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ABSTRACT 

PROTEIN FRAGMENT SELECTION USING MACHINE 

LEARNING 

Alperen Emre ULUTAŞ 

M.Sc. in Electrical and Computer Engineering Department 

Supervisor: Dr. Zafer Aydın 

May-2018 

 

Protein fragment selection is an important step in predicting the three-dimensional (3D) 

structure of proteins. Selecting the right fragments contributes significantly to accurate 

prediction of 3D structure. In this thesis, a machine learning approach is employed to 

predict whether a pair of protein fragments have similar 3D structures or not, which can 

be used to select fragment structures for a target protein with unknown structure. To 

design input features, a concepy hierarchy is implemented, which considers sequence 

profile matrices, predicted secondary structure, solvent accessibility and torsion angle 

classes as features in various combinations and projections. Several machine learning 

classifiers and regressors are trained and optimized for predicting the structural 

similarity of 3-mer and 9-mer fragments including logistic regression, AdaBoost, 

decision tree, k-nearest neighbor, naive Bayes, random forest, SVM and multi-layer 

perceptron. The results demonstrate that combining different feature sets through 

concept hierarcy and model optimization improves the prediction accuracy 

substantially. Furthermore it is possible to predict the structural similarity of fragment 

pairs with high accuracy, which is assessed by perforing cross-validation experiments 

on fragment datasets. When the structural similarity of fragments is defined as a 

classification problem, the accuracy of different classifiers are obtained as similar to 

each other. Among the regression methods, random forest provided the best accuracy 

metrics.  

Keywords: Protein Fragment Selection, Protein Structure Prediction, Secondary 

Structure Prediction, Solvent Accessibility Prediction, Torsion Angle Prediction 
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ÖZET 

MAKİNE ÖĞRENMESİ YÖNTEMLERİ İLE PROTEİN 

PARÇACIK SEÇİMİ 

Alperen Emre ULUTAŞ 

Elektrik ve Bilgisayar Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Dr. Zafer Aydın 

Mayıs-2018 

Protein parçacık seçimi proteinlerin üç boyutlu yapılarının tahmin edilmesindeki önemli 

adımlardan biridir. Doğru parçacık yapılarının seçilmesi üç boyutlu yapının doğru 

tahmin edilmesi için gereklidir. Bu tezde verilen iki protein parçacığının üç boyutlu 

yapılarının birbirine benzer olup olmadığını tahmin eden çeşitli yapay öğrenme 

yöntemleri geliştirilmiştir. Bu sayede yapısı bilinmeyen bir hedef protein için parçacık 

yapılarının seçilmesi mümkün olacaktır. Tahmin yönteminin girdi olarak kullanacağı 

öznitelik parametrelerinin tasarlanması için bir konsept hiyerarşi yaklaşımı izlenmiştir. 

Bunun için dizi profil matrisleri, ikincil yapı, çözücü erişilirlik ve bükülme açı sınıfı 

tahminleri çeşitli kombinasyonlarda ve izdüşüm uzaylarında incelenmiştir. Üç ve dokuz 

amino asitlik parçacıkların yapısal benzerlik tahmini için çeşitli sınıflandırma ve 

regresyon modelleri eğitilmiş ve optimize edilmiştir. Bunlar arasında lojistik regresyon, 

AdaBoost, karar ağacı, en yakın komşu, sade Bayes, rastgele orman, destek vektör 

makinası ve çok-katmanlı algılayıcı bulunmaktadır. Elde edilen sonuçlara göre farklı 

öznitelik kümelerinin konsept hiyerarşi yaklaşımı ile birleştirilmesi ve model 

optimizasyonları tahmin başarısını önemli oranda iyileştirmiştir. Ayrıca çapraz 

doğrulama deneyleri neticesinde parçacık benzerliğinin yüksek başarı oranları ile 

tahmin edilebildiği gösterilmiştir. Parçacık benzerliği sınıflandırma problemi olarak 

tanımlandığı zaman tahmin yöntemlerinin başarı oranları birbirine yakın olarak elde 

edilmiştir. Regresyon modelleri arasında ise rastgele orman yöntemi en yüksek tahmin 

başarısına ulaşmıştır. 

Keywords: Protein Parçacık Seçimi, Protein Yapı Tahmini, İkincil Yapı Tahmini, 

Çözücü Erişilirlik Tahmini, Bükülme Açısı Tahmini 
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Chapter 1  

 

Introduction 
 

Proteins are large organic molecules that contain amino acids as building blocks. 

Each protein has a unique amino acid sequence specified by the genetic code in DNA. 

Proteins play important roles in biological processes such as metabolic reactions, 

pathway regulation, growth, formation of skin, hair, blood cells, muscles and bones.  

The biological function of a protein is closely related to its structure. There are 

two major approaches for solving the structure of a protein: experimental and 

computational. Experimental techniques include X-ray diffraction and nuclear magnetic 

resonance (NMR), which can be expensive, time consuming and may not even be 

applied to certain proteins. As an alternative, computational prediction of protein 

structure can be perfromed for any protein, which is cheaper and  more efficient though 

typically less accurate than experimental methods. In addition to revealing the 

functional role of proteins, solving protein structure either experimentally or 

computationally can also be used to model protein-ligand interactions in drug and 

enzyme design. Therefore, accurate determination of protein structure contributes 

positively to the success of function prediction and drug design. 

Computational prediction of three-dimensional structure is a challenging 

problem. Instead of searching the optimum structure conformation directly, which 

might be computationally costly, first, various one or two-dimensional properties of the 

target protein are computed such as sequence profiles, predictions of secondary 

structure, solvent accessibility, torsion angles, contact maps and selection of fragments, 

which are used as inputs to subsequent steps in the pipeline. This work contentrates on 

the fragment selection problem.  

The following sections include a brief overview of protein structure, literature 

review and contributions of this thesis.  



2 

 

1.1 Protein Structure  

Proteins are formed by amino acids that are bound together in a consecutive 

manner with peptide bonds and are important macromolecules for every organism. 

There are 20 amino acids that are commonly found in nature. An amino acid is an 

organic composite that contains an amine group (-NH2), a carboxyl group (-COOH) and 

a side chain molecule (R) bounding to an asymmetric alpha carbon atom (Ca). An 

example amino acid structure is given below in Figure 1.1.1. Each amino acid has 

different pyhsical and chemical properities such as electrostatic charge, hydrophobicity 

condition, acid decomposition coefficient (pKa), size and functional groups, which play 

an important role in determining the structure of a protein [1]. 

 

Figure 1.1.1 Structure of an amino acid [2] 

 

 

1.1.1 Protein Structure Levels 

Protein structure has four fundamental levels: primary, secondary, tertiary and 

quaternary. Primary structure is the amino acid sequence; secondary structure is formed 

by repetitive the hydrogen bonding patterns; tertiary structure refers to the three-

dimensional structure of a single amino acid chain; and quaternary structure is the three 

dimensional structure of multiple amino acid chains. 

 

1.1.1.1 Primary Structure 

The peptide bonds that from during protein synthesis makes the primary 

structure stay together. In living being’s the gene that codes the protein is what 

determines the primary structure. The amino acid sequence is unique for that protein 
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and determines its 3D structure and function. The sequence of amino acids that make a 

protein can be extracted by translating the gene’s sequence that has coded the protein 

[1]. There are also other methods that can be used to find the amino acid content of 

proteins such as Edman degradation and mass spectrometry (MS). The primary 

structure starts from the amino acid at the N-terminal, which has a flanking amide group 

and ends at the amino acid at the C-terminal, which has a flanking carboxyl group. 

Figure 1.1.1.1.1 shows the primary structure of a protein.  

 

 

Figure 1.1.1.1.1 Primary structure of a protein [3] 

 

 

1.1.1.2 Secondary Structure 

Secondary structure contains regular hydrogen bonds formed between 

neighbouring amino acids that have similar torsion angles. Such amino acids come 

together to form secondary structure segments. There are two types of hydrogen 

bonding patterns: the rotation motif and the bridge motif. In rotation motif, also called 

the n-rotation motif, there is a hydrogen bond between the amino acid at position i and 

the amino acid at position i+n, where n typically takes values equal to 3, 4 or 5. In 

bridge motif, there are hydrogen bonds between amino acids that may not be close to 

each other with regard to sequence. Secondary structure is formed when the rotation and 

bridge motifs come together in a consecutive and specific manner. For example, 

rotation motif that repeats 4 times forms the alpha helices and repeating bridge motifs 

form beta sheets, which may contain multiple beta-strand segments. On the other hand 

loops typically contain irregular bonding patterns. The tertiary structure of the protein 

can be tought as the secondary structure elements assembled together. Figure 1.1.1.2.1, 

shows the secondary structure of a protein. 
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Figure 1.1.1.2.1 Secondary structure of a protein [4] 

 

1.1.1.2.1 Helix 

In helices, protein’s backbone forms a spiral structure (Figure 1.1.1.2.1.1). There 

are three types of helices: alpha helix (α-helix), 310 helix and the pi helix (π-helix). 

Helices can have various functional roles. Motifs that bind the DNA (strand-coil-strand, 

leucine zipper, zinc finger) and structures that go through the cell membrane 

(rhodopsins, G-protein clamped receptors) are among the examples to helical structures 

[5]. 

