ABDULLAH GÜL UIVERSITY GRADUATE SCHOOL OF ENGİNEERİNG AND SCIENCE ADVANCED MATERIALS AND NANOTECHNOLOGY MSC. PROGRAM COURSE DESCRIPTION Course Name Code Semester T+P Hour Credit ECTS Membrane Technology AMN 550 FALL - SPRING 3 + 0 3 10 | Prerequisite Courses | - | |----------------------|---| | Type of the
Course | Selective | | | | |------------------------------|---|--|--|--| | Language of
Instruction | English | | | | | Coordinator of
the Course | Assist. Prof. İlker ERDEM | | | | | Lecturer(s) of the Course | Assist. Prof. İlker ERDEM | | | | | Assisting
Personnel | - | | | | | Objective of the
Course | Introduction of fundamentals on properties, preparation, utilization and characterization membranes which can be used for versatile applications like separation, purification, concentration | | | | | Learning
Outcomes | Learning types of membranes and their utilization in different applications Learning raw materials of membranes Learning properties of membranes Learning techniques used for characterization of technical properties of membranes Learning utilization of membranes for different purposes | | | | | Course Content | Introduction of types of membranes and their application areas, Introduction of structure of membranes, Introduction of processing techniques for membranes, Introduction of characteristics of membranes, Introduction of characterization methods for membranes, Introduction of technological applications for various membrane types | | | | | SUBJECTS, PRELIMINARY PREPARATIONS AND POST-LECTURE ACTIVITIES | | | | | |--|--|----------|--|--| | Week | Subjects | Practice | | | | 1 | Introduction: Membranes and their technologic importance | | | | | 2 | The types of membranes and their application areas: Polymer, ceramic and metal membranes and their applications | | | | | 3 | The structure of membranes: The materials used in different membranes and their structures | | | | | 4 | The structure of membranes: The materials used in different membranes and their structures | | | | | 5 | Processing techniques for membranes: Preparation of membranes via different raw materials | | | | | 6 | Processing techniques for membranes: Preparation of membranes via different raw materials | | | | | 7 | Characteristics of membranes: Porosity, permeability, separation/retention efficiency | | | | | 8 | Characteristics of membranes: Porosity, permeability, separation/retention efficiency | | | | | 9 | Characterization of membranes: Permeability determination methods, microscopic characterization techniques, etc. | | | | | 10 | Midterm | | | | | 11 | Characterization of membranes: Permeability | | | | | | determination methods, microscopic characterization techniques, etc. | |----|--| | 12 | Different applications of membranes: Dialysis, pressure-driven filtration applications (micro-, ultra-, nano-filtration, reverse osmosis) techniques and their utilization in different industries. | | 13 | Different applications of membranes: Dialysis, pressure-driven filtration applications (micro-, ultra-, nano-filtration, reverse osmosis) techniques and their utilization in different industries. | | 14 | Different applications of membranes: Dialysis, pressure-driven filtration applications (micro-, ultra-, nano-filtration, reverse osmosis) techniques and their utilization in different industries. | | 15 | Different applications of membranes: Dialysis, pressure-driven filtration applications (micro-, ultra-, nano-filtration, reverse osmosis) techniques and their utilization in different industries. | | SOURCES/REFERENCES | | | | | | | |---|---|--|--|--|--|--| | Course Notes The notes and the slides of the course | | | | | | | | | M. Cheryan, "Ultrafiltration and Microfiltration Handbook", 2nd Ed., CRC Press, 1998. | | | | | | | | K. Li, "Ceramic Membranes for Separation and Reaction", John Wiley & Sons Ltd.,
West Sussex, 2007. | | | | | | | Other References | R.R. Bhave, "Inorganic Membranes Synthesis, Characteristics and Applications", Van
Nostrand Reinhold, NY, 1991. | | | | | | | | A. I. Schafer, A. G. Fane, T. D. Waite, "Nanofiltration – Principles and Applications",
Elsevier, 2005. | | | | | | | | • C | | | | | | | MATERIAL SHARING | | | | | | |--|---|--|--|--|--| | Documents The lecturing slides of the course are shared on canvas or another online application | | | | | | | Homeworks | The homeworks are shared on canvas or another online application. | | | | | | Exams | | | | | | | Projects | | | | | | | EVALUATION METHODS | | | | | | |---|----------|-----------|--|--|--| | IN-TERM ACTIVITIES | QUANTITY | WEIGHT, % | | | | | Midterm Exam | 1 | 30 | | | | | Homework | 4 | 5 | | | | | Term Project | 1 | 25 | | | | | Final Exam | 1 | 40 | | | | | TOTAL | | 100 | | | | | Effect of in-term Activities on Success | | 60 | | | | | Effect of Final Exam on Success | | 40 | | | | | TOTAL | | 100 | | | | | Course Category | | | |--------------------------------|---|--| | Basic Sciences and Mathematics | | | | Engineering Sciences | X | | | Social Sciences | | | | | RELATIONSHIP BETWEEN LEARNING OUTCOMES OF THE COURSE WITH THE QUALIFICATIONS OF THE PROGRAM | | | | | |----|---|-----------------------|--|--|--| | No | Program Qualifications | Contribution
Level | | | | | | | 1 | 2 | 3 | 4 | 5 | |---|---|---|---|---|---|---| | 1 | PQ1. Ability of Working Independently and Taking Responsibility | | | | Χ | | | 2 | PQ2. Lerning Competence | | | | Χ | | | 3 | PQ3. Communication and Social Activity | | | | Χ | | | 4 | PQ4. Field-specific Competence | | | | | X | ^{*}from 1 to 5 the score increases. | ECTS / WORK LOAD TABLE | | | | | | |---|----|--------------------|---------------------------|--|--| | Activities | | Duration
(Hour) | Total Work Load
(Hour) | | | | Lectures (including exam week: 16x total lecture hours) | 15 | 3 | 45 | | | | Midterm Exam (Preparation) | 1 | 35 | 35 | | | | Final Exam (Preparation) | 1 | 45 | 45 | | | | Homeworks | 4 | 10 | 40 | | | | Repetition of the Topics | 14 | 5 | 70 | | | | Report Preparation for Term Project | 1 | 40 | 40 | | | | Presentation Preparation for Term Project | 1 | 20 | 20 | | | | Total Work Load | | | 295 | | | | Total Work Load / 30 | | | 9.83 | | | | ECTS Credits | | | 10 | | |