ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRICAL AND COMPUTER ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
LINEAR SYSTEMS	ECE-501	FALL-SPRING	3 + 0	3	10

Prerequisite Courses none

_	In
Туре	Elective
Language	English
Coordinator	Assoc. Prof. Dr. Günyaz Ablay
Instructor	Assoc. Prof. Dr. Günyaz Ablay
Adjunct	none
Aim	Learning, understanding and applying linear analysis and design tools that are needed in electrical engineering studies.
Learning Outcomes	To give an opportunity to students for learning the fundamentals of linear systems learning the stability theorems learning linear control design with feedback learning optimal design methods learning discrete-time systems and related tools learning software tools that can be used for analysis and design of nonlinear systems
Course Content	 Introduction to Linear Systems State-space representation and analysis Solution for state-space linear time-invariant (LTI) systems Controllability and Observability State Feedback Control Optimal Control Stability Discrete-time systems Design Considerations and Steady-state accuracy MIMO systems Passivity Polynomial representations

WEEKLY	WEEKLY TOPICS AND PRELIMINARY STUDY					
Week	Topic	Preliminary Study				
1	Introduction and course overview	The relevant lecture notes				
2	System representation and analysis	The relevant lecture notes				
3	Solution for state-space linear time-invariant (LTI) systems	The relevant lecture notes				
4	Controllability and Observability	The relevant lecture notes				
5	State Feedback Control	The relevant lecture notes				
6	Optimal Control Performance index Riccati solutions	The relevant lecture notes				

	Kalman filter	
7	Stability	The relevant lecture notes
8	Midterm	
9	Discrete-time systems	The relevant lecture notes
10	Design Considerations and Steady-state accuracy	The relevant lecture notes
11	MIMO systems	The relevant lecture notes
12	Polynomial representations	The relevant lecture notes
13	Review Summary of the course, questions and answers	The relevant lecture notes
14	Final Exam	

SOURCES	
Lecture Notes	Lecture notes and slides
Other Sources	Course Textbook: J. Hespanha, <i>Linear Systems Theory</i> , Princeton University Press, 2009. Additional Materials:
	P. Antsaklis, A. Michel. Linear Systems. McGraw Hill, 1997.

COURSE MATERI	RSE MATERIALS SHARING				
Documents Lecture notes, slides and papers					
Homework	Students will be given one homework each week				
Exams	1 Midterm and 1 Final Exam				

EVALUATION SYSTEM						
SEMESTER STUDY	NUMBER	CONTRIBUTION				
Midterm	1	20				
Homework	14	25				
Quiz	14	25				
SUB-TOTAL		70				
Contribution of Semester Study		70				
Contribution of Final Exam	1	30				
TOTAL		100				

Course Category	
Sciences and Mathematics	30%
Engineering	70%
Social Sciences	0%

RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS							
No	No Program Qualifications		Contribution Le			vel	
INC			2	3	4	5	
1	The skills of using mathematics, science and engineering information in advanced research,					x	

2	The skills of analyzing, designing and/or implementing an original system that will be able to solve an engineering problem,		x
3	The skills of using the required software, hardware and modern measurement equipment in their field of research,		x
4	The skills of planning independent research and implementing in detail,		х
5	The skills of following literature, listening to and making technical presentation, writing a paper in academic level,	x	
6	The skills of innovative and interrogative thinking and finding original solutions	х	

^{*}Increasing from 1 to 5.

ECTS / WORK LOAD TABLE						
Activities	Number	Duration (Hours)	Total Work Load			
Course Length (includes exam weeks: 16x total course hours)	14	3	42			
Out-of-class Study Time (Pre-study, practice)	14	4	56			
Internet search, library work, literature search	14	5	70			
Presentation	1	5	5			
Homework	14	5	70			
Midterm	1	27	27			
Final Exam	1	30	30			
Total Work Load			300			
Total Work Load / 30			300/30			
Course ECTS Credit			10			