 

Figure 1.1.1.2.1.1 Alpha helix [6] 
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1.1.1.2.2 Beta Strand and Beta Sheet 

Beta sheets are formed by beta strands that interact pairwise through hydrogen 

bonds (Figure 1.1.1.2.2.1). A beta sheet should contain at least two beta strands and 

each beta strand needs at least 2 or 3 hydrogen bonds that make connections to its 

partner strand. A beta strand segment typically has a length between 3 to 10 amino 

acids. Interacting amino acids in beta-strand segments can be either close to each other 

or far from each other according to the amino acid sequence. Those beta-strands that are 

far apart based on the one-dimensional sequence may come closer when the protein 

molecule folds into its 3D structure. Protein aggregation and fibrills which form due to 

merging of beta sheets have roles in various diseases such as Alzheimer’s [7].  

 

 

Figure 1.1.1.2.2.1 Beta Sheet [8] 

 

1.1.1.2.3 Loop 

Loops are structures that are mostly present between helices and beta sheets, 

with different lengths and confugrations. They are usually located on the surface area of 

proteins. Loops do not impose strong constraints in secondary structure aligments 

because there can be more mutations (substitution and deletion) in loop structures than 

in helices or beta-strands. Loops tend to have charged and polarized amino acids and are 
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usually found in functionally more active regions [9]. There are 3 types of loops: turn, 

bend and random coil.  

 

1.1.1.3 Tertiary Structure 

Tertiary structure is the three-dimensional (3D) coordinates of the atoms in a 

protein. The folding of protein is guided by chaperon proteins and hydrophobic 

interactions. Furthermore for the structure to be stable, specific tertiary interactions (e.g. 

salt bridges, hydrogen bonds, disilfude bonds and stacking of side bonds) may be 

needed [1]. An example to tertiary structure is given below in Figure 1.1.1.3.1. 

 

 

Figure 1.1.1.3.1 Protein tertiary structure [10] 

 

1.1.1.3.1 Dihedral Angles 

Dihedral (torsion) angles are the rotation angles of specific bonds on the protein 

backbone. There are three types of dihedral angles. Omega (ω) is the angle of rotation 

around the peptide bond, phi (ϕ) is the angle of rotation between N and the Cα atom, psi 

(ψ) is the the angle of rotation between between the C=O and the Cα atom (Figure 

1.1.1.3.1.1). The omega angle does not show flexibility and usually takes values close to 

180 degrees. Phi and psi angles on the other hand, can take different values. These are 

the internal liberty angles of a protein and control protein conformation. In some 
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secondary structure elements the values these angles can receive are limited due to 

geometric concerns (Ramachandran graphic) [1].  

 

Figure 1.1.1.3.1.1 Dihedral angles [11] 

 

1.1.1.3.2 Solvent Accesibility 

Solvent accessibility is the accesible surface area of a biomolecule that can be 

reached by a solvent such as water. Van der Waals area is proporional to atoms’ 

diameters and can be defined as the surface of the red circles shown in Figure 

1.1.1.3.2.1 as dashed lines. According to this figure, the accesible surface can obtained 

by tracking a representative solvent molecule (blue circle) on the Waals surface. Amino 

acids that are in inner parts of the protein are less accesible to a solvent compared to the 

amino acids that are closer to the surface. 

 

 

Figure 1.1.1.3.2.1 Solvent accesibility [12] 
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1.1.1.4 Quaternary Structure 

Quaternary structure is formed by several proteins or polypeptide chains 

gathered together (Figure 1.1.1.4.1). It may contain non-covalent and disulfide bonds, 

which stabilize the overal 3D structure. Most proteins do not have a quaternary structure 

and function as monomeric units. 

 

Figure 1.1.1.4.1 Protein quaternary structure [13] 

 

1.2 Protein Structure Prediction 

To date, there has been many studies on protein structure prediction. 

Nevertheless, the problem hasn’t been solved completly yet. Due to the challenges in 

searching for the best 3D structure directly, the problem is divided into sub-parts. First 

the target protein is compared with proteins in the database by various alignment 

algorithms, which can be used to compute statistical profile matrices based on the 

frequency of occurrence counts of the amino acids in specific positions. These matrices 

can be employed as input features to predict certain properties of protein structure such 

as secondary structure, dihedral angles, solvent accesibility, disordered regions, contact 

maps [14]. In the next step fragment structures are selected for overlapping segments of 

the target protein. These predictions and fragments provide constraints for and reduce 

the search space of the 3D structure prediction algorithms considerably.  
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1.2.1 Secondary Structure Prediction 

Protein secondary structure prediction aims to assign a secondary structure class 

label to each amino acid of a protein (Figure 1.2.1.1). In 3-state prediction, the classes 

are helix (H), beta-strand (E) and loop (L). Typically supervised learning methods are 

used for secondary structure prediction. For this purpose, proteins whose secondary 

structure is known in the protein database are used to train a model, which predicts the 

secondary structure of a protein. Preliminary methods for secondary structure depended 

on the tendency of each amino acids to prefer one type of secondary structure over the 

others. In addition, free energy rules for the formation of secondary structure elements 

were included. These methods were 60% succesfull in predicting the state the amino 

acid will adopt (helix, beta-strand, or loop). When multiple sequence alignments are 

used as input features, there has been an important increase in the accuracy of  

predictions to 80-82% [15-16]. Furthermore, using template proteins whose structure is 

known and similar to the target protein the accuracy increased to around 84-85% [17-

18]. These results made it possible to use the information from secondary structure 

prediction on other problems such as folding class prediction, three-dimensional (3D) 

structure prediction, classifying structural motifs and improving sequence alignments. 

 

Figure 1.2.1.1 Secondary structure prediction. First line is the amino acid sequence, second line is 

the secondary structure class labels (H:Helix, E:Beta Strand, L:Loop) 

 

1.2.2 Dihedral Angle Prediction 

As shown in Table 1.2.2.1, for each amino acid there are three types of dihedral 

angles: phi (φ), psi (ψ) and omega (ω). The aim of dihedral angle prediction is to predict 

these continuous valued angles for each amino acid of a protein. Since, omega (ω) angle 

usually takes values close to 180 degrees, sometimes the problem can be defined as 

predicting the phi (φ) and psi (ψ) angles only, which form groups for various secondary 

structure elements on the Ramachandran plot. For this reason, in another version of the 

dihedral angle prediction problem, phi (φ), psi (ψ) and omega (ω) angles are mapped to 

discrete classes in which case the torsion angle classes are estimated. This approach is 
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advantageous for machine learning techniques because it is easier to predict discrete 

classes than to predict continuous valued angles. Furthermore for three-dimensional 

(3D) structure prediction, torsion angle class information could still be useful. Figure 

1.2.2.1 summarizes the seven state dihedral angle class prediction problem, which aims 

to assign a dihedral angle class to each amino acid from a seven letter alphabet. 

 

 

Figure 1.2.2.1 Seven state dihedral angle prediction. First line is the amino acid sequence, second 

line is the dihedral angle class labels. 

 

 

 

Table 1.2.2.1 Seven state dihedral angle classes and their frequencies. 

 

  Similar to secondary structure prediction, supervised learning has been the 

standard approach for dihedral angle prediction. In the literature, in addition to methods 

that predict continuous valued angles there are also methods that predict discrete angle 

classes. Note that there is no standard convention for mapping continuous valued angles 

to discrete angles. Therefore it may not be possible or practical to compare different 

prediction methods directly.  

Typically artifical neural networks and support vector machines have been used 

for dihedral angle prediction [19-20]. The succes rates of dihedral angle class prediction 
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methods varies according to how many angle classes are present. For example, using a 

5-state torsion angle class representation (a simplified version of the definition in Table 

1.2.2.1), Aydin et al. has acquired a succes rate of 84% using a hybrid classifier [21]. In 

another study that employs clustering, two state dihedral class prediction accuracy is 

obtained as 81.4%, five state dihedral class prediction as 65%, twelve state dihedral 

class prediction as 47% [20]. Note that the five state employed in this work is diffrent 

from the paper by Aydin et al. [21]. Dihedral angle prediction could be more effective 

for three-dimensional (3D) structure prediction than secondary structure [22]. 

Employing both information simultaneously could be even more useful. 

 

1.2.3 Solvent Accesibility Prediction 

Solvent accesibility designates whether each amino acid is on the surface or in 

internal region of the protein. Similar to dihedral angle prediction, for each amino acid, 

either the continuous valued solvent accesibility values or discrete solvent accessibility 

classes can be predicted. In the literature, the second problem has been studied more 

than the first one. Since accesible surface can take different values for different amino 

acids, as a result of a standardization procedure they are first transformed into relative 

solvent accesibility scores (before mapping to discrete classes) because relative solvent 

accesibility information is more useful for three-dimensional (3D) structure prediction 

than standard solvent accesibility information. To compute relative accessibility, each 

amino acid’s accesible surface calculated by the DSSP program [23] is divided into the 

maximum accesibility score of that amino acid. In the next step, the relative solvent 

accesibility values are transformed into discrete accesibility classes. For this purpose, 

various number of accesibility classes have been proposed. Extensively, two, three and 

four classes are used. For example, in two class accesibility definition, each amino acid 

in the training set is assigned to exposed or buried class. For this assignment, 

continuous valued relative accessibility scores are compared to a threshold and are 

assigned to distinct classes. The threshold values are typically chosen as 0%, 5%, 10%, 

25% or 50%. After labels are assigned to each amino acid, a learning model can be 

trained and predictions for solvent accesibility classes can be computed for a protein 

with unknown structure. To test the succes rate of solvent accesibility prediction, the 
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predicted labels are compared with the true accesibility classes, which can be computed 

starting from the three-dimensional (3D) structure using the DSSP software [23].  

