 Main Contributions 

All above mentioned problems can be viewed as machine learning problems 

because they have a data set, which can be used to train a learning model. Also, they all 

fall under the classification category for instance, a transaction can be classified as 

normal or fraud transaction. In the case of network anomaly detection, a connection can 

be classified as a normal connection or an attack. 

Most of the previous works in the literature on anomalies and outlier detection 

apply feature selection methods on datasets and then use individual classifiers or a 

clustering algorithm such as K-means [37] and its variations to predict a correct class of 

outliers and anomalies. Others have also tried to undersample the number of examples 

from the normal class so that they can be equal to the number of instances in the outlier 

class. There are no papers which have explored stacking ensemble of classifiers 

technique. Most have just used individual classifiers to detect outliers on the datasets 

studied in this thesis. 

As the main contribution of this thesis, various stacking ensembles are 

developed and optimized to obtain the best F-measure for the aforementioned anomaly 

detection problems. For example, the best stacking ensemble on credit card dataset 

contained Naïve Bayes, IBK, Random Forest, and J48 as the base learners and a logistic 

regression as the meta-learner with an L2-norm regularization employing Newton-CG 

solver. We also applied the undersampling technique to equate the proportion of 

negative and positive examples, feature selection, feature column normalization and 

implemented different classification algorithms for comparison. In KDDCup99 dataset, 

we improved the overall F-measure by more than 30% as compared to the literature. In 

Labris dataset, the improvement in F-measure was 0.5-0.6% both on binary and multi-

class classificiation problems as compared to the literature. In credit card fraud 

detection, we improved the F-measure by 5% with respect to the results posted on 

Kaggle’s Kernel section. The best accuracy is obtained using the under-sampled dataset.  

Other classifiers which are considered as ensembles of weak classifiers such as 

Adaboost and Random Forest are also optimized in this thesis by performing 10-cross 

validation experiments on train set. For Adaboost, we have used both decision trees and 
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decision stump. We have also included changing number of random seeds to obtain 

higher metrics measures. 

In addition to developing and optimizing ensembles we also implemented 

statistical techniques proposed in the literature for outlier detection such as Mahalanobis 

distance and 𝜒2-statistic measures.  

1.4 Structure 

The rest of the thesis is organized as follows: 

Chapter 2 

Chapter two describes the algorithms and methods developed for credit card fraud 

detection and hyper-parameter optimization. 

Chapter 3 

Chapter three explains the results from the experiements conducted and comparisons to 

the previous works in the literature. 

Chapter 4 

Chapter four concentrates on conclusion and future works by providing what can be 

improved in terms of feature engineering and possibilities of employing deep learning 

methods as more data is available. 
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Chapter 2  

Methods 

 

2.1 Stastical Methods 

2.1.1 Mahalanobis distance 

Mahalanobis distance is the generalization of how many standard deviations away is a 

point from the mean of a certain distribution [38]. The distance is small if the point is 

within the mean. The Mahalanobis distance can be computed as  

𝑴 =  (𝑶 −   ō)𝑻𝑺−𝟏(𝑶 − ō)                            (2.1.1.1) 

 

where o is the feature vector (i.e. a data sample) in test (or validation) data, ō is 

the mean of the feature vectors in train data labeled as "normal", 𝑆−1 is the inverse of 

the scatter matrix (i.e. covariance matrix) for samples labeled as "normal" in train data. 

In the formula below, 𝑂 and ō are column vectors. The scatter matrix can be computed 

as 

𝑺 =  
𝟏

𝑵
 ∑ (𝑶𝒏 − ō)𝑻(𝑶𝒏 − ō)𝑵

𝒏=𝟏                                                  (2.1.1.2) 

 

where 𝑂𝑛 is the 𝑛𝑡ℎ training data, ō the mean of the feature vectors in “normal" 

labeled train data, and 𝑁 is the number of samples in train data [39]. The Mahalanobis 

distance can be used to find outliers by measuring the distance between a data sample 

and a distribution (or average of data samples) in such a way that when the distance is 

greater than a threshold the data sample can be categorized as an outlier. Therefore one 

can classify a test (or validation) data object 𝑜 as an outlier if  
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𝑴 >  𝝉𝑴                                                          (2.1.13) 

 

where 𝜏𝑀 is a threshold parameter [40]. Mahalanobis distances are computed 

between data samples in validation set and samples labeled as “normal" in train set of 

Labris data for different values of O (at least 10 different values). Then we used this 

threshold to detect outliers using Mahalanobis distance on the test set and computed the 

F-measure, overall accuracy, sensitivity, specificity and precision [3]. 

2.1.2  𝟀𝟐 -statistic 

The 𝝌𝟐-statistic is used to measure whether there is a significant difference between 

measured frequency and the expected frequency. It aims to measure if a certain point 

falls within the expected distance and be classified as normal or otherwise be classified 

as an outlier and it is computed as  

𝝌𝟐 =  ∑
(𝑶𝒊 − 𝑬𝒊)𝟐

𝑬𝒊

𝑫
𝒊=𝟏                                          (2.1.2.1) 

    

where 𝑂𝑖 is the 𝑖𝑡ℎ feature value of the data object 𝑂 (i.e. sample), 𝐸𝑖 is the mean 

of the 𝑖𝑡ℎ dimension among all samples labeled as “normal” in train set, 𝐷 is the number 

of dimensions in each feature vector [3]. A data sample is classified as an outlier if its 

𝜒2-statistic is greater than a threshold. 𝝌𝟐 -statistic is computed for validation set of 

Labris data taking different values for X (at least 10 values). We found the optimum T 

value that gives the best F-measure on this set. Then use the optimum threshold to 

detect outliers using 𝜒2-statistic on test set and compute the F-measure, overall 

accuracy, sensitivity, specificity and precision [3].  

2.2 Classification Based Methods 

2.2.1 k-NN classification algorithm 

The k-nearest neighbor method computes the distance between the feature vector 

of the test sample (whose class is unknown) and the feature vectors of the train set 

samples [41]. It then makes a decision by combining votes from the k samples of the 

train set that are closest to the test sample. For distance functions, Euclidean, Manhattan 
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or Minkowski measures can be used [3]. An example that shows how k-nearest 

neighbor operates is given in Figure 2.2.1.1. 

 

 

Figure 2.2.1.1: k-Nearest Neighbor algorithm [42]. 

 

We optimized the number of nearest neighbors (i.e. the k parameter) by 

performing 10-fold cross-validation experiments on train sets, in which we maximized 

the F-measure. Then we trained the models using these optimums and computed 

predictions on test data. 

2.2.2 Logistic Regression 

Logistic regression is a linear classifier, in which the decision boundary is a 

hyperplane. It may be attractive due to its short training times for problems that contain 

many numeric features and when the samples that belong to different classes can be 

separated by a hyperplane with high accuracy. Logistic regression can be applied both 

to binary and multi-class classification problems [8]. An example showing how logistiic 

regression works is provided in the figure below.  
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Figure 2.2.2.1 Logistic Regression [43] 

In our experiments with logistic regression we optimized the ridge coefficient in 

the log-likelihood by performing a 10-fold cross-validation experiments on train sets 

maximizing the F-measure. Then we trained the models using these optimum values and 

computed predictions on test data. 

