AGU Graduate School of Engineering and Science

COURSE RECORD

COURSE RECORD			
Code	ECE 535		
Name	Digital Signal Processing		
Hour per week	3+0 (Theory + Practice)		
Credit	3		
ECTS	10		
Level/Year	Undergraduate/Graduate		
Semester	Fall		
Type	Elective		
Location	Classroom		
Prerequisites	Undergraduate course in signals and systems. Ability to program is essential to complete the computer-based projects. The projects can be done using MATLAB.		
Special Conditions	-		
Coordinator(s)	Prof. Bülent Yılmaz		
Webpage	-		
Content	Discrete-time signals and systems, linear and shift-invariant system properties, convolution integral and sum, sampling theorem, z-transform, discrete-time Fourier transform, fast Fourier transform, discrete Fourier transform, digital filters, adaptive signal processing fundamentals, spectral estimation		
Objectives	 (1) to introduce signals, systems, their time- and frequency-domain representations and the associated mathematical tools that are fundamental to all DSP techniques; (2) to provide a working knowledge of the design, implementation and analysis of digital filters; (3) to provide a working knowledge of modeling and analysis of signals based on spectral estimation techniques. (4) to provide the student with the necessary background for taking advanced level courses in signal processing. 		
Learning Outcomes	LO1 Determine the filter specifications by analyzing the real world digital signal processing problems, and design the filter accordingly LO2 Analyze and model digital signals LO3 Implement discrete-time systems LO4 Alter the sampling rate of a signal using decimation and interpolation LO5 Implement digital signal processing methods in MATLAB (or an equivalent programming language) based on a given algorithmic description or theory		
Requirements	Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, 3rd Edition, Prentice Hall		
Reading List	J.G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, Prentice-Hall, NJ, Fourth Edition, 2007		
Ethical Rules and Course Policy	University Ethics (Academic Honesty) Rules		

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lecture	13	40%
Group Works	3	40%
Presentations	2	15%
Web search	2	5%
	Total	100

ASSESSMENT

Evaluation Criteria	Weight (%)
Quizzes	15%

AGU Graduate School of Engineering and ScienceProgram

Weekly Assignments	10%
Group Project Assignments & Presentations	35%
Attendance/Participation	05%
Midterm Exam	15%
Final Exam	20%
	Total 100%

COURSE LOAD

Activity	Duration (hour)	Quantity	Work Load (hour)
In class activities	3	14	42
Group work	10	6	60
Research (web, library)	2	5	10
Required Readings	2	5	10
Pre-work for Presentation	3	4	12
Quiz	5	4	20
Studying for Midterm Exam	20	1	20
Studying for Final Exam	20	1	20
Term Project	30	2	60
		General Sum	254

ECTS: 10 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	P01	P02	P03	P04	P05	P06
LO1	5	5	5	2	1	4
LO2	5	5	3	1	2	3
LO3	5	5	4	2	1	2
LO4	3	2	2	2	1	2
LO5	3	4	4	2	2	2

^{*} Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Topic	Outcomes
1	Introduction to digital signal processing	L01, L02
	Activity: Lecture, Web Search	
2	Discrete time systems	LO3
	Activity: Lecture, Group Work	
3	Discrete time systems	LO3
	Activity: Lecture, Group Work	
4	Z transform	LO1, LO5
	Activity: Lecture, Group Work	
5	Discrete time Fourier transform	LO3, LO4, LO5
	Activity: Presentation	
6	Midterm exam	
	Activity:	
7	FIR filter design	LO1, LO3, LO5
	Activity: Lecture, Group Work	
8	IIR filter design	LO1, LO3, LO5
	Activity: Lecture, Group Work	
9	Spectral estimation: background	LO2, LO5
	Activity: Lecture, Group Work	
10	Spectral estimation: parametric methods	LO2, LO5
	Activity: Lecture, Group Work	
11	Spectral estimation: non-parametric methods	LO2, LO5

AGU Graduate School of Engineering and ScienceProgram

	Activity: Lecture, Group Work	
12	Adaptive signal processing	LO1, LO2, LO3,
	Activity: Lecture, Group Work	LO5
13	Adaptive signal processing	L01, L02, L03,
	Activity: Lecture, Group Work	LO5
14	Presentation of term project to class	L01, L02, L03,
	Activity: Group Work, Presentation	LO4, LO5

Prof. Bülent YILMAZ April 25, 2018