In literature, neural networks have been widely used for solvent accesibility 

prediction [24]. Pollastri et al obtained 39.9% accuracy for ten state solvent accesibility 

prediction using artificial neural networks [25]. In another study, an 80% accuracy is 

obtained for two state solvent accesbility prediction using 25% as the threshold and 

55.3% accuracy for four state prediction [16]. Figure 1.2.3.1 summarizes the two state 

solvent accesibility prediction problem. 

 

Figure 1.2.3.1 Two state solvent accesibility prediction. First line is the amino acid sequence and 

second line is the accesibility class labels. 

 

 

1.2.4 Protein Fragment Selection 

Protein fragment selection aims to choose fragments that have known structure 

from the fragment library for each window (i.e. subsequence) of the target protein [26]. 

Typically overlapping windows with lengths between 1 or 20 amino acids that slide 

from N-terminal to C-terminal of the target protein are taken and hundreds of fragments 

that potentially have similar structure to the target fragment are selected (Figure 

1.2.4.1).  

 

Figure 1.2.4.1 3-mer fragment selection [27]. 
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Protein fragment selection is widely used in three-dimensional structure (3D) 

prediction. For three-dimensional structure (3D) prediction usually for modeling 

querying the Protein Data Bank (PDB) is needed. For this purpose protein fragment 

picker that is called fragger is used, which allows to create databases using the PDB 

files [28]. Methods developed for structure prediction can be grouped into two main 

categories: template-based modeling and template-free modeling. In template-based 

modeling (also known as comparative modeling), the protein structure is built by 

matching the target to a template protein, which can be applied when structurally related 

templates are available in protein structure database. When such templates cannot be 

found, structure prediction is performed by free modeling, which is based on the 

thermodynamic hypothesis that the native structure of a protein corresponds to the 

global minimum of its free energy for its physiological environment [29-30]. One of the 

popular trends among such methods is to first select a set of short fixed length 

fragments having 1-20 amino acids with known structures for overlapping segments of 

the target and then determine the tertiary structure by assembling these fragments while 

minimizing an energy function through statistical sampling techniques such as Monte 

Carlo [26]. For a succesful protein structure prediction chosing the right structural 

fragments plays an important role and the scoring function that is used is what 

determines how reliable the structure is, so optimizing the score function will yield 

better results for the structure prediction [31]. Protein fragment selection is also 

extensively used in template-based modeling, in which variable regions of the target 

(e.g. loops) that lack sufficient sequence similarity with the template are modeled by 

assembling fragments from a library of solved structures [32-33]. The most successful 

structure prediction methods developed to date are those that combine template-based 

modeling with fragment based template-free modeling. 

Selection of correct (i.e., native-like) fragments is crucial for accurate prediction 

of 3D structure. Methods developed for fragment selection typically utilize sequence 

profile representations and predicted local structure such as secondary structure, torsion 

angles and solvent accessibility. Noise free derivation of sequence profiles and accurate 

prediction of local attributes are therefore important for improving the quality and 

accuracy of fragments and 3D models.  

In the literature two main approaches have been proposed for fragment selection. 

The first one takes a sliding window on the target protein and aligns every amino acid 
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sequence in the window to fragment structures in the library [30-34]. This approach is 

used in the most succesful 3D structure prediction methods such as I-TASSER and 

Rosetta. Xu and Zhang developed a gapless-threading method and showed that the 

optimal fragment length is 10, and at least 100 fragments are needed for optimal 

structure assembly [35]. In Rosetta, fragment lengths are selected as 3 and 9 [36-37]. In 

the second approach, fragment structures with different lengths and conformations from 

the protein database (PDB) are clustured [38-39]. This approach is independent from 

sequence information and employs structure information of the fragments. Since the 

sequence information is not used, the fragments can be substituted to any region of the 

target during a structure prediction simulation. Even though the total number of 

fragments selected is less compared to the first approach it could be more advantageous 

for fragments that have an unsteady structure and loop regions that do not have 

sufficient matches to fragment structures [35].  

 

1.2.5 Protein Tertiary Structure Prediction  

Many methods have been developed for predicting the 3D structure of proteins. 

This section will give a brief overview of these techniques. For 3D structure prediction, 

two of the most popular and successful methods are Rosetta and I-TASSER. Rosetta is a 

unified software package for protein structure prediction. Using only the sequence 

information, it can generate 3D models with good accuracy by assembling the 

fragments. Rohl et al. showed that Rosetta is among the most succesful methods for de 

novo protein structure prediction, which assembles fragments by a Monte Carlo strategy 

[40]. Simsons et al. used Rosetta to assemble 3 and 9 residue fragments by Monte Carlo 

simulated annealling procedure and drew conclusion from the results that ab-initio 

methods may soon become useful in low resolution [36]. Bradley et al. used Rosetta and 

methods developed  since CASP5 for 3D structure prediction and obtained improved 

performance on large proteins [41]. Bonneau et al. used Rosetta for three-dimensional 

(3D) structure prediction and stated that models that were built using Rosetta were more 

accurate compared to the ones that were built with traditional fold recognition methods. 

In addition he concluded that Rosetta may be soon contribute to the interpretation of 

genome sequence information [42]. Yarov et al. used Rosetta for predicting helical 

transmembrane protein structures. Protein conformations were built by fragment 



15 

 

assembly method of Rosetta, which predicted structure of proteins having lengths  

between 51 and 145 with a root-mean-square deviation < 4 Å from the original structure 

[43]. Gront et al. developed a new object oriented program which extends the 

functionality of Rosetta for fragment picking and opens new doors in protein structure 

modeling [37]. TASSER method is another sucessful method developed for predicting 

the 3D structure of proteins from the amino acid sequence. It is a hierarchical protocol 

and is automated. First it generates full-length atomic structural models. Then it 

connects to the Protein Data Bank and detects structure templates using fold recognition 

[44]. Wu et al. Developed the I-TASSER method, which is the iterative version of 

TASSER. I-TASSER was used in the folding test of three benchmarks of small proteins. 

The results showed that it can predict the correct folds successfully [45]. Zhang et al. 

used I-TASSER for protein structure prediction and obtained correct topology for 7/19 

of the casses for sequences having lengths up to 155 amino acids. These results 

indicated that for the first time models generated by automated methods can be as good 

as human-experts [46]. Roy et al. developed an integrated platform for automated 

protein structure prediction with I-TASSER. The server outputs secondary and teritary 

structure predictions [47]. I-TASSER has won the CASP [48] competitions several 

times, which is held every two years across the globe. 

In addition to I-TASSER and ROSETTA, many other methods have been 

proposed for 3D structure prediction. Sali et al. developed a model that uses spatial 

features, in which the 3D model was obtained by optimizing the molecular pdf [49]. 

Marti-Renom et al. showed that comperative modeling plays an important role in 

genome sequencing and it will play a bridging role between the two fields [50]. Ginalski 

et al. claims that comperative modelling is becoming a bottleneck and developing an 

effective all-atom-structure refinment procedures will solve this problem [51]. Ben-

David et al. developed a new method called OK_RANK to evaluate the performance of 

template free modelling, and showed that out of 13 targets, 6 of them were predicted 

with high success [52]. 
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1.3 Contributions of the Thesis  

For three-dimensional (3D) structure prediction, choosing the right fragments is 

pretty important. Although sophisticated methods have been developed for predicting 

the 3D structure of proteins, many state-of-the-art methods use simple linear models to 

score similarity of fragments. These models have some advantages for the users. For 

example, some weight paramters can be assigned to zero, which disables the related 

score term. Furthermore, linear models can be interpreted more easily by users. This 

feature makes it very attractive for researchers who use Rosetta across the world. 

However, in a model where sequence profile information and one-dimensional 

structural features with different types of attributes are used, it is quite possible to have 

a non-linear decision boundary that separates structurally similar fragments from those 

that are dissimilar. Second, the weight coefficients of these linear models are typically 

adjusted manually or semi-automatically, which might result in models that are not 

optimized fully. For these reasons, using non-linear models for fragment similarity 

scoring, in which the weight coefficients are estimated automatically using a large 

dataset can potentially provide more accurate fragments.  

In this thesis, machine learning methods [53] are developed for predicting 

whether an amino acid fragment on a target protein is structurally similar to a fragment 

with known structure. Two versions of the problem are studied. The first one models the 

structural similarity of two fragments as a classification problem, in which the output 

class label can be 0 or 1 depending on whether the two fragments are structurally 

similar or not, respectively. The second version models the similarity as a regression 

problem, in which the output variable can take continuous values ranging from 0 to 1 

with 0 representing the most dissimilar and 1 representing identical structures. To 

design input features for both versions of the problem, a concept hierarchy approach is 

implemented, which employs PSI-BLAST’s position specific scoring matrix (PSSM) 

(i.e. sequence profiles) [54-55], secondary structure [56], torsion angle classes [57] and 

solvent accessibility information [58] in various combinations and projections that 

summarize these features in lower dimensional spaces. After finding the best feature set 

representation, various classification and regression methods are trained and optimized 

for predicting the structural similarity of 3-mer and 9-mer fragments including logistic 

regression, AdaBoost, decision tree, k-nearest neighbor, naive Bayes, random forest, 
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SVM and multi-layer perceptron. In the next step, a fragment selection method is 

implemented that uses the logistic regression classifier to select 200 fragment structures 

for each fragment window of a given target protein and its CPU performance is tested. 
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Chapter 2 

 

Methods 
 

2.1 Feature extraction and datasets for fragment 

selection 

The fragment dataset of Rosetta (known as the vall dataset) contains 16,800 

proteins and 4,126,307 amino acids, which are available in PDB (i.e. with known 3D 

structure). This dataset was obtained in July 2011 by Dr. Aydin from the developers of 

Rosetta in Baker lab. For each protein in the vall dataset, first, PSI-BLAST PSSM 

features and predictions of one-dimensional structural properties such as secondary 

structure, solvent accessibility and torsion angle classes are computed. Then train and 

test sets are generated by randomly sampling fragment pairs to develop machine 

learning models that can predict the similarity scores of two fragments.  