2.2.3 Decision Tree (i.e. J48 in Weka) 

A decision tree is a supervised learning method, which starts from the root node, 

performing a test on an attribute at each node and makes a classification decision when 

it reaches to a leaf node [9]. An example of a decision tree is given in Figure 2.2.3.1. In 

this thesis, we implemented the decision tree model J48 in WEKA and optimized the 

number of seeds by performing 10-fold cross-validation experiments on train sets and 

maximizing the F-measure. Then using the optimum number of seeds, we trained the 

model on train set and computed predictions test data. 
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Figure 2.2.3.1 Decision tree [35] 

2.2.4 Naive Bayes 

The Naive Bayesian classifier is based on Bayes' theorem and it is called naïve 

because of its assumptions that all features in a feature vector are independent from 

each other given the class which is known as class conditional independence [6]. The 

algorithm is simple and works well with high dimensional input data. To explain naïve 

Bayes classifier well we can imagine a two class problem with one class having more 

examples than the other. Naïve Bayes believes that the new unseen example will most 

likely belong to the abundant class, this belief is modeled by the a priori probably 

distribution 𝑃(𝑐). The classifier uses the Bayes formula to calculate the a posteriori 

distribution 𝑃(𝑐|𝑥) given the likelihood 𝑃(𝑥|𝑐), the a priori distribution 𝑃(𝑐), and the 

evidence distribution 𝑃(𝑥). Naive Bayes [44] is summarized in equations 2.2.4.1 and 

2.2.4.2 below. We used naïve Bayes to understand how a simple classifier performs on 

the anomaly detection problems studied in this thesis. After estimating the likelihood 

terms and the a priori distribution, predictions can be computed on a test example as the 

particular class that maximize the posterior distribution 𝑃(𝑐|𝑥). 

𝑷(𝒄|𝒙) =  
𝑷(𝒙|𝒄)𝑷(𝒄)

𝑷(𝒙)
         (2.2.4.1) 

𝑷(𝒄|𝒙) = 𝑷(𝒙𝟏|𝒄) × 𝑷(𝒙𝟐|𝒄) × ….  × 𝑷(𝒙𝒏|𝒄) × 𝑷(𝒄)       (2.2.4.2) 
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2.2.5 SVM 

A support vector machine classifier separates the classes by a hyperplane after 

transforming the data to a higher dimensional space. It is among the max-margin 

classifiers, which find the optimum hyperplane that maximize the margin distance [8, 

see chapt 7]. Figure 2.2.5.1, below shows an example in which two classes are separated 

by a hyperplane. In this thesis, we employed the SVM with and RBF kernel and 

optimized the C (i.e. cost) and gamma parameters. This requires finding the best C, 

gamma pair that gives the highest F-measure on train set. For this purpose, we chose a 

grid of C, gamma values, and performed a 10-fold cross-validation experiment for each 

pair. Then we selected the particular pair that gave the best F-measure on the train set. 

The following values are considered for the C parameter: 2−5, 2−3, 2−1, 21,23, …, 213, 

215 and the following values for the gamma parameter: 2−15, 2−13 , ..., 2−1, 21, 23, 25. 

After obtaining the best hyper-parameter combination we trained the SVM using the 

optimums and computed predictions on test data. 

 

                     Figure 2.2.4.1 Support Vector Machine classifier [45]     

2.2.6 Bagging 

Bagging, which is the short form of bootstrap aggregating, is a meta-algorithm 

which has the potential to increase the stability and accuracy of machine learning 
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algorithms. Bagging can be implemented both for regression and classification 

problems. In addition, it minimizes inter class variance ameliorating the overfitting 

problem. The algorithm generates different train sets from the data set with replacement 

trains a different model for each of them and computes predictions on test data. 

Ultimately the outputs from each learner is voted and a single output is obtained which 

makes it an ensemble of classifiers [3]. The Figure 2.2.6.1 represents the bagging 

algorithm. 

 

 

                             Figure 2.2.5.1 Bagging algorithm [46] 

2.2.7 Random Forest  

Random forest is a bagging variant, in which the base learners are decision trees 

each trained utilizing a randomly selected subset of variables or features [47]. Random 

forests are robust against overfitting and outliers. They can be used both in regression 

and classification problems. Similar to bagging, the outputs of the base learners can be 

combined by a voting procedure [3]. Figure 2.2.7.1 depicts how a random forest works. 
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                                             Figure 2.2.6.1 Random Forest [49] 

 

In this thesis, we optimized the number of trees by performing 10-fold cross-

validation experiments on train sets maximizing the F-measure. We considered the 

following values for the number of trees parameter: 10, 50, 100, 150, 200, 250, 500. 

After finding the optimum number of trees we trained the random forest classifier using 

the this optimum and computed predictions on test data. 

2.2.8 AdaboostM1 

AdaBoost is the abbreviation for "Adaptive Boosting" [10]. It is a meta 

algorithm that can improve the performance by combining several weak learners. 

Typically one-level desicion trees such as decision stumps are used as the base learners, 

which are added to the ensemble one at a time in each iteration. In boosting, each train 

sample has a weight, which represents how likely the sample will be selected in the next 

iteration. Initially the weights of all the train samples are equal. After the first base 

learner is trained by bootstrap sampling, predictions are computed for the train samples. 

The weights of the samples that are misclassified are increased and the weights of those 

that are classified correctly are decreased. The updated weights are used to form a new 

bootstrap sample to train a new base learner in the next iteration. The outputs of 

multiple-base learners are combined by a weighted voting approach, which uses higher 

weights for accurate classifiers and lower weights for less accurate ones [3]. 
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                                         Figure 2.2.7.1: Adaboost [50] 

 

In this thesis, employed decision stump and decision tree as the base learners  of 

Adaboost. We optimized the number of seeds parameter by performing a 10-fold cross-

validation experiment on train sets maximizing the F-measure with different number of 

seeds. We considered different number of seeds included 1, 2, 10, 15, 20, 30 seeds and 

different. Then using this optimum, we generated predictions on test data. 

 

2.2.9 Stacking Ensemble of Classifiers on the whole 

data 

After finding the optimum hyper-parameters for the individual classifiers on the 

train sets we combined them as base classifiers of the stacking ensemble and chose one 

of them as the meta learner. 

2.2.9.1 Stacking Ensemble 1 

This method employs k-NN, J48 which is the Java version of C4.5 [50], and 

naïve Bayes as the base learners and logistic regression as the meta learner.  

