ABDULLAH GÜL UIVERSITY GRADUATE SCHOOL OF ENGİNEERİNG AND SCIENCE ADVANCED MATERIALS AND NANOTECHNOLOGY MSC. PROGRAM COURSE DESCRIPTION Course Name Code Semester T+P Hour Credit ECTS Advanced Instrumental Analysis - I AMN 515 FALL - SPRING 3 + 2 4 15 | Prerequisite Courses | - | |-----------------------------|---| | Type of the
Course | Selective | | | | |------------------------------|---|--|--|--| | Language of
Instruction | English | | | | | Coordinator of
the Course | Assist. Prof. İlker ERDEM | | | | | Lecturer(s) of the Course | Assist. Prof. İlker ERDEM | | | | | Assisting
Personnel | Specialist Şeyma DADI | | | | | Objective of the
Course | Teaching the fundamentals of instrumental analysis methods and introduction of some instruments used for analysis | | | | | Learning
Outcomes | 2 Learning the quality criteria for instrumental analysis | | | | | Course Content | Introduction of stimulants used for signal formation and mechanisms used for signal formation and determination, Necessary terms (e.g. accuracy, precision and sensitivity) for instrumental analysis Necessary parameters and terms to decide to type of instrumental analysis, signal/noise ratio, types of noise, minimum detectable/quantifiable limits, calibration curves, dynamic range Introduction of different physicochemical properties used in different instrumental analysis, Introduction of necessary parts of analysis instruments, Light, light-matter interaction, absorbance-transmittance (Beer-Lambert Law), infrared (IR) lights and molecular vibrations, Light scattering, determination of particle size distribution and surface charge via light, Chromatography, utilization of chromatography for instrumental analysis | | | | | SUBJECTS, PR | SUBJECTS, PRELIMINARY PREPARATIONS AND POST-LECTURE ACTIVITIES | | | | | | |--------------|--|-------------------------------------|--|--|--|--| | Week | Subjects | Practice | | | | | | 1 | Introduction: Senses, sensing limits, instrumental analysis mechanism, qualitative-quantitative analysis | | | | | | | 2 | Instrumental analysis: Accuracy, precision, sensitivity, signal/noise ratio, types of noise, calibration curve, detectable limits | | | | | | | 3 | Instrumental analysis: Physicochemical properties and their utilization in instrumental analysis, gravimetric, volumetric, thermal and light-stimulated interactions | | | | | | | 4 | Light-matter interactions:
Light, electromagnetic radiation spectrum, light-matter
interaction mechanisms, absorbance-transmittance, molar
absorptivity, uv-vis spectrophotometer | Uv-vis spectrophotometer experiment | | | | | | 5 | Light-matter interactions:
Light, electromagnetic radiation spectrum, infrared (IR)
radiation, molecular vibrations | FT-IR spectrometer experiment | | | | | | 6 | Light-matter interactions: Light scattering, types of | Particle size distribution | | | | | | | light scattering and examples from the nature, interference, Brownian motion, electrophoretic mobility, zeta potential | and zeta potential
determination via light
scattering | |----|--|---| | 7 | Chromatography: Types of chromatography, separation mechanisms in chromatography, high performance liquid chromatography (HPLC) | HPLC experiment | | 8 | Midterm | | | 9 | Term project topic determination | | | 10 | Term project proposals | | | 11 | Term project work | Laboratory | | 12 | Term project work | Laboratory | | 13 | Term project work | Laboratory | | 14 | Term project work | Laboratory | | 15 | Term project work | Laboratory | | SOURCES/REFERENCES | | | | | | |--------------------|--|--|--|--|--| | Course Notes | The notes and the slides of the course | | | | | | Other References | D. A. Skoog, E. J. Holler, S. R. Crouch. "Principles of Instrumental Analysis", 6th Edition, Brooks/Cole, Cengage Learning, 2007. Y. Hışıl, "Enstrümental Gıda Analizleri-I", Ege Üniversitesi Basımevi, 1994. Y.Hışıl, "Enstrümental Gıda Analizleri-II", Ege Üniversitesi Basımevi, 1994. H. Yetim, M. Çam, "Enstrümental Gıda Analizleri", Erciyes Üniversitesi Matbaası, 2009. | | | | | | MATERIAL SHARING | | | | | |--|--|--|--|--| | Documents The lecturing slides of the course are shared on canvas or another online application | | | | | | Homeworks | | | | | | Exams | | | | | | Projects | The project reports are shared before the project exam | | | | | EVALUATION METHODS | | | | | | |---|----------|-----------|--|--|--| | IN-TERM ACTIVITIES | QUANTITY | WEIGHT, % | | | | | Midterm Exam | 1 | 35 | | | | | Homework | 4 | 20 | | | | | Term Project and Exam | 1 | 45 | | | | | TOTAL | | 100 | | | | | Effect of in-term Activities on Success | | 100 | | | | | Effect of Final Exam on Success | | 0 | | | | | TOTAL | | 100 | | | | | Course Category | | | |--------------------------------|---|--| | Basic Sciences and Mathematics | | | | Engineering Sciences | X | | | Social Sciences | | | | | ATIONSHIP BETWEEN LEARNING OUTCOMES OF THE COURSE WITH THE QUALIFICA
GRAM | ТΙΟ | NS | OF | TH | E | |----|--|-----------------------|----|----|----|---| | No | Program Qualifications | Contribution
Level | | | | | | | | 1 | 2 | 3 | 4 | 5 | | 1 | PQ1. Ability of Working Independently and Taking Responsibility | | | | | Х | | 2 | PQ2. Lerning Competence | | | | | Х | | 3 | PQ3. Communication and Social Activity | | | | Χ | | | 4 | PQ4. Field-specific Competence | | | | Χ | | *from 1 to 5 the score increases. | ECTS / WORK LOAD TABLE | | | | | | |---|----|--------------------|---------------------------|--|--| | Activities | | Duration
(Hour) | Total Work Load
(Hour) | | | | Lectures (including exam week: 16x total lecture hours) | 10 | 3 | 30 | | | | Repetition of the Topics | 10 | 4 | 40 | | | | Laboratory Practice(Post-lecture Practice) | 5 | 2 | 10 | | | | Research on internet, library usage | 14 | 7 | 98 | | | | Term Project Experiments | 1 | 120 | 120 | | | | Report Preparation after Term Project Experiments | 1 | 50 | 50 | | | | Presentation Preparation after Term Project Experiments | 1 | 40 | 40 | | | | Homeworks | 4 | 5 | 20 | | | | Midterm Exam (Preparation) | 1 | 40 | 40 | | | | Total Work Load | | | 458 | | | | Total Work Load / 30 | | | 15.26 | | | | ECTS Credits | | | 15 | | |