 

2.1.1 PSI-BLAST PSSM features  

The proteins in the vall dataset are aligned against the NR protein database using 

the PSI-BLAST method [59] to compute a position specific scoring matrix (PSSM), 

which is used as input features for the machine learning models developed in this thesis. 

The dimension of each PSSM is 𝑁 × 20, where 𝑁 is the number of amino acids in the 

target protein and 20 represents the amino acids commonly found in nature. A PSSM 

represents statistical propensity scores of observing the 20 amino acids in each amino 

acid position of the target. The first type of PSSM is extracted by the PSI-BLAST 

algorithm. For this purpose, the BLAST+ program version number 2.2.31 is employed 

with the following parameter assignments: e-value=10-3, inclusion threshold=10-10, 

number of iterations=3. The NR database was dated as 23rd of June 2015 and contained 

64,109,998 amino acid sequences. The PSI-BLAST program computes a position 
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specific scoring matrix (PSSM) using proteins that scores above a threshold. Note that, 

BLAST+ was not able to find any hits for 10 proteins in the vall dataset, which are 

aligned aginst the NR using BLAST version 2.2.26 by setting e-value to 10, inclusion 

threshold to 10-3, and number of iterations to 3. Although the program was still not able 

to find any hits, this earlier version of BLAST was able to produce PSSM features using 

a background model, which are used as input features for the machine learning models.  

 

2.1.2 HHMAKE PSSM features  

In addition to PSI-BLAST, the proteins in the vall dataset are also aligned 

against the NR20 database (a reduced version of NR) using the hhmake script of the 

HHsuite version 2.0.16 [60]. This script computes hidden Markov model profile 

(HMM-profile) for the target protein starting from the multiple alignments computed on 

NR20. Then the probability distributions in the match states of these HMM-profiles are 

converted to a PSSM. However, in our preliminary studies, the HHMAKE PSSM 

features did not improve the accuracy of fragment similarity estimation (results not 

shown). Therefore they are excluded from the feature set of the machine learning 

models later.  

 

2.1.3 Predicting 1D structure using DSPRED  

In addition to PSSM features, one-dimensional (1D) structural properties such as 

secondary structure, solvent accessibility and torsion angle classes are used as input 

features to estimate the similarity of two fragments. For this purpose, 1D structural 

properties of proteins in vall dataset are predicted using the DSPRED method, which is 

a two-stage hybrid classifier proposed by Aydin et al. [56]. The DSPRED method is 

trained on a large dataset that includes 5396 proteins derived from the PDB using the 

CullPDB utility of the PISCES server by setting the percentage of sequence identity 

threshold to 20 and removing proteins that share more than 20% sequence identity 

scores with the vall proteins [61]. The DSPRED method is trained separately for 

computing secondary structure, solvent accesssibility and torsion angle class predictions 

of the vall proteins. As a result of model training and prediction steps, a probability 
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distribution of size 𝑁 × 𝐾 is obtained for each protein in the vall dataset, where 𝑁 is the 

number of amino acids in the target protein and 𝐾 represents the number of class labels, 

which is 3 for secondary structure, 2 for solvent accessibility and 7 for torsion angle 

classes. 

Note that predictions are used as input features for the first fragment of the 

fragment pair only, which belongs to target protein with unknown structure. The other 

fragment is selected from the fragment library and has known structure. For this 

fragment, the true 1D structure information is coded by a probability distribution (i.e. 1-

of-K scheme for each amino acid, which assigns 1 to true class and the rest is 0), which 

is used as input features in the machine learning models. 

 

2.1.4 Generating train and test sets  

 In this thesis, a supervised learning approach is used, in which machine learning 

models are developed that can predict whether a pair of fragments have similar 

structures or not. To be able to train and validate learning models, train and test sets are 

generated. Because the vall fragment dataset contains billions of fragment pairs, a 

sampling strategy is used that randomly selects fragment pairs from the vall dataset. For 

this purpose, first, pairwise combinations of the 16,800 proteins are considered. Then on 

each protein pair, a sliding window of size 9 (i.e. 9-mer) is chosen and all possible 

pairwise combinations of these 9-mer fragments are considered as fragment pairs, 

which represent candidates for data samples in train and test sets. These candidates are 

divided into two pools: “candidates for similar fragment pairs” and “candidates for 

dissimilar fragment pairs”. The pairs that have percentage of amino acid identity score 

less than or equal to 50% are assigned to “candidates for dissimilar fragment pairs” 

pool. Otherwise if the percentage of amino acid identity score is greater than 50% and if 

the secondary structure labels, solvent accessibility labels and torsion angle class labels 

of the two fragments are identical they are assigned to “candidates for similar fragment 

pairs” pool. Then each pool is further divided into 26 sub-pools (a total of 52 pools) so 

that the tasks can be executed in different CPU cores simultaneously for faster 

processing. In the next step, atomic coordinates of the fragments, which are extracted 

from the PDB database, are compared using the BCscore program, which has been 

shown to capture the similarity between two structures better than the RMSD score 
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metric [62]. The BCscore program produces a similarity score, which takes continuous 

values from 0 to 1 such that 0 indicates the dissimilar structures and 1 represents 

identical structures. This score is used as the output variable in the regression version of 

the fragment similarity prediction problem. For the classification version, the 

continuous valued BCscore output is converted to a binary class label using the 

following transformation 

 

𝑦 = {
1             𝐵𝐶𝑠𝑐𝑜𝑟𝑒 > 0.63
0             𝐵𝐶𝑠𝑐𝑜𝑟𝑒 ≤ 0.63

                                    (2.1.4.1) 

 

where 𝑦 denotes the similarity class label between the two fragments compared and 

0.63 is the threshold used in the BCscore paper [62].  

In order to compute the similarity between millions of fragment pairs efficiently, 

the C source code of the BCscore program is modified so that it receives the list of files 

in .pdb format for fragments that are going to be compared instead of making separate 

system calls to BCscore program for each fragment pair.  

After labeling the fragment pairs considered, the number of pairs that are labeled 

as similar are much less than those that are labeled as dissimilar. Therefore to prevent 

class imbalance problem, a second sampling approach is employed, which performs 

under-sampling by selecting a subset of dissimilar fragment pairs so that the number of 

similar fragment pairs is nearly identical to the number of dissimilar pairs. At the end of 

the under-sampling procedure, 4,558,106 9-mer fragment pairs have been obtained. In 

the next step, 1% of these fragment pairs are further selected randomly and the size of 

the fragment dataset is reduced to 45,581 sample pairs. This dataset is used later in 10-

fold cross-validation experiments for 9-mers.  

For 3-mers the above steps are repeated. Since the number of 3-mers are much 

more than the number of 9-mers, an additional sampling procedure has been applied 

before the under-sampling step. In this procedure, a maximum of 500,000 fragment 

pairs are selected from each of the 52 pools obtained for 9-mers. If the number of 

fragment in a pool is less than 500,000 then all of these pairs are selected. Then as in 9-

mers, fragment pairs selected from the 52 pools are scored simultaneously on different 

CPU cores using the BCscore program. At the end of these steps, 4,557,468 3-mer pairs 

are obtained. Finally, as in 9-mer, stratified sampling has been employed for 3-mers by 
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selecting 1% of the fragment pairs. The fragment sampling procedures are summarized 

in Tables 2.1.4.1 and 2.1.4.2 for 9-mers and 3-mers, respectively. 

 

 

 

 

 

Figure 2.1.4.1 9-mer dataset construction by sampling fragment pairs 

 

 

 

 

Figure 2.1.4.2: 3-mer dataset construction by sampling fragment pairs 

 

2.1.5 Feature vectors  

Various feature parameters are considered for the feature vector of each 

fragment pair, which are summarized in Table 2.1.5.1.  

Fragment 1 Fragment 2 

PSI-BLAST 

sequence 

profile 

matrices 

𝑊 × 20 

features 

HHMAKE 

sequence 

profile 

matrices 

𝑊 × 20 

features 

Local structure 

prediction 

score matrices 

𝑊 × 𝐾 features 

PSI-BLAST 

sequence 

profile 

matrices 

𝑊 × 20 

 features 

HHMAKE 

sequence 

profile 

matrices 

𝑊 × 20 

features 

Local structure 

label matrices 

𝑊 × 𝐾 

features 

 

Table 2.1.5.1 Features considered for each fragment pair  

Selecting 

candidates for 

similar and 

dissimilar fragment 

pairs by random 

sampling 

 

 

Scoring fragment 

pairs by BCscore 

 

Reducing the 

number of 

dissimilar 

fragments by 

under-sampling 

 

 

Choosing 1 % of 

the data by 

stratified sampling 

Selecting 

candidates for 

similar and 

dissimilar fragment 

pairs by random 

sampling 

 

Selecting maximum 

500,000 fragment 

pairs from each 

fragment pool and 

scoring by BCscore 

 

Reducing the 

number of 

dissimilar 

fragments by 

under-sampling 

 

 

Choosing 1 % of 

the data by 

stratified sampling 
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In this table, fragment 1 represents a fragment on the target protein whose 

structure is unknown, fragment 2 represents a fragment in the database (i.e. fragment 

library) whose 3D structure is known. 𝑊 is the length of the fragment (i.e. number of 

amino acids) and is equal to 3 for 3-mers and 9 for 9-mers. 𝐾 is the number of classes in 

structural features used, which is equal to 3 for secondary structure, 7 for torsion angle, 

and 2 for solvent accesibility. In fragment selection problem, since the structure of the 

input protein (target) is unkown the structure of fragment 1 is also considered unknown. 