2.2.9.2 Stacking Ensemble 2 

This version employs the naive Bayes and k-NN (i.e. IBK in WEKA) as the base 

learners and logistic regression as the meta learner.  
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2.2.10 Stacking Ensemble of Classifiers on the under-

sampled data 

Due to high imbalance nature of our datasets (i.e our minority class is less than 

1%) we applied under-sampling to balance the proportion of positive and negative 

examples. 

2.2.10.1 Stacking Ensemble 3 

This method employs naive Bayes, k-NN, J48, and random forest as the base 

learners and logistic regression as the meta learner.  

2.2.10.2 Stacking Ensemble 4 

This ensemble uses naive Bayes, k-NN, J48, and logistic regression as the base 

learners and random forest as the meta learner.  

2.2.10.3 Stacking Ensemble 5 

The fifth stacking ensemble combines naive Bayes [29], k-NN, random forest, 

and logistic regression using J48 as the meta classifier. 

2.2.10.4 Stacking Ensemble 6 

The last stacking ensemble uses naive Bayes [29], k-NN, random forest, and J48 

as the base learners and logistic regression as the meta learner. This ensemble is 

implemented by scikit-learn employing various regularization techniques for logistic 

regression including L1 norm, L2 norm with Newton-CG solver, L2 norm with SAG, 

L2 norm with SAGA, L2 norm with LBFGS. The regularization coefficient C of logistic 

regression is optimized by performing 10-fold cross-validation experiments on train 

sets. The following values are considered for the C parameter: 0.000001, 0.00001, 

0.0001, 0.001, 0.01,0.1, 1, 10, 100, 1000, 10000,100000.  
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2.3 Feature selection 

        

          Reducing the dimensionality of the data by removing unwanted features has the 

potential of improving the accuracy of machine learning algorithms. It also makes them 

run faster. Furthermore, dimensionality reduction produces a more compact and more 

understandable representation of the most relevant features. 

          There are two techniques used in feature selection, namely: the filter technique 

and the wrapper technique. Filter technique uses a metric to rank the features, which can 

be combined with a search algorithm to find the best feature subset. Wrapper technique 

uses a machine learning algorithm to produce a subset of desired features which will 

ultimately be used for learning. Different search techniques can be used to find the 

optimum feature subset such as forward selection, backward selection, and bidirectional 

selection (i.e. a combination of forward and backward selection). We used both filter 

and wrapper approaches to select the top five features and checked if the results 

improve compared to the case that uses all the features. In WEKA, we use 

WrapperSubsetEval attribute evaluator which employs by default a 5-fold cross 

validation. Furthermore, WEKA has  OneRAttributeEval which is based on OneR 

classifier, InfoGainAttributeEval which is based on C4.5 classifier and information 

gain, GainRatioAttributeEval which uses gain ratio, 

SymmetricalUncertaintyAttributeEval, ChiSquaredAttributeEval which computes the χ2 

statistic of each feature with respect to the class, ReliefFAttributeEval which is 

example-based feature evaluator, SVMAttributeval which uses SVM to decide the value 

of features, PrincipalComponents which uses principal components transform and 

choose the largest eigenvectors, and LatentSemanticAnalysis that performs latent 

semantic analysis and transformation. For CfsSubsetEval, an entropy metric is used 

called symmetric uncertainty. CfsSbusetEval employs te correlation metric to assess the 

inter-redudancy of the features.  

2.4 Feature Normalization 

We normalized features to interval [0,1]. We used  

weka.filters.unsupervised.attribute.Discretize -B 10 -M -1.0 -R first-last –precision filter 
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in WEKA for this purpose. Normalization can use equal bining approach or equal 

frequency approach to normalize features. Also, entropy based normalization is widely 

used in the literature [51, see chapt. 7]. 

 

2.5 Software 

2.5.1 Matlab 

MATLAB is a non-open source programming language developed by 

MathWorks. The name MATLAB is short form for matrix laboratory, which is a multi-

model environment that can solve a wide range of numerical problems that include 

matrix computations. MATLAB contains libraries for machine learning, image 

processing, computer vision, and data visualization as well as interfaces for programs 

coded in other languages (e.g. C++). MATLAB also enables defining new user 

interfaces [53]. 

2.5.2 WEKA 

Weka stands for Waikato Environment for Knowledge Analysis developed at the 

University of Waikato in New Zealand. It is an open source software written in Java and 

licensed under the GNU General Public License. Weka contains hundreds of machine 

learning algorithms for a wide range of tasks including pre-processing, regression, 

classification, clustering, association rule mining and visualization [21]. It also allows 

developers around the world to be able to develop and share new machine learning 

algorithms. 

 

2.5.3 Scikit Learn 

Scikit-learn (formerly known as scikits.learn) [53] is an open source software 

machine learning library for the Python programming language [54]. It contains a 

variety of regression, clustering, and classification algorithms including ensemble 

methods such as  random forest, individual classifiers such as support vector machines, 
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gradient boosting, unsupervised algorithms such as DBSCAN and k-means. Scikit-learn 

is made to work together with Python’s numerical and scientific libraries such as Scipy 

and NumPy. 
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Chapter 3  

 

Results 

To assess the accuracy, different datasets have been prepared. The next section 

explains the accuracy measures used in this thesis. 

 

3.1 Accuracy Metrics 

 

To evaluate the accuracy of classifiers, the following metrics have been 

computed: confusion matrix, overall accuracy, precision, recall, specificity, F-measure, 

AUC, and Matthew's correlation coefficient (MCC). Due to high imbalance of the 

datasets used, F-measure is used to find the optimum hyper-parameters of the models. 

The definitons of each metric are given below. 

3.1.1 Confusion Matrix 

Confusion matrix, which is also known as an error matrix, is a table used to 

compute the accuracy of a classification algorithm. Figure below summarizes the 

contents of a confusion matrix. The definitions of the terms on the figure are as follows: 

TP = Number of samples predicted as positive and are labelled (i.e. actually) positive 

TN = Number of samples predicted as negative and are labelled (i.e. actually) negative 

FP = Number of samples predicted as positive but are labelled (i.e. actually) negative 

FN = Number of samples predicted as negative but are labelled (i.e. actually) positive 

3.1.2 Overall Accuracy 

To calculate the overall classification accuracy, the predictions on the test set are 

compared with the correct labels. The equation below formulates how this metric is 

computed in percentage. 
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𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝟏𝟎𝟎 × 
(𝑻𝑷 + 𝑻𝑵)

(𝑻𝑷 +𝑭𝑵+𝑭𝑷 +𝑻𝑵 )
                                         ( 3.1.2.1) 

3.1.3 Precision 

Precision is a measure, which computes how many of the positive predictions 

are correctly predicted as positive. It is formulate as follows 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝟏𝟎𝟎 ×  
(𝑻𝑷)

(𝑻𝑷 +𝑭𝑷 )
                                                    (3.1.3.1) 

3.1.4 Recall 

Recall computes how many of the instances whose true labels are positive are 

correctly predicted as positive. It is also known as the sensitivitiy or true positive rate. It 

is formulated as  

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 = 𝟏𝟎𝟎 × 
(𝑻𝑷)

