

COURSE RECORD	
Code	ECE 525
Name	Nanophotonics
Hour per week	3
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall
Туре	Elective
Location	Classroom
Prerequisites	Undergraduate level electromagnetics knowledge is necessary.
Special Conditions	-
Coordinator(s)	Asst. Prof. Talha Erdem
Webpage	-
Content	This course covers the basic physical phenomena, principles, experimental advances and potential impact of light propagation, emission, absorption, and scattering in complex nanostructures. Within this framework, introductory quantum theory of solids and quantum confinement effects will be discussed together with wave optics and wave mechanics of complex structures as well as light-matter interactions.
Objectives	 Introducing the basic principles and applications in nanophotonics Presenting a comprehensive view on physical phenomena related to nano- optics and light-matter interactions Providing the necessary tools for students to track the latest advancements in the area of nanophotonics Making the students familiar with simulations and experimental methods in nanophotonics
Learning	LO1: Understand the basics of nanophotonics and nanooptics
Outcomes	 LO2: Knowledge about how nanophotonic devices work LO3: Gaining the capability to design nanophotonic devices LO4: Learning how to find the information required to solve a problem related to nanophotonics LO5: Gaining the capability to prepare technical presentations and academic reports on nanophotonics
Requirements	Text book: Introduction to Nanophotonics, S. V. Gaponenko, Cambridge University Press, Online ISBN: 9780511750502
Reading List	Nanophotonics, P. N. Prasad, John Wiley & Sons, ISBN 0-471-64988-0
Ethical Rules and Course Policy	University Ethics Rules apply.

Activities	Number	Weight (%)
Lecture	12	40%
Group Works	3	15%
Presentations	2	15%
Laboratory Visits	1	5%
Literature Research	1	10%
Use of out-of-class Computational Tools	1	15%
	Tota	al 100

ASSESSMENT	
Evaluation Criteria	Weight (%)
Quizzes	15%
Weekly Assignments	15%
Group Project Assignments & Presentations	10%
Midterm Exams	35%
Final Exam	25%
	Total 100%

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

Activity	Duration	Quantity	Work Load
	(hour)		(hour)
In class activities	3	14	42
Group work	3	6	18
Required Readings	3	10	30
Research (web, library)	3	6	18
Pre-work for Presentation	5	3	15
In-class Presentation	1	2	2
Assignments	6	5	30
Laboratory Visit	1	1	1
Quiz	6	5	30
Studying for Midterm Exams	25	2	50
Studying for Final Exam	25	1	25
		General Sum	261

ECTS: 10 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	P01	P02	P03	P04	P05	P06
L01	5	2	1	2	1	1
L02	5	5	4	3	1	1
L03	5	5	5	5	5	5
L04	2	4	1	5	5	3
L05	4	1	1	5	5	5

* Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Торіс	Outcomes
1	Properties of Electromagnetic Waves	L01, L02
	Lab/Activity: Lecture	
2	Wave optics and wave mechanics	L01, L02
	Lab/Activity: Lecture	
3	Electrons in periodic structures and quantum confinement effects	L01, L02
	Activity: Lecture	
4	Electrons in periodic structures and quantum confinement effects	L01, L02
	Activity: Lecture	
5	Spontaneous emission of photons and lifetime engineering	L01, L02, L03
	Activity: Lecture and group work	
6	Stimulated emission and lasing	L01, L02, L03
	Activity: Lecture and group work	
7	Photovoltaics	L01, L02, L03
	Activity: Lecture and group work	
8	Semiconductor nanocrystals	L01, L02, L03,
	Activity: Lecture and group work	L04
9	Plasmonics with metal nanoparticles	L01, L02, L03,
	Activity: Lecture and group work	L04

AGU Graduate School of Engineering and Science Electrical and Computer Engineering Program

10	Photonic crystals	L01, L02, L03,
	Activity: Lecture and group work	LO4
11	Plasmonics with metal-dielectric nanostructures	L01, L02, L03,
	Activity: Lecture and group work	LO4
12	Density of states on optical processes	L01, L02, L03
	Activity: Lecture	
13	Presentations	LO4, LO5
	Activity: Group work and presentations	
14	Presentations and laboratory visits	LO4, LO5
	Activity: Group work and site visit	

Asst. Prof. Talha Erdem 20/05/2019