For this reason, structural features such as secondary structure, torsion angle and solvent 

accesibility for the protein that fragment 1 belongs to are predicted using the DSPRED 

method. For example the predicted marginal probability distribution obtained for 

secondary structure has a size of 𝑁 × 3 with 𝑁 denoting the number of amino acids in 

the protein and a size of 𝑊 × 3 for the fragment considered. On the other hand, since the 

structure of fragment 2 is known the true label information is used in hard-label format 

as a distribution of size 𝑊 × 𝐾 (i.e. orthogonal representation or 1-of-K coding scheme) 

in which only the true class is set to 1 and other classes are set to 0 for each amino acid 

in that fragment. For example, if the fragment 2 is a 3-mer and its true secondary 

structure labels are LEE the true label matrix takes the following form in Figure 2.1.5.1. 

 

Figure 2.1.5.1 An example true label matrix representing secondary structure labels of a 3-mer. 

Here the rows represent the secondary structure labels (in H, E, L order), columns 

represent the amino acids of the fragment. 

 

2.1.6 Feature combinations and concept hierarchy 

To determine which features are useful, different combinations of the feature 

groups are considered. There are five feature groups: PSI-BLAST PSSMs, HHMAKE 

PSSMs, secondary structure distributions, torsion angle distributions and solvent 

accessibility distributions. Initially, the following feature groupings are implemented for 

these feature groups: (1) PSI-BLAST features only, (2) HHMAKE features only, (3) 

secondary structure features only, (4) torsion angle features only, (5) solvent accesibility 
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features only. Then for each feature grouping, several concept hierarchies are 

implemented as explained below. Note that in our preliminary experiments the feature 

combinations that include HHMAKE PSSM features did not provide better accuracy 

results as compared to using PSI-BLAST PSSM features. Therefore HHMAKE PSSMs 

are excluded from the feature sets.  

For each feature group, several concept hierarchy representations are 

implemented, which takes projections of the feature groups into lower dimensional 

spaces. Summarizing information in different levels is known as concept hierarchy in 

the literature of data mining [63]. This technique also reduces the overall number of 

dimensions (i.e. features), helping to reduce the computation time and in certain cases 

as in this thesis may increase the prediction accuracy of the machine learning models. In 

the lowest level of concept hierarchy, feature values representing fragment 1 and 

fragment 2 of Table 2.1.5.1 are concatenated to form a single feature vector denoted as 

𝐷0 having a dimension of 2 × 20 × 𝑊 if PSI-BLAST PSSMs are used only and 2 ×

𝐾 × 𝑊 if structure distributions are used only. For example, if PSI-BLAST features are 

used only and the if the fragment size is 3, the lowest level of concept hierarchy gives 

20 × 3 = 60 features for each fragment producing a total of 120 features. This 

dimension becomes 20 × 3 × 2 = 360 for 9-mers. If secondary structure distributions 

are used only then the dimension of the feature vector 𝐷0 becomes 2 × 3 × 3 = 18 for 

3-mers and 2 × 9 × 3 = 54 for 9-mers. If torsion angle class distributions are used only 

then the dimension of the feature vector 𝐷0 becomes 2 × 7 × 3 = 42 for 3-mers and 

2 × 7 × 9 = 126 for 9-mers. If solvent accessbility class distributions are used only 

then the dimension of the feature vector 𝐷0 becomes 2 × 3 × 2 = 12 for 3-mers and 

2 × 9 × 2 = 36 for 9-mers. 

In upper levels of the concept hierarchy, distances between feature vectors are 

computed, which eventually is a technique used to summarize data in different 

dimensions. These distance scores are then concatenated to form a single feature vector 

for each fragment pair. Four types of distances are considered each representing a 

different projection of the feature matrices into a lower dimensional subspace. The first 

distance is computed between the PSIBLAST PSSMs of the two fragments as follows  

𝐷1𝑝𝑠𝑖(𝑖, 𝑗) = |𝑀𝑝𝑠𝑖
(1)

(𝑖, 𝑗) − 𝑀𝑝𝑠𝑖
(2)

(𝑖, 𝑗)|       1 ≤ 𝑖 ≤ 𝑊, 1 ≤ 𝑗 ≤ 20                        (2.1.6.1) 
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where 𝑊 denotes the fragment length, which is equal to 3 for 3-mers and 9 for 9-mers, 

𝑀𝑝𝑠𝑖
(1)

 and 𝑀𝑝𝑠𝑖
(2)

 represent PSIBLAST PSSMs of fragments 1 and 2 respectively, both of 

which have dimension 𝑊 × 20. As it can been seen from this formula the absolute 

differences between the elements of the PSSM matrices are computed and a new matrix 

denoted as 𝐷1𝑝𝑠𝑖 having a dimension of 𝑊 × 20 is obtained. The values in 𝐷1𝑝𝑠𝑖 are 

then concatenated (i.e. flattened) to form a single feature vector. Dimension of this 

feature vector becomes 60 for 3-mers and 180 for 9-mers. These are smaller than the 

original dimensions, which would be 120 for 3-mers and 360 for 9-mers if the 

differences were not computed. The same distance formula can also be applied to 

structure matrices as follows 

𝐷1𝑠𝑡𝑟(𝑖, 𝑗) = |𝑀𝑠𝑡𝑟
(1)

(𝑖, 𝑗) − 𝑀𝑠𝑡𝑟
(2)

(𝑖, 𝑗)|       1 ≤ 𝑖 ≤ 𝑊, 1 ≤ 𝑗 ≤ 𝐾                         (2.1.6.2) 

where 𝑊 denotes the fragment length, which is equal to 3 for 3-mers and 9 for 9-

mers, 𝐾 is the number of class labels, which is equal to 3 for secondary structure, 7 for 

torsion angle, 2 for solvent accessibility, 𝑠𝑡𝑟 can be a structure representation such as 

secondary structure, torsion angle or solvent accessibility information, 𝑀𝑠𝑡𝑟
(1)

 represents 

the predicted a posteriori probability distribution in matrix form for fragment 1 of target 

with a dimension of 𝑊 × 𝐾, 𝑀𝑠𝑡𝑟
(2)

 represents the true label distribution in matrix form 

for fragment 2 of the library with a dimension of 𝑊 × 𝐾, 𝐷1𝑠𝑡𝑟 represents the 

difference matrix of dimension 𝑊 × 𝐾. Similar to PSIBLAST PSSM, the values in 

𝐷1𝑠𝑡𝑟 are flattened to obtain a single feature vector, the dimension of which becomes 9 

for secondary structure and 3-mer, 21 for torsion angle and 3-mer, 6 for solvent 

accessibility and 3-mer,  27 for secondary structure and 9-mer, 63 for torsion angle and 

9-mer, 18 for solvent accessibility and 9-mer. If the differences were not computed 

these dimensions would be twice as high: 18 for secondary structure and 3-mer, 42 for 

torsion angle and 3-mer, 12 for solvent accessibility and 3-mer, 54 for secondary 

structure and 9-mer, 126 for torsion angle and 9-mer, 36 for solvent accessibility and 9-

mer. 

The second distance formula summarizes (i.e. averages) the data in position dimension 

of the fragments. 

𝐷2𝑝𝑠𝑖(𝑗) =
1

𝑊
∑ |𝑀𝑝𝑠𝑖

(1)(𝑖, 𝑗) − 𝑀𝑝𝑠𝑖
(2)(𝑖, 𝑗)|𝑊

𝑖=1        1 ≤ 𝑗 ≤ 20                         (2.1.6.3) 
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where 𝐷2𝑝𝑠𝑖 is the distance vector, which is the summarized and normalized version of 

the absolute difference matrix in position dimension 𝑖 and the definitions of the other 

terms are the same as in Equation 2.1.6.1. The dimension of 𝐷2𝑝𝑠𝑖 is 20 both for 3-mer 

and 9-mer problems. This formula can also be applied to compute distance between 

structure distributions. 

𝐷2𝑠𝑡𝑟(𝑗) =
1

𝑊
∑ |𝑀𝑠𝑡𝑟

(1)
(𝑖, 𝑗) − 𝑀𝑠𝑡𝑟

(2)
(𝑖, 𝑗)|𝑊

𝑖=1        1 ≤ 𝑗 ≤ 𝐾                         (2.1.6.4) 

where 𝐷2𝑠𝑡𝑟 represents the difference vector of dimension 𝐾 and the other terms are the 

same as in Equation 2.1.6.2. Dimension of this vector becomes 3 for secondary 

structure, 7 for torsion angle, and 2 for solvent accessibility both for 3-mer and 9-mer 

problems.  

The third distance formula summarizes the data in the second dimension of the 

matrices. 

𝐷3𝑝𝑠𝑖(𝑖) =
1

20
∑ |𝑀𝑝𝑠𝑖

(1)(𝑖, 𝑗) − 𝑀𝑝𝑠𝑖
(2)(𝑖, 𝑗)|20

𝑗=1        1 ≤ 𝑖 ≤ 𝑊                              (2.1.6.5) 

where 𝐷3𝑝𝑠𝑖 is the distance vector, which is the summarized and normalized version of 

the absolute difference matrix in dimension 𝑗 and the definitions of the other terms are 

the same as in Equation 2.1.6.1. The dimension of 𝐷3𝑝𝑠𝑖 is 𝑊, which is 3 for 3-mers 

and 9 for 9-mers. This formula can also be applied to compute distance between 

structure distributions. 