(𝑻𝑷 +𝑭𝑵 )
                                                      (3.1.4.1) 

3.1.5 Specificity 

Specificity is a measure that computes how many of the examples for which the 

true label is negative are correctly predicted as negative. Equation below formulates the 

the specificity measure 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 = 𝟏𝟎𝟎 × 
(𝑻𝑵)

(𝑻𝑵 +𝑭𝑷 )
                                                (3.1.5.1) 

3.1.6 F-measure 

Also known as the F-Score, F-measure is an accuracy metric that computes the 

weighted harmonic mean of the recall and precision. It is formulated as 

𝑭 − 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 = 𝟐 ×  
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +𝑹𝒆𝒄𝒂𝒍𝒍)
                                                     (3.1.6.1) 

3.1.7 AUC 

Area under the receiver operating characteristic (ROC) curve, which is obtained 

as a plot of true positive rate versus false positive rate for different decision thresholds.  
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3.1.8 MCC 

Matthews Correlation coefficient (MCC) is another accuracy metric used to 

check the quality of a classifier. It uses the true positive, true negative, false positive 

and false negative values to calculate the MCC. The equation below shows how this 

measure is computed . 

𝑴𝑪𝑪 =  
𝑻𝑷 ×𝑻𝑵−𝑭𝑷 ×𝑭𝑵

√(𝑻𝑷+𝑭𝑷)(𝑻𝑷 +𝑭𝑵)(𝑻𝑵+𝑭𝑷)(𝑻𝑵+𝑭𝑵)
                                       (3.1.8.1) 

 

3.2 Results on Credit Card Fraud Dataset 

For AdaboostM1 [10], we used decision stump [56] as the base learner. For the 

randomly generated test set (using stratified remove folds in WEKA) the overall 

accuracy on the fraud class was 99.9136% and the overall cross-validation accuracy on 

the fraud class was 99.92%. The other measures can be seen on the Tables 3.2.1 and 

3.2.2. We also used J48 as the base classifiers and the results were the same. 

Due to highly imbalance in class labels we also decided to use under-sampling 

by choosing equal number of normal transactions as the number of fraud transactions 

randomly. The reduced data set had 328 samples of the normal class and 328 samples of 

the fraud class. The best performance according to F-measure was by logistic regression 

with L2-norm regularizer and Newton-CG as the solver [56]. This method obtained an 

F-measure of 94.86% and a recall of 98.06% as it can be seen on Table 3.2.2 followed 

by the stacking ensemble 3 with an F-measure of 94.3% and recall of 92.7%.  

 

Classifier Accuracy Recall F-

measure 

FP 

Rate 

Precision ROC 

Area 

MCC 

Stacking 

Ensemble 3 

94.36% 92.7% 94.3% 4.0% 95.9% 97.9% 88.8% 

AdaboostM1 94.05% 92.1% 93.9% 0.4% 95.9% 97.4% 88.2% 

Stacking 

Ensemble 5 

93.90% 90.2% 93.7% 2.4% 97.4% 94.4% 88.0% 
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Logistic 

Regression 

93.29% 91.5% 93.2% 4.9% 94.9% 97.4% 86.6% 

Stacking 

Ensemble 4 

93.14% 88.7% 92.8% 2.4% 97.3% 97.0% 86.6% 

Random Forest 94.82% 91.2% 94.6% 1.5% 98.4% 97.9% 89.9% 

Stacking 

Ensemble 1 

99.97% 89.9% 93.2% 3.0% 96.7% 95.7% 87.1% 

KNN 92.84% 88.1% 92.5% 2.4% 97.3% 95% 86.1% 

Naïve Bayes 91.76% 86.3% 91.3% 2.7% 96.9% 95.6% 84.0% 

Table 3.2.1: The accuracy measures of classifiers for credit card fraud detection. A 10-

fold cross-validation is performed on the train set. 

 

Classifier Accuracy Recall F-

measure 

FP 

Rate 

Precision ROC 

Area 

MCC 

Stacking 

Ensemble 

6 

93.03% 98.06% 94.86% 49.42% 98.73% 100% 87.95% 

Stacking 

Ensemble 

1 

93.00% 88.03% 93.15% 47.83% 96.48% 100% 84.98% 

Table 3.2.2: The accuracy measures of stacking ensembles 1 and 6 for credit card fraud 

detection. Logistic regression is employed as the meta learner with an L2 norm 

regularizer and a Newton-CG solver. A 10-fold cross-validation is performed on the 

train set. 

 

Classifier Accuracy Recall F-

measure 

FP Rate Precision ROC 

Area 

MCC 

Stacking 

Ensemble 

1 

99.97% 83% 90.4% 0.0% 100% 100% 90.8% 
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Stacking 

Ensemble 

2 

99.97% 80.4% 89.1% 0.0% 100% 100% 89.7% 

Random 

Forest 

99.90% 70% 72% 70% 0.0% 74% 96% 

Adaboost  99.91% 74% 75% 0.0% 75.3% 98.2% 75% 

KNN 99.92% 70% 74.4% 70% 0.0% 80% 97% 

Logistic 

Regression 

99.93% 67.1% 75.9% 0.0% 87.3% 98.9% 76.5% 

Table 3.2.3: The accuracy measures of classifiers for credit card fraud detection on test 

set 

 

Classifier Recall 

Logistic Regression c = 0.01 94.92% 

Logistic Regression c = 0.1 89.39% 

Logistic Regression c = 1 91.28% 

Logistic Regression c = 10 91.59% 

Logistic Regression c = 100 91.59% 

Table 3.2.4: The recall of logistic regression for credit card fraud detection. A 10-fold 

cross-validation is performed on the under-sampled train set [32] 

 

Classifier Recall 

Logistic Regression c = 0.01 55.96% 

Logistic Regression c = 0.1 59.93% 

Logistic Regression c =1  61.26% 

Logistic Regression c = 10 61.85% 
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Logistic Regression c =100 61.85% 

Table 3.2.5: The recall of logistic regression for credit card fraud detection. A 10-fold 

cross-validation is performed on the train set [32] 

 

3.3 Results on KDD cup99 Dataset 

3.3.1 Postprocessing and Validation 

As mentioned earlier, a stratified 10-fold cross-validation is performed on train 

set provided to optimize the hyper-parameters of the models. Then the models are 

trained using the optimum hyper-parameter configurations and predictions are 

computed on test data. For the KDD cup99 Dataset, the performance of the different 

classifiers including simple classifiers gave astonishing results. Below are the results of 

the random forest classifier with the number of trees set to 10.  

