AGU Graduate School of Engineering and Science Bioengineering PhD Program

COURSE RECORD

Code	BENG618
Name	RECOMBINANT DNA TECHNOLOGY
Hour per week	3 (3 + 0)
Credit	3
ECTS	10
Level/Year	Graduate
Semester	Fall and Springs
Type	Elective
Location	TBA
Prerequisites	None. However, students are expected to be familiar with cell/molecular biology
Special Conditions	-
Coordinator(s)	Dr. AYSUN ADAN
Webpage	-
Content	DNA modifying enzymes, cloning strategies, vector types, selection and screening of recombinants, nucleic acid labeling techniques, genomic and cDNA library preparation, whole genome sequencing, the methods for site-directed mutagenesis and sequencing of cloned genomic fragments will be covered. Software permitting <i>in-silico</i> manipulation and annotation of DNA sequences for efficient design, tracking, and management of cloning experiments and the application of recombinant DNA technology in biotechnological research will be discussed.
Objectives	- Theoretical knowledge of modern tools and techniques for manipulation and analysis of genomic sequences will be discussed
	- Differences and pros or cons of techniques will be discussed to allow students to choose the most suitable one for a particular experimental set up
	- Research methodologies employing genetic engineering techniques will be provided for students to strategize their own research
	- The application of recombinant DNA technology in biotechnological research will be emphasized
Learning Outcomes	LO1: to make the students familiar with versatile tools and techniques employed in genetic engineering and recombinant DNA technology
	LO2: to be able to design and conduct experiments involving genetic manipulation.
	LO3: methodological knowledge provided in this class allows students to understand how these are applied in basic and applied experimental biological research
Requirements	This class will require reading and active participation.
Reading List	-K. Wilson, J. Walker. Principles and Techniques of Biochemistry and Molecular Biology (Cambridge University Press, ed. 7, 2010, main book)
	-Molecular Biology of the Cell. 2014. Garland Science. Bruce Alberts and Alexander Johnson (Might be helpful for basic understanding)
	- M. R. Green, J. Sambrook. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor
Ethical Rules and Course Policy	

AGU Graduate School of Engineering and Science Bioengineering PhD Program

LEARNING ACTIVITIES Please, use this one as a reference for your course

Activities	Number	Weight (%)
Lecture	14	30%
Scientific paper discussions by students	14	35%
Term paper drafts	7	35%
	Tota	ıl 100

ASSESSMENT

Evaluation Criteria		Weight (%)
Term paper drafts (every two weeks)		10%
Term paper presentation and final draft (at the end of semester)		30%
Scientific paper discussions during the term		15%
Attendance/Participation		5%
Final Exam		40%
	Total	100%

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

COURSE LOAD *Please, use this one as a reference for your course*

Activity	Duration (hour)	Quantity	Work Load (hour)
In class activities (lecture)	2	14	28
Required paper readings before the class	5	14	70
Paper presentations (in class)	1	7	7
Research (web, library)	5	14	70
Pre-work for Presentation	4	7	28
Term paper drafts	5	7	35
Term paper submission and presentation	2	1	2
Final	15	1	15
		General Sum	255

ECTS: 10 (255/25)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	P01	P02	P03	P04	P05	P06	P07	P08
L01	4	4	4					
LO2	5	5	5					
LO3	5	5	5					

^{*} Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Topic	Outcomes
1	The manipulation of nucleic acids – basic tools and techniques: Types and examples of typical enzymes used in the manipulation of nucleic acids	L01, L02, L03
	Activity: No activity	_
2	Isolation and separation of nucleic acids	L01, L02, L03
	Activity: No activity	
3	Molecular analysis of nucleic acid sequences	L01, L02, L03
	Activity: No activity	
4	Polymerase Chain Reaction	L01, L02, L03
	Activity: No activity	
5	Nucleic acid sequencing methodologies	L01, L02, L03
	Activity: No activity	
6	Introduction to cloning: Cloning vectors	LO1, LO2, LO3

AGU Graduate School of Engineering and Science Bioengineering PhD Program

	Activity: No activity	
7	Constructing gene libraries	L01, L02, L03
	Activity: No activity	
8	Hybridization and gene probes, screening gene libraries	L01, L02, L03
	Activity: No activity	
9	Applications of gene cloning: sequencing cloned DNA, in vitro mutagenesis,	L01, L02, L03
	oligonucleotide directed mutagenesis, PCR based mutagenesis	_
	Activity: No activity	
10	Expression of foreign genes: production of fusion proteins, phage display	L01, L02, L03
	techniques, alternative display methods	<u>-</u>
	Activity: No activity	
11	In-silico analysis, manipulation and annotation of DNA sequences for	L01, L02, L03
	experimental design and efficient management of cloning experiments	_
	Activity: No activity	
12	Molecular Biotechnology and applications I	L01, L02, L03
	Activity: Current scientific papers will be discussed	
13	Molecular Biotechnology and applications II	_
	Activity: Current scientific papers will be discussed	L01, L02, L03
14	Student presentations	L01, L02, L03
	Activity: Current scientific papers will be discussed	

Prepared by Date