𝐷3𝑠𝑡𝑟(𝑖) =
1

𝐾
∑ |𝑀𝑠𝑡𝑟

(1)(𝑖, 𝑗) − 𝑀𝑠𝑡𝑟
(2)(𝑖, 𝑗)|𝐾

𝑗=1        1 ≤ 𝑖 ≤ 𝑊                         (2.1.6.6) 

where 𝐷3𝑠𝑡𝑟 represents the difference vector of dimension 𝑊 and the other terms are 

the same as in Equation 2.1.6.2. Dimension of this vector is 3 for 3-mers and 9 for 9-

mers.  

Finally the fourth distance formula takes the average in both dimensions.  

𝐷4𝑝𝑠𝑖 =
1

20𝑊
∑ ∑ |𝑀𝑝𝑠𝑖

(1)(𝑖, 𝑗) − 𝑀𝑝𝑠𝑖
(2)(𝑖, 𝑗)|20

𝑗=1
𝑊
𝑖=1                                             (2.1.6.7) 

where 𝐷4𝑝𝑠𝑖 is the distance term, which is the summarized and normalized version of 

the absolute difference matrix both in dimensions 𝑖 and 𝑗 and the definitions of the other 

terms are the same as in Equation 2.1.6.1. The dimension of 𝐷4𝑝𝑠𝑖 is 1 both for 3-mers 
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and 9-mers. This formula can also be applied to compute distance between structure 

distributions. 

𝐷4𝑠𝑡𝑟 =
1

20𝑊
∑ ∑ |𝑀𝑠𝑡𝑟

(1)(𝑖, 𝑗) − 𝑀𝑠𝑡𝑟
(2)(𝑖, 𝑗)|𝐾

𝑗=1
𝑊
𝑖=1                                   (2.1.6.8) 

Tables 2.1.6.1-2.1.6.4 summarize the number of features used for PSI-BLAST PSSMs, 

secondary structure, torsion angle and solvent accessibility distributions, respectively 

when concept hierarchy is applied using Equations (2.1.6.1)-(2.1.6.8). In these tables, 

the concept hierarchies are represented by D0 to D4, which correspond to the terms 

explained above. 

 

Fragment Size \ Hierarchy D0 D1 D2 D3 D4 

3-mer 120 60 20 3 1 

9-mer 360 180 20 9 1 

Table 2.1.6.1:  Number of features at different levels of concept hierarchy when PSI-BLAST 

PSSMs are used only to construct the feature set for 3-mers and 9-mers  

 

Fragment Size \ Hierarchy D0 D1 D2 D3 D4 

3-mer 18 9 3 3 1 

9-mer 54 27 3 9 1 

Table 2.1.6.2:  Number of features at different levels of concept hierarchy when secondary 

structure class distributions are used only to construct the feature set for 3-mers and 9-mers  

 

Fragment Size \ Hierarchy D0 D1 D2 D3 D4 

3-mer 42 21 7 3 1 

9-mer 126 63 7 9 1 

Table 2.1.6.3:  Number of features at different levels of concept hierarchy when torsion angle class 

distributions are used only to construct the feature set for 3-mers and 9-mers  
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Fragment Size \ Hierarchy D0 D1 D2 D3 D4 

3-mer 12 6 2 3 1 

9-mer 36 18 2 9 1 

Table 2.1.6.4:  Number of features at different levels of concept hierarchy when solvent accessibility 

class distributions are used only to construct the feature set for 3-mers and 9-mers  

In the concept hierarchy model described above there are a total of four feature 

set groups (excluding the HHMAKE PSSM features). These are PSI-BLAST PSSMs, 

secondary structure distributions, torsion angle class distributions, and solvent 

accessibility class distributions. For each feature group there can be a total of five 

concept hierarchy levels (D0 to D4) and two combinations originating from whether the 

fragment size is 3 or 9. In that case, the total number of possible feature set 

combinations becomes 

∑ 2 (
4
𝑘

) 5𝑘 = 2390

4

𝑘=1

 

Since forming 2390 different datasets for each of these combinations is computationally 

costly, the possible combinations are further reduced. For this purpose, first, the 

particular concept hierarchy level that gives the best fragment similarity prediction 

accuracy is found for each feature group and fragment size. Then, the following feature 

combinations are considered and compared using the best concept hierarchy 

representation for each feature group: (1) PSI-BLAST PSSM features only, (2) 

secondary structure distributions only, (3) torsion angle distributions only, (4) solvent 

accessibility distributions only, (5) PSI-BLAST and secondary structure features 

combined, (6) PSI-BLAST, secondary structure and torsion features combined, (7) PSI-

BLAST, secondary structure, torsion and solvent accessibility features combined, (8) 

secondary structure, torsion and solvent accessibility features combined. For each 

combination, a separate dataset is prepared and a 10-fold cross-validation experiment is 

performed. This approach reduces the total number of feature set combinations 

significantly.  
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2.2 Prediction Methods 

Two prediction problems are studied in this thesis. The first one represents the 

similarity between fragments as a classification problem by mapping the BCscore 

values to 0 or 1 (with 0 representing dissimilar and 1 representing similar fragment 

structures). The second one is a regression problem, which aims to predict the BCscore 

value directly as the output variable. Both approaches use the same feature set, which is 

explained in Section 2.1. 

 

2.2.1 Classification Methods 

The following classifiers are implemented to predict whether two fragments 

have similar 3D structures or not: logistic regression, k-nearest neighbor, decision tree, 

neural network, support vector machine (SVM), bagging, random forest, and AdaBoost. 

These methods are implemented using the WEKA software [64]. For SVM, the libSVM 

package is used with WEKA [65]. 

 

2.2.1.1 Logistic Regression 

 Logistic regression is a linear classifier, in which the decision boundary is a 

hyperplane. It may be attractive due to its short training times for problems that contain 

many numeric features and when the samples that belong to different classes can be 

separated by a hyperplane with high accuracy. Logistic regression can be applied both 

to binary and multi-class classification problems [66]. 

 

 

Figure 2.2.1.1.1 Logistic regression [67] 
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2.2.1.2 K-Nearest Neighbor 

K-nearest neighbor computes the distance between the feature vector of the test 

sample (whose class is unknown) and the feature vectors of the train set samples. It then 

makes a decision by combining votes from the 𝑘 samples of the train set that are closest 

to the test sample. For distance functions, Euclidean, Manhattan or Minkowski 

measures can be used [68]. In the example figure below, the green circle is classified as 

belonging to the red class if 𝑘 is selected as 3 and to blue class if it is set to 5. 

 

 

                                     Figure 2.2.1.2.1 K-Nearest Neighbor [69] 

 

2.2.1.3 Decision Tree 

A decision tree is a supervised learning method, which starts from the root node, 

performing a test on an attribute at each node and makes a classification decision when 

it reaches to a leaf node [70]. An example desicion tree is given in Figure 2.2.1.3.1. 

 

 

            Figure 2.2.1.3.1 Decision tree [71] 
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2.2.1.4 Support Vector Machine 

A support vector machine classifier separates the classes by a hyperplane after 

transforming the data to a higher dimensional space. It is among the max-margin 

classifiers which finds the optimum hyperplane that maximize the margin distance. 

Figure 2.2.1.4.1, below shows an example for a hyperplane separating two classes [72]. 

 

 

Figure 2.2.1.4.1 Suppor vector machine [73] 

 

2.2.1.5 Artificial Neural Network 

Artifical neural network is a machine learning technique which is inspired by the 

working princliples of the human brain. It has a layered structure, where each layer 

contains many nodes representing neurons. Each neuron receives input signals from the 

previous layer and produces an output signal, which is realized by an activation function 

that represents whether the neuron is activated or not and to what degree. There are 

different types of neural networks such as feedforward and recurrent networks with 

feedback loops [74]. Figure 2.2.1.5.1 represents a feed-forward multi-layer perceptron 

network with three layers. Each edge contains a weight parameter that is multiplied with 

the input signal coming from the previous layer. At each hidden node (also at output 

node), the weighted summation of the inputs connected from the previous layer to that 

hidden node is computed and passed through an activation function. The activation 

functions at the output layer produces the output of the network. 
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   Figure 2.2.1.5.1 Artifical neural network [75] 

 

2.2.1.6 Bagging 

Bagging, also known as bootstrap aggregating, is a meta-algorithm which 

improves the accuracy of machine learning algorithms and is used in classification and 

regression. Moreover, it reduces variance and avoids overfitting. It is an ensemble 

learning method, in which the data is sampled with replacement from the training 

dataset and each bootstrapped train set is used to learn a different model. Finally the 

outputs from each learner is voted and a single output is obtained [76]. Figure 2.2.1.6.1 

summarizes the bagging method. 

 

Figure 2.2.6.1.1 Bagging [77] 
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2.2.1.7 Random Forest 

Random forest is a bagging variant, in which the base learners are decision trees 

each trained using a randomly selected subset of features. Random forests are robust 

against overfitting and outliers. They can be used both in classification and regression 

problems. Similar to bagging, the outputs of the base learners can be combined by a 

voting procedure [78]. 

 

          Figure 2.2.1.7.1 Random forest [79] 

 

 

2.2.1.8 AdaBoost 

AdaBoost is the abbreviation for “Adaptive Boosting”. It is a meta-algorithm 

that can improve the performance by combining several weak learners. Typically one-

level desicion trees such as decision stumps are used as the base learners, which are 

added to the ensemble one at a time in each iteration [80]. In boosting, each train 

sample has a weight, which represents how likely the sample will be selected in the next 

iteration. Initially the weights of all the train samples are equal. After the first base 

learner is trained by bootstrap sampling, predictions are computed for the train samples. 