 

Correctly 

classified 

examples 

Incorreclty 

classified 

examples 

K 

coefficient 

Mean 

absolute 

error 

RMS 

Error 

RAE RRS 

Errror 

99.9964% 0.0036% 0.9999 0 0.0018 0.022% 1.126% 

Table 3.3.1.1: Binary classification accuracy measures of random forest for network 

intrusion detection on KDD Cup99 dataset. A 10-fold cross-validation is performed on 

train set 
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Table 3.3.1.2:  Multi-class classification accuracy measures of random forest for 

network intrusion detection on KDD Cup99 train set. A 10-fold cross-validation is 

performed on train set 

 

Classifier Accuracy 

J48 99.96% 

Random Tree 99.95% 

Adaboost 97.86% 

Table 3.3.1.3: Binary classification accuracy of J48, random tree and Adaboost for 

network intrusion detection on KDD Cup99 train set. A 10-fold cross-validation is 

performed on train set 

  

The results on Table 3.3.1.3 did not surprise us because most researchers claim decision 

trees algorithms perform well on the KDDCup99 and other intrusion detection 

problems. The following table summarizes results from other researchers. 
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Classifier J48 NB NB Tree RF Random 

Tree 

MLP SVM 

Accuracy 93.82% 82.66% 93.51% 92.79% 92.53% 92.26% 65.01% 

Table 3.3.1.4: Binary classification accuracy measures of various methods on KDDTest 

[17] 

 

Classifier J48 NB NB Tree RF Random 

Tree 

MLP SVM 

Accuracy 81.05% 76.56% 82.02% 80.67% 81.59% 77.41% 69.52% 

Table 3.3.1.5: Binary classification accuracy measures of various methods on 

KDDTest+ [17] 

 

Classifier J48 NB NB Tree RF Random 

Tree 

MLP SVM 

Accuracy 63.97% 55.77% 66.16% 63.26% 58.51% 57.34% 42.29% 

Table 3.3.1.6: Binary classification accuracy measures of various methods on 

KDDTest-21 [17] 

 

In addition, the Tavallaee et al. [21] ran experiments on an unseen test set called 

KDDTest21, which consisted of 11,850 instances.  Bolon-Canedo et al. [56] who use 

feature selection algorithms on the data set states that the filter technique was selected 

because of the size of the KDD Cup 99 dataset was large. The following is the  

comparison of the results (in percentage) attained in binary classification problem on 

the test set. 

 

Method Error True 

Positives 

False 

Positives 

No. of 

Features 
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EMD + Cons + 

One layer 

7.78 90.52 0.77 6 

EMD + Cons + 

PSVM 

7.78 90.53 0.78 6 

EMD + Cons +  

FNN 

8.01 90.18 0.54 6 

EMD + INT + 

C4.5 

6.69 91.81 0.49 7 

PKID + Cons + 

NB 

7.99 90.18 0.42 6 

Table 3.3.1.7: Binary classification accuracy measures of naïve Bayes and C4.5 using a 

subset of selected features on test set [56] 

 

Method Error True 

positives 

False 

Positives 

No. of 

Features 

PKID + Cons + 

C4.5(0.25) 

5.15% 94.07% 1.90% 6 

PKID + Cons + 

C4.5(0.50) 

5.14% 94.08% 1.92% 6 

EMD + INT + 

C4.5(0.25) 

6.74% 91.73% 0.44% 7 

EMD + INT + 

C4.5(0.50) 

6.69% 91.81% 0.46% 7 

PKID + Cons + 

NB 

 

7.99% 90.18% 0.42% 6 

Table 3.3.1.8: Binary classification accuracy measures of various methods on KDD Test 

[57]. 
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Combination Score according to cost 

matrix [58] 

No. of features 

KDD winner 0.2331 41 

EMD + INT + C4.5 0.2344 11 

EMD + INT + C4.5 0.2324 15 

Table 3.3.1.9: Binary classification accuracy of Decision tree (C4.5) with Entropy 

minimization discretization (EMD) with Interact algorithm (INT) on KDDTest [57]. 

 

In the paper by Bolon-Canedo et al. [2] a hybrid approach that combines 

different feature selection methods and discretization are employed to boost two class 

classification performance. The best results are realized when seven attributes are 

employed. This indicates that only those attributes, rather than of the whole set of 41 

attributes, are relevant when the classification is implemented in a real world system. 

These results are shown in the table 3.3.1.10 with Proportional k-Interval Discretization 

(PKID) [56] 

 

Method Error TP FP 

PKID+Cons+C4.5(0.25) 5.15 94.07 1.90 

PKID+Cons+C4.5(0.5) 5.14 94.08 1.92 

EMD+INT+C4.5(0.25) 6.74 91.73 0.44 

EMD+INT+C4.5(0.50) 6.69 91.81 0.49 

KDD Winner 6.70 91.80 0.55 

5FNs_poly 6.48 92.45 0.86 

5FNs_fourier 6.69 92.72 0.75 

5FNs_exp 6.70 92.75 0.75 

SVM Linear 6.89 91.83 1.62 

SVM 2poly 6.95 91.79 1.74 

SVM 3poly 7.10 91.67 1.94 

SVM RBF 6.86 91.83 1.43 

ANOVA ens. 6.88 91.67 0.90 

Pocket 2cl. 6.90 91.80 1.52 

Pocket mcl. 6.93 91.86 1.96 
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Table 3.3.1.10: Binary classification accuracy measures of various methods on 

KDDTest [2].  

 

3.4 Results on Labris Dataset 

3.4.1 Mahalanobis distance 

 

Mahalanobis distance is good at detecting outliers, which are usually far away 

from the mean of the normal examples. In this thesis, Mahalanobis distance based 

classifier is implemented for binary classification problem. The optimum threshold for 

classifying a data sample as an outlier or not is chosen at if its Mahalanobis distance is  

75 percentile or below of all the samples distances and every instance’s Mahalanobis 

distance beyond the threshold is classified as an attack. To assess prediction accuracy, 

We randomly selected a subset of data samples from the training set (such as 20%) and 

saved them into separate files. These were used as validation data to optimize model 

configurations or hyper-parameters when necessary. We saved the remaining samples as 

the new train data (excluding the validation data) in WEKA and then a script that 

computes Mahalanobis distance is run in Matlab. Then the accuracies given in Table 

3.4.1.1 are computed using Java. Based on these results, Mahalanobis distance based 

classifier did not perform well in network anomaly detection on Labris data. 

 

Classifier Accuracy F-measure Sensitivity Precision Specificity 

Mahalanobis 70.39% 13.49% 25.05% 0.092% 74.99% 

Table 3.4.1.1: Binary classification accuracy of Mahalanobis distance based outlier 

detection method on Labris test set 

 

3.4.2 Chi-square 

 

Preprocessing 
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Similar to Mahalanobis distance, 𝜒2-statistic is used to discriminate attacks from normal 

examples. We randomly selected a subset of data samples from the training set (such as 

20%) and saved them into separate files. These were used as validation data to optimize 

model configurations or hyper-parameters when necessary. We saved the remaining 

samples as the new train data (excluding the validation data) in WEKA and then a 

Matlab script was executed that computes the chi-square measure. The optimum 

threshold to classify a data sample as attack is set to 75 percentile. Then, prediction 

accuracies given in Table 3.4.2.1 are computed using Java. These results show that the 

𝜒2-statistic does not perform well in network anomaly detection on Labris data. 