The weights of the samples that are misclassified are increased and the weights of those 

that are classified correctly are decreased. The updated weights are used to form a new 

bootstrap sample to train a new base learner in the next iteration. The outputs of 

multiple-base learners are combined by a weighted voting approach, which uses higher 

weights for accurate classifiers and lower weights for less accurate ones. Figure 

2.2.1.8.1 summarizes the AdaBoost method. 
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               Figure 2.2.1.8.1 Adaboost [81] 

 

 

2.3.1 Regression Methods 

The following regression models have been implemented: linear regression, 

Bayesian ridge regression, MLP regression, polynomial regression, and random forest 

regression. The regression methods are implemented using scikit-learn library of  

Python [82]. 

 

2.3.1.1 Linear Regression 

Linear regression fits a linear equation to the data to model the relationship 

between the input and output variables. The input variables are called explanatory 

variables and the output variable is known as response variable. Linear regression can 

be used to learn relations between different types of variables such as a person’s wieght 

and height [83]. 

 

2.3.1.2 Bayesian Ridge Regression 

Bayesian ridge regression is a Bayesian approach for ridge regression. It 

estimates a probabilistic model of the regression problem, in which the prior distribution 

of the weight parameter is a spherical Gaussian [84]. 
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2.3.1.3 MLP Regression 

MLP regression uses multi layer perceptrons for regression, in which the square 

error is used as the loss function at the output layer [85].  

 

2.3.1.4 Polynomial Regression 

Polynomial regression is a regression model that finds a relationship between the 

independant and dependant variable by using a nth degree polynomial [86]. 

 

2.3.1.5 Random Forest Regression 

Random forest can also be used for regression problems since decision trees can 

be trained both for discrete and continuous valued outputs. In scikit-learn, the predicted 

regression output is obtained as the mean of predictions obtained from the trees in the 

forest [87].  
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Chapter 3 
 

 

Experiments and Analysis 

To assess the accuracy of fragment similarity prediction, different datasets have 

been prepared for various feature combinations explained in Chapter 2 and for the two 

fragment lengths (i.e. 3-mer and 9-mer). A 10 fold cross-validation experiment is 

performed on each dataset. A separate validation set has been obtained from each train 

set by sampling 10% of the data samples randomly. These sets are used to find the 

optimum concept hierarchy level and to optimize the hyper-parameters of the models. 

The experiments and calculations has been performed using WEKA software [64]. Then 

models are trained on the full train set adn predictions are computed on the test set, 

which is repeated for the 10 folds of the cross-validation.  

 

3.1 Accuracy Metrics  

To evaluate the accuracy of fragment similarity classification, the following 

metrics have been computed: confusion matrix, overall accuracy, precision, recall, 

specificity, F-measure, AUC, NPV, and Matthew’s correlation coefficient (MCC). For 

regression models, correlation, R2 relative absolute error, root relative squared error, 

mean absolute error and root mean squared error metrics are computed. For the 

accuracy of structure predictions, the overall accuracy, recall, precision, segment 

overlap measure, and Matthew’s correlation coefficient (MCC) are used. The 

definitions of these metrics are given below. 
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3.1.1 Accuracy Metrics for Classification 

3.1.1.1 Confusion Matrix 

Confusion matrix which is also known as an error matrix, is a table used to 

compute the accuracy of a classification algorithm [88]. Figure 3.1.1.1.1 summarizes 

the contents of a confusion matrix. 

                            

Figure 3.1.1.1.1 Confusion Matrix [89] 

The definitions of the terms on this figure are given below 

TP =  Number of samples predicted as positive and are actually positive 

TN = Number of samples predicted as negative and are actually negative 

FP = Number of samples predicted as positive but are actually negative 

FN = Number of samples predicted as negative but are actually positive 

 

3.1.1.2 Overall Accuracy 

To calculate the overall classification accuracy, the predictions on test sets are 

concatenated and compared with the correct labels. The Equation 3.1.1.2.1 formulates 

how this metric is computed as a percentage score. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝑎𝑡𝑒 = 100 × 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

 (3.1.1.2.1) 
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3.1.1.3 Precision 

Precision is a measure for classification models, which computes how many of 

the positive predictions are correctly predicted as positive. It is formulated in Equation 

3.1.1.3.1. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 100 ×
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

3.1.1.4 Recall 

Also known as sensitivity or true positive rate, the recall measure computes how 

many of the examples whose true labels are positive are correctly predicted as positive, 

which is formulated in Equation 3.1.1.4.1. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 100 ×
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

3.1.1.5 Specificity 

Specificity computes how many of the samples for which the true label is 

negative are correctly predicted as negative. Equation 3.1.1.5.1 formulates the 

computation of the specificity measure. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 100 ×
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

3.1.1.6 F-Measure 

F-Measure or F-Score is another accuracy metric to measure the accuracy of a 

classifier. It is known as the weighted harmonic mean of recall and precision, which is 

calculated using the formula below. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

3.1.1.7 AUC 

AUC is another accuracy metric and stands for the area under the receiver 

operating characteristic (ROC) curve, which is obtained as a plot of true positive rate 

versus false positive rate (i.e. 1-specificity) for different decision thresholds. Below in 

figure 3.1.1.7.1 a ROC curve is given. AUC is the area under this curve.  

 (3.1.1.3.1) 

  (3.1.1.4.1) 

  (3.1.1.5.1) 

 (3.1.1.6.1) 
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Figure 3.1.1.7.1 ROC curve 

 

3.1.1.8 NPV 

NPV which stands for the negative predictive value and is computed as how 

many of the negative predictions are correctly predicted as negative. Equation 3.1.1.8.1 

formulates the computation of the NPV measure. 

𝑁𝑃𝑉 = 100 ×
𝑇𝑁

𝑇𝑁+𝐹𝑁
 

3.1.1.9 MCC 

MCC stands for “Matthews Correlation coefficent” and is a an accuracy metric 

used to check the quality of a classifer. It useses the true positive, true negative, false 

positive and false negative values to calculate the MCC. Equation 3.1.1.9.1 shows the 

calculation of the MCC measure. 

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 

 

3.1.1.9 SOV 

The segment overlap measure (SOV) is used to assess the accuracy of secondary 

structure, torsion angle class, and solvent accessibility predictions. It indicates how well 

the predicted structural segments for match with the true segments [90]. 

(3.1.1.8.1) 

(3.1.1.9.1) 
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3.1.2 Accuracy Metrics for Regression 

3.1.2.1 Correlation 

Correlation is a statistical method that can show us how a pair of variables are 

related. Equation 3.1.2.1.1 shows the calculation of correlation measure. 

𝑟 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑋2−(∑ 𝑥
2

)] [𝑛 ∑ 𝑦2−(∑ 𝑦)2]

 

3.1.2.2 R2 Score 

R2 score is a statistical measure and shows us how good the data were fit to the 

regression line. Equation 3.1.2.2.1 formulates the calculation of R2 score. SSres stands 

for the sum of squares of residuals and SStot stands for the total sum of squares. 

𝑅2 ≡
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

3.1.2.3 Relative Absolute Error 

Relative absolute error (RAE) is the difference between the aprroximation and 

true value as an absolute value. Formula in equation 3.1.2.3.1 has been used to calculate 

the relative absolute error. Actual values are the ‘a’ values and predicted values are the 

‘p’ values. 

𝑅𝐴𝐸 =  
|𝑝1−𝑎1|+⋯+|𝑝𝑛−𝑎𝑛|

|𝑎−𝑎1|+⋯+|𝑎−𝑎𝑛|
 

 

3.1.2.4 Root Relative Squared Error 

Root relative squared error (RRSE) is relative to if a simple predictor has been 

used. The average of the actual values is a simple predictor. For root relative squared 

error calculation the formula in equation 3.1.2.4.1 has been used. 

𝑅𝑅𝑆𝐸 =  
(𝑝1−𝑎1)2+⋯+(𝑝𝑛−𝑎𝑛)2

(𝑎−𝑎1)2+⋯+(𝑎−𝑎𝑛)2  

 

(3.1.2.1.1) 

 

(3.1.2.2.1) 

 

(3.1.2.3.1) 

 

(3.1.2.4.1) 
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3.1.2.5 Mean Absolute Error 

Mean absolute error (MAE) is the differnece between two continious in 

statistics. Mean absolute error is calculate with the given equation in 3.1.2.5.1. 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
 

 

3.1.2.6 Root Mean Squared Error 

Root mean squared error (RMSE) is the differences between the actual values 

and predicted values. Equation 3.1.2.6.1 shows the formula used to calculate root mean 

squared error. True label is the ‘y’ value and ‘x’ value is the predicted value. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
 

 

3.2 Structure prediction accuracy of DSPRED 

To compute predictions of secondary structure, torsion angle and solvent 

accessibility classes for proteins in the vall dataset, DSPRED method is trained on a 

large set that includes 5396 proteins derived from the PDB (PDB-PC20) as explained in 

Section 2.1.3. Since DSPRED is a two-stage method it is possible to obtain predictions 

from both stages (i.e. DBN+Committee stage or SVM stage). For torsion angle 

predictions computed by the SVM stage only randomly selected 100,000 amino acid 

samples are employed to train the SVM model in order to reduce the computational 

cost. Otherwise it takes months to train a single SVM model on a dataset with 5396 

proteins, which contains around a million amino acids.  