 

Classifier Accuracy F-measure Sensitivity Precision Specificity 

𝜒2-statistic 70.24% 13.078% 24.29% 0.089% 74.91% 

Table 3.4.2.1: Binary classification accuracy measures of chi-square statistic based 

outlier detection method on Labris test set 

 

3.4.3 Simple Classifiers 

We implemented simple classifiers for network anomaly detection on Labris 

dataset including OneR, naïve Bayes and decision tree (J48). All three gave amazingly 

high accuracies around 99% because are few attributes can be sufficient for achieving 

high accuracy. Using attributeSelector in WEKA to learn these attributes and one by 

one attributes were removed by single removal of one attribute at a time and differenct 

combination of attributes removal but still the classifiers found high accuracy models 

from the remaining set of attributes.  

 

Classifier Accuracy 

OneR 99.00% 

Naïve Bayes 99.00% 

Decision Tree (J48) 99.00% 
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Table 3.3.3.1: Binary classification accuracy of simple classifiers. A 10-fold cross-

validation is performed on Labris train set. 

 

K-Nearest Neighbors 

We optimized the number of nearest neighbors parameter (i.e. k) of the k-NN 

method. We considered values from 1 to 10 with increments of 1 and performed a 10-

fold cross-validation on train set. The optimum k value is found as 1. The optimization 

step took about 40 hours on the a computer with 4 core processor and 8 GB of memory. 

All the values of k gave almost similar F-measure but WEKA suggested k = 1 as the 

best hyper-parameter. The command for optimizing k is 

“weka.classifiers.meta.CVParameterSelection -P "K 1.0 10.0 10.0" -X 10 -S 1-

weka.classifiers.lazy.IBk -K 1 -W 0 -A weka.core.neighboursearch.LinearNNSearch -A 

“weka.core.EuclideanDistance -R first-last"  1.000 0.000 1.000 1.000 1.000 1.000 

1.000” 

 

Once the optimum k is found, predictions are computed on test data using this optimum. 

Table 3.4.3.2 below include the accuracy measures of k-NN method on Labris test data. 

 

Class TP Rate FP Rate Recall F-measure MCC ROC Area 

Normal 100.0% 0.00% 100.0% 100.0% 99.9% 100.0% 

Syn ack 

ddos 

64.4% 0.03% 67.5% 65.9% 65.7% 98.3% 

icmp ddos 100% 0.00% 100.0% 100.0% 100% 100% 

rst ack 

ddos 

88.2% 0.04% 81.1% 84.5% 84.2% 99.8% 

rst ddos 69.6% 0.00% 79.4% 74.2% 74.0% 99.3% 

Fin ddos 0.00% 0.00% 0.00% 0.00% 0.00% 72.9% 

ack ddos 81.9% 0.01% 77.0% 79.4% 79.3% 98.7% 

http get 99.8% 0.00% 100.0% 99.9% 100% 100% 

syn ddos 87.2% 0.03% 87.0% 87.1% 86.8% 99.5% 

Table 3.4.3.2: Multi-class classification accuracy of k-NN on Labris test set 
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Logistic Regression 

 We performed a 10-fold cross-validation experiment on the Labris train set. Table 

3.4.3.3 below shows various accuracy measures. 

  

Support Vector Machines 

The best C, gamma pair is found as: C = 21,  and gamma = 215 and the results 

are shown on the Table 3.4.3.3. 

 

Random Forest 

We considered different values for the number of trees but all of them gave 

similar F-measure. We selected this parameter as 200 and computed predictions on test 

data. Table 3.4.3.3 show accuracy measures of random forest. 

 

Classifier Accuracy F-measure Sensitivity Specificity Precision 

Random 

Forest 

98.7% 98.7% 98.7% 99.99% 98.7% 

SVM 98.02% 97.8% 98.6% 98% 100% 

Stacking 

ensemble 

99.14% 99.1% 99.1% 100% 99.2% 

Logistic 

Regression 

97.77% 97.5% 97.8% 98% 98.0% 

Table 3.4.3.3: Binary classification accuracy measures of different classifiers. A 10-fold 

cross-validation is performed on Labris train set  

 

3.4.4 Stacking ensemble of classifiers 

We employed logistic regression as the meta learner, J48, Naïve Bayes,  k-NN 

as the base learners. We run with J48 as a base classifier, Naive Bayes as a base 

classifier, and Naive Bayes with KNN as base classifiers. Also, the combination of all 

of the above, i.e. the combination of logistic regression as meta learner and J48, Naïve 
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Bayes, K-NN, and SVM as base classifiers gave the best perfomance. The results were 

as shown in Table 3.4.3.3. 

3.4.5 Feature Normalization 

k-NN classifier (i.e. IBK in WEKA) was chosen for the normalized attributes. 

All of the tested classifiers’ performance dropped a little when the features were 

normalized. 

 

Accuracy F-measure Precision Sensitivity Specificity 

98.5% 98.5% 98.47% 98.5% 99.99% 

Table 3.4.5.1: Binary classification accuracy measures of k-NN on non-normalized 

features. A 10-fold cross-validation is performed on Labris train set 

 

Accuracy F-measure Precision Sensitivity Specificity 

98.47% 98.6% 98.6% 98.6% 99.99% 

Table 3.4.5.2: Binary classification accuracy measures of k-NN on normalized features. 

A 10-fold cross-validation is performed on Labris train set 

 

3.4.6 Results and Evaluation 

Mahalanobis distance and Chi-Square based classifiers did not perform well on 

this data set because there were many overlaps of data points of anomaly and normal 

data. SVM performed well on the anomalies. All classifiers predicted correctly the 

normal class data point i.e. TP rate was 1.00 due to big difference in ratio of normal and 

attacks, the overall accuracies of classifiers are obtained as high. 

 

Classifier Accuracy F-measure Sensitivity Precision ROC area 

Logistic 

Regression 

98.99% 90.3% 88.5% 92.2% 99.99% 

k-NN 98.47% 98.6% 98.6% 98.6% 99.99% 

SVM 98.02% 97.8% 98.0% 98.6% 100% 

RF 98.7% 98.7% 98.7% 98.7% 99.99% 

Stacking 99.13% 99.1% 99.1% 99.2% 99.99% 
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Ensemble 1 

Normalized 

k-NN 

98.47% 98.5% 98.5% 98.5% 74.91% 

Table 3.4.6.1: Binary classification accuracy measures of various classifiers. A 10-fold 

cross-validation is performed on Labris train set 

 

3.4.7 Feature Selection 

There were four main feature selection methods implemented namely: 

CfsSubsetEval [59], ClassifierAttributeEval, InfoGainAttributeEval, and Classifier 

subset evaluator. Out of 41 features, 9 features were selected using CfsSubsetEval [60] 

as the ones which are relevant to classifiers. However, the features selected did not 

improve the classifiers perfomances. The selected features are: network_service, 

dst_bytes, tw_shConnectionCount, tw_shSYNErrorRate, cw_shConnectionCount, 

cw_shResetRate, cw_shSameServiceRate, cw_ssSYNErrorRate, cw_ssResetRate. The 

results are as shown in the Table 3.4.7.1. 

 

Classifier Accuracy F-measure Sensitivity Precision ROC Area 

Random 

Forest (Tree 

= 200) 

98.8074 % 98.8% 98.8% 98.8% 100.0% 

KNN (k = 1) 98.7504% 98.7% 98.8% 98.7% 99.8% 

Table 3.4.7.1: Binary classification accuracy measures of various classifiers after 

feature selection is performed. A 10-fold cross-validation is performed on Labris train 

set 

 

3.5 Results on TalkingData Adtrack Fraud Detection 

Dataset 

Due to the bulk of dataset (i.e. about 185 milllion instances with seven 

attributes). This dataset is recent we are still working on it 
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Previous works 

Submissions were evaluated using the area under the ROC curve measure in Kaggle. 

The highest AUC score was 0.9843223. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

Chapter 4  

Conclusion 

In this thesis, different classiffcation algorithms have been implemented 

including basic classifiers and more complex ones. Moreover, other techniques such as 

normalization, under-sampling and feature selection were also employed. Techniques 

such as normalization did not yield better results than the unnormalized data and feature 

selection for most of the experiments did not improve the results either. Under-sampling 

has proven to work better than non-undersampled data because of the class imbalance 

problem present in the data sets we worked on for outlier detection. 

Stacking ensemble of classifiers technique has improved the results 

considerably, although it is computationally more expensive as it includes training 

several base learners.  

For future work, we propose other ways of feature engineering as it has been 

done by the winning team of TalkingData Adtracking dataset challenge, where other 

advanced features such as LDA/NMF/LSA, SOM, are employed. We can consider 

trying different combinations of features to form new feature vectors. In addition, trying 

different classifiers with different features and combinining the classifiers as in stacking 

ensemble of classifiers can be another field which could be tested. This technique of 

training different classifiers using different sets of features has started to emerge in 

object dectections in images and videos. As another future direction, we can consider 

applying deep learning techniques to anomaly detection problems studied in this thesis 

and incorporate them to the ensemble models. 

 

 

 

 

 

 

 

 

 



47 

 

Bibliography 

 

[1] Carl E Landwehr et al. “A taxonomy of computer program security 

aws". In: ACM Computing Surveys (CSUR) 26.3 (1994), pp. 211- 

254. 

[2] Veronica Bolon-Canedo, Noelia Sanchez-Marono, and Amparo Alonso- 

Betanzos. “A combination of discretization and filter methods for improving 

classification performance in KDD Cup 99 dataset". In: Neural Networks, 2009. IJCNN 

2009. International Joint Conference on. IEEE. 2009, pp. 359-366. 

[3] University of Waikato. Weka. 2018. url: https://www.cs.waikato.ac. 

nz/ml/weka/. 

[4] Kaggle. Adtracking dataset. 2018. url: https://www.kaggle.com/c/ 

talkingdata-adtracking-fraud-detection/data. 

[5] Jyothsna, V. V. R. P. V., Prasad, V. R., & Prasad, K. M. (2011). A review of 

anomaly based intrusion detection systems. International Journal of Computer 

Applications, 28(7), 26-35. 

[6] Richard O Duda, Peter E Hart, and David G Stork. Pattern classi_ca- 

tion. John Wiley & Sons, 2012. 

[7] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine 

learning. Machine learning, 3(2), 95-99. 

[8] Chris Bishop, Christopher M Bishop, et al. Neural networks for pattern 

recognition. Oxford university press, 1995. 

[9] James H Steiger, Alexander Shapiro, and Michael W Browne. \On 

the multivariate asymptotic distribution of sequential chi-square statistics". 

In: Psychometrika 50.3 (1985), pp. 253-263. 

[10] Andrea Dal Pozzolo et al. “Credit Card Fraud Detection: a Realistic 

Modeling and a Novel Learning Strategy". In: IEEE Transactions on 

Neural Networks and Learning Systems (Accepted)(2017) (2017). 

[11] dataaspirant. rf image. 2018. url: http://dataaspirant.com/2017/ 

05/22/random-forest-algorithm-machine-learing/. 



48 

 

[12] Roy De Maesschalck, Delphine Jouan-Rimbaud, and D_esir_e L Massart. “The 

mahalanobis distance". In: Chemometrics and intelligent laboratory systems 50.1 

(2000), pp. 1-18. 

[13] dni. bagging image. 2018. url: http : / / dni - institute . in / blogs / 

bagging-algorithm-concepts-with-example/. 

[14] Documentation. Scikit. 2018. url: http://scikit-learn.org/stable/ 

documentation.html. 

[15] Elham Hormozi et al. “Accuracy evaluation of a credit card fraud detection 

system on Hadoop MapReduce". In: Information and Knowledge 

Technology (IKT), 2013 5th Conference on. IEEE. 2013, pp. 35-39. 

 [16] Ekrem Duman, Ayse Buyukkaya, and Ilker Elikucuk. “A novel and 

successful credit card fraud detection system Implemented in a Turkish 

Bank". In: Data Mining Workshops (ICDMW), 2013 IEEE 13th 

International Conference on. IEEE. 2013, pp. 162-171. 

[17] Pang-Ning Tan et al. Introduction to data mining. Pearson Education 

India, 2006. 

[18] J. Kevric, S. Jukic, and A. Subasi, An effective combining classifier approach 

using tree algorithms for network intrusion detection, Neural Computing and 

Applications, pp. 1-8, 2016. 

[19] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, A detailed analysis of the 

KDD CUP 99 data set, in Proc. 2nd IEEE International Conference on Computational 

Intelligence for Security and Defense Applications, USA: IEEE Press, pp. 53-58, 2009. 

[20] Kalpana Jaswal, Praveen Kumar, and Seema Rawat. “Design and development of a 

prototype application for intrusion detection using data mining". In: Reliability, 

Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions), 2015 

4th International Conference on. IEEE. 2015, pp. 1-6. 

[21] Mahbod Tavallaee et al. ”A detailed analysis of the KDD CUP 99 dataset". In: 

Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. 

IEEE Symposium on. IEEE. 2009, pp. 1-6. 

[22] R Can Aygun and A Gokhan Yavuz. “Network anomaly detection with 

stochastically improved autoencoder based models". In: Cyber Security and Cloud 



49 

 

Computing (CSCloud), 2017 IEEE 4th International Conference on. IEEE. 2017, pp. 

193-198. 

[23] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. “Evaluating 

effectiveness of shallow and deep networks to intrusion detection system". In: Advances 

in Computing, Communications and Informatics (ICACCI), 2017 International 

Conference on. IEEE. 2017, pp. 1282-1289. 

[24] Nathan Shone et al. “A deep learning approach to network intrusion detection". In: 

IEEE Transactions on Emerging Topics in Computational Intelligence 2.1 (2018), pp. 

41-50. 

[25] Nguyen Thanh Van, Tran Ngoc Thinh, and Le Thanh Sach. “An anomalybased 

network intrusion detection system using deep learning". In: System Science and 

Engineering (ICSSE), 2017 International Conference on. IEEE. 2017, pp. 210-214. 

[26] Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. “The recurrent temporal 

restricted boltzmann machine". In: Advances in neural information processing systems. 

2009, pp. 1601-1608. 

[27] saed. naive image. 2018. url: http : / / www . saedsayad . com / naive _ 

bayesian.htm. 

[28] Alejandro Correa Bahnsen et al. “Cost sensitive credit card fraud detection 

using Bayes minimum risk". In: Machine Learning and Applica- 

tions (ICMLA), 2013 12th International Conference on. Vol. 1. IEEE. 

2013, pp. 333-338. 

[29] Addisson Salazar et al. “Automatic credit card fraud detection based on non-linear 

signal processing". In: Security Technology (ICCST), 2012 IEEE International 

Carnahan Conference on. IEEE. 2012, pp. 207-212. 

[30] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting 

algorithm". In: Icml. Vol. 96. 1996, pp. 148-156. 

[31] Anusorn Charleonnan. “Credit card fraud detection using RUS and MRN 

algorithms". In: Management and Innovation Technology International Conference 

(MITicon), 2016. IEEE. 2016, MIT-73. 

[32] kaggleuser. Fraud Table. 2018. url: https://www.kaggle.com/mlg- 

ulb/creditcardfraud/home. 

[33] Kyungnam Kim. “Face recognition using principle component analysis". 

In: International Conference on Computer Vision and Pattern 



50 

 

Recognition. Vol. 586. 1996, p. 591. 

[34] Ian T Jollie. “Principal Component Analysis and Factor Analysis" In: Principal 

component analysis. Springer, 1986, pp. 115-128. 

[35] N Malini and M Pushpa. “Analysis on credit card fraud identification techniques 

based on KNN and outlier detection". In: Advances in Electrical, Electronics, 

Information, Communication and Bio-Informatics (AEEICB), 2017 Third International 

Conference on. IEEE. 2017, pp. 255-258. 

[36] kaggle. fork notebook kaggle. 2018. url: https://www.kaggle.com/ 

yuliagm/talkingdata-eda-plus-time-patterns. 

[37] Adil M Bagirov, Julien Ugon, and Dean Webb. “Fast modified global k-means 

algorithm for incremental cluster construction". In: Pattern recognition 44.4 (2011), pp. 

866-876. 

[38] Shiming Xiang, Feiping Nie, and Changshui Zhang. “Learning a Mahalanobis 

distance metric for data clustering and classification". In: Pattern Recognition 41.12 

(2008), pp. 3600-3612. 

[39] Varun Chandola. Anomaly Detection: A Survey Varun Chandola, Arindam 

Banerjee, and Vipin Kumar. 2007. 

[40] Goeffrey J McLachlan. “Mahalanobis distance". In: Resonance 4.6 (1999), 

pp. 20-26. 

[41] David W Aha, Dennis Kibler, and Marc K Albert. “Instance-based 

learning algorithms". In: Machine learning 6.1 (1991), pp. 37-66. 

[42] adatanalyst. knn image. 2018. url: http://adataanalyst.com/machine- 

learning/knn/. 

[43] researchgate. tree image. 2018. url: https://www.researchgate.net/ 

figure/Cost-sensitive-decision-tree_fig3_289283385. 

[44] George H John and Pat Langley. “Estimating continuous distributions 

in Bayesian classifiers". In: Proceedings of the Eleventh conference on 

Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc. 

1995, pp. 338-345. 

[45] J Ross Quinlan. “C4. 5: Programming for machine learning". In: Mor- 

gan Kauffmann 38 (1993). 



51 

 

[46] Yufeng Kou et al. “Survey of fraud detection techniques". In: Networking, sensing 

and control, 2004 IEEE international conference on.Vol. 2. IEEE. 2004, pp. 749-754. 

[47] Leo Breiman. “Random forests". In: Machine learning 45.1 (2001), 

pp. 5-32. 

[48] Webb, G. I. (2000). Multiboosting: A technique for combining boosting and 

wagging. Machine learning, 40(2), 159-196. 

[49] in_nitescript. adaboost image. 2018. url: https://infinitescript. 

com/2016/09/adaboost/. 

[50] Yinsheng Qu et al. “Boosted decision tree analysis of surface-enhanced 

laser desorption/ionization mass spectral serum profiles discriminates 

prostate cancer from noncancer patients". In: Clinical chemistry 48.10 

(2002), pp. 1835-1843. 

[51] Ian H Witten et al. Data Mining: Practical machine learning tools and 

techniques. Morgan Kaufmann, 2016. 

[52] matlab. matlab documentation. 2018. url: https://es.mathworks. 

com/products/matlab.html. 

[53] Sergio Moro, Raul Laureano, and Paulo Cortez. “Using data mining for 

bank direct marketing: An application of the crisp-dm methodology". 

In: Proceedings of European Simulation and Modelling Conference-ESM'2011. 

EUROSIS-ETI. 2011, pp. 117-121. 

[54] mit. Kddcup99 dataset. 2018. url: http://kdd.ics.uci.edu/databases/ 

kddcup99/kddcup99.html. 

[55] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python". In: 

Journal of machine learning research 12.Oct (2011), pp. 2825-2830. 

[56] Jun Liu, Jianhui Chen, and Jieping Ye. “Large-scale sparse logistic regression". 

In: Proceedings of the 15th ACM SIGKDD international con- 

ference on Knowledge discovery and data mining. ACM. 2009, pp. 547- 

556. 

[57] Veronica Bolon-Canedo, Noelia Sanchez-Marono, and Amparo Alonso- 

Betanzos. “Feature selection and classification in multiple class datasets: 

An application to KDD Cup 99 dataset". In: Expert Systems with Applications 38.5 

(2011), pp. 5947-5957. 



52 

 

[58] Alexey Grigorev. (2018, July 21). Cost Matrix. Retrieved from 

http://mlwiki.org/index.php/Cost_Matrix 

[59] Hall, M. A. (1998). Correlation-based feature subset selection for machine 

learning. Thesis submitted in partial fulfillment of the requirements of the degree of 

Doctor of Philosophy at the University of Waikato. 

[60] Mohammad Khubeb Siddiqui and Shams Naahid. “Analysis of KDD CUP 99 

dataset using clustering based data mining". In: International Journal of Database 

Theory and Application 6.5 (2013), pp. 23-34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

http://alexeygrigorev.com/


53 

 

 

 

 