Tables 3.2.1-3.2.3 summarize the secondary structure, torsion angle class and 

solvent accessibility prediction accuracies, respectively of DBN+Committee stage of 

DSPRED (i.e. DBNPRED) as well as the SVM stage (i.e. DSPRED) on the vall dataset. 

In this table, Q3 corresponds to the overall accuracy, SOV is the segment overlap 

measure, QH,  QE, and QL are the recall measures for helix, strand and loop, respectively, 

(3.1.2.5.1) 

 

(3.1.2.6.1) 
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PPVH, PPVE, and PPVL are the precision measures (i.e. positive predictive values) for 

helix, strand and loop, respectively, MCCH, MCCE, and MCCL are the Matthew’s 

correlation coefficient values for helix, strand and loop, respectively. Even if the 

proteins that are similar to the vall dataset are removed from the train set, DBNPRED 

and DSPRED have both reasonably high prediction accuracies. DSPRED performs 

better than DBNPRED on vall dataset in terms of the overall accuracy by 2.18% in 

secondary structure prediction, 2.02% in torsion angle class prediction and 3.71% in 

solvent accessibility prediction. 

 

 

Metric DBNPRED-ss3 DSPRED-ss3 

Q3 83.82 86.00 

SOV3 80.10 82.56 

QH 90.40 89.22 

QE 79.47 81.64 

QL 79.62 85.38 

SOVH 86.44 88.17 

SOVE 81.60 83.20 

SOVL 73.12 77.15 

PPVH 86.40 90.48 

PPVE 84.85 87.26 

PPVL 80.41 81.33 

MCCH 0.81 0.84 

MCCE 0.77 0.80 

MCCL 0.68 0.72 

Table 3.2.1 Secondary structure class prediction accuracies of DBNPRED and DSPRED on vall 

dataset 
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Metric DBNPRED-ta7 DSPRED-ta7 

Q7 73.32 75.34 

SOV7 67.77 71.41 

QL 31.71 41.35 

QA 92.58 90.15 

QM 60.94 68.64 

QB 85.17 83.40 

QE 29.80 40.86 

QG 51.25 57.67 

QO 45.52 50.14 

SOVL 31.60 40.71 

SOVA 84.60 86.35 

SOVM 52.90 59.25 

SOVB 81.22 80.98 

SOVE 29.71 40.47 

SOVG 50.95 57.05 

SOVO 29.83 34.44 

PPVL 60.30 57.65 

PPVA 79.37 85.87 

PPVM 62.06 62.32 

PPVB 76.02 79.60 

PPVE 61.62 52.50 

PPVG 67.42 64.78 

PPVO 89.14 98.19 

MCCL 0.38 0.43 

MCCA 0.76 0.80 

MCCM 0.52 0.56 

MCCB 0.75 0.76 

MCCE 0.42 0.45 

MCCG 0.57 0.59 

MCCO 0.64 0.70 

Table 3.2.2 Torsion angle class prediction accuracies of DBNPRED and DSPRED on vall dataset 
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Metric DBNPRED-sa2 DSPRED-sa2 

Q2 77.58 81.29 

SOV2 55.99 62.34 

Qe 88.82 84.04 

Qb 66.64 78.61 

SOVe 60.91 63.58 

SOVb 51.87 61.19 

PPVe 72.15 79.26 

PPVb 85.96 83.50 

MCCe 0.57 0.63 

MCCb 0.57 0.63 

Table 3.2.3 Solvent accessibility class prediction accuracies of DBNPRED and DSPRED on vall 

dataset 

 

3.3 Concept hierarchy and feature combination 

experiments 

The first set of experiments aims to find the optimum concept hierarcy and 

feature group combination for fragment similarity classification. For each feature set 

group described in Section 2.1.6, first, datasets that contain feature vectors 

corresponding to different concept hierarchy levels are constructed. In all concept 

hierarchy experiments, the structure predictions are computed using the first stage of the 

DSPRED method. Each dataset is split into 10 folds for 10-fold cross-validation 

experiment. Then 10% of samples are selected randomly from each train set as 

validation set. The remaining samples are used as “train set for optimization” (a total of 

10 such datasets are prepared). A logistic regression classifier is trained on each “train 

set for optimization” and predictions are computed on the corresponding validation set. 

Finally the predictions obtained for the validation sets (a total of 10) are concatenated 

and accuracy metrics are computed by comparing the predictions with true labels. This 

procedure is repeated for each concept hierarchy dataset to find the best hierarchy level. 

Table 3.3.1. shows the accuracy metrics for the 9-mer similarity prediction on validation 

sets for different concept hierarchy levels and for each feature set group. In this table, 

psi represents PSI-BLAST PSSM, ss3 denotes 3-state secondary structure, sa2 is 2-state 
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solvent accessibility, ta7 refers to 7-state torsion angle. The best concept hierarchy for 

PSI-BLAST PSSM features is D1, which contains 180 features. This is followed by D2 

containing 20 features. Here the D2 level is selected because it contains significantly 

less number of features yielding accuracies similar to D1. As can be observed, the best 

concept hierarcy level computes a distance measure between the features of the 

fragments compared (i.e. fragment 1 and 2). The best concept hierarchy for secondary 

structure distribution features is D2, which includes 3 features only both for fragment 1 

and fragment 2. For solvent accessibility, the best hierarcy level is obtained as D3 with 

9 features and for torsion angle, D3 level gave the best validation set accuracy with 9 

features. As compared to using all the features, which corresponds to D0 level, applying 

concept hierarchy by computing distance metrics significantly improves the accuracy of 

fragment similarity prediction. This improvement is 11.23% for PSI-BLAST PSSM 

features, 14.49% for secondary structure features, 29.68% for solvent accessibility 

prediction and 18.02% for torsion angle prediction all of which are significant. 
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Dataset Accuracy Fscore AUC 

psi_D0_360 77.34 79.02 85.42 

psi_D1_180 88.87 89.55 95.02 

psi_D2_20 88.57 89.26 94.95 

psi_D3_9 85.72 86.49 92.41 

psi_D4_1 85.67 86.46 92.40 

ss3_D0_54 77.55 79.07 84.44 

ss3_D1_27 91.98 92.63 97.63 

ss3_D3_9 91.83 92.50 97.55 

ss3_D2_3 92.04 92.66 97.63 

ss3_D4_1 91.73 92.40 97.58 

sa2_D0_36 62.15 65.25 67.79 

sa2_D1_18 80.88 82.30 87.38 

sa2_D3_9 91.83 92.39 95.25 

sa2_D2_2 80.90 82.33 87.36 

sa2_D4_1 80.90 82.33 87.36 

ta7_D0_126 78.62 80.33 86.17 

ta7_D1_63 91.88 92.52 97.67 

ta7_D3_9 96.64 96.93 98.75 

ta7_D2_7 91.93 92.56 97.63 

ta7_D4_1 91.21 91.89 97.37 

Table 3.3.1 Accuracies of 9-mer similarity prediction on validation sets and at different concept 

hierarchy levels. Feature set in each dataset is summarized by the feature type followed by the 

concept hierarchy level followed by the number of features.  

 

Once the optimum concept hierarcy is found, various combinations between feature 

groups are formed. Table 3.3.2 summarizes the accuracy metrics of these combinations  

for 9-mer similarity prediction on validation sets. In this table, psi represents PSI-

BLAST PSSM, ss3 denotes 3-state secondary structure, sa2 is 2-state solvent 

accessibility, ta7 refers to 7-state torsion angle. For PSIBLAST PSSM features, D2 

level of concepy hierarchy is used, for secondary structure class distribution features D2 

level, for torsion angle class distribution features D3 level and for solvent accessibility 

class distribution features D3 level of the hierarchy is used. 
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Dataset Accuracy FScore AUC 

psi_20 88.57 89.26 94.95 

ss3_3 92.04 92.66 97.63 

sa2_9 91.83 92.39 95.25 

ta7_9 96.64 96.93 98.75 

psi_20_ss3_3 95.86 96.07 98.41 

psi_20_ss3_3_ta7_9 96.33 96.61 99.01 

psi_20_ss3_3_ta7_9_sa2_9 96.47 96.74 99.01 

ss3_3_ta7_9_sa2_9 93.14 93.64 98.01 

Table 3.3.2 Accuracies of 9-mer similarity prediction on validation sets for different feature 

combinations. Feature set in each dataset is summarized by the feature type followed by the 

number of features.  

 

The experiments in Table 3.3.2 are repeated for test data. For this purpose, the original 

(unreduced) train sets are used to train the models and predictions are computed on test 

sets as in regular 10-fold cross-validation. Then these predictions are concatenated and 

accuracy metrics are computed by comparing the predictions with true labels. Table 

3.3.3 summarizes the 10-fold cross-validation accuracy results on test data for 9-mer 

similarity prediction and for the best concept hierarchy levels. In this table, psi 

represents PSI-BLAST PSSM, ss3 denotes 3-state secondary structure, sa2 is 2-state 

solvent accessibility, ta7 refers to 7-state torsion angle. For psi_180 D1 level, for psi_20 

D2 level, for ss3_3 D2 level, for ta7_9 D3 level, for sa2_9 D3 level of concept 

hierarchy is used. 

 

Dataset Accuracy FScore AUC Precision NPV Recall Specificity 

psi_180 88.94 89.54 95.01 89.89 87.88 89.19 88.65 

psi_20 78.85 80.01 86.88 80.29 77.25 79.74 77.84 

ss3_3 92.04 92.55 97.62 92.11 91.97 92.99 90.97 

ta7_9 96.71 96.62 98.71 96.34 97.15 97.52 95.80 

psi_20_ss3_3 95.77 96.01 98.73 96.19 95.31 95.84 95.70 

psi_20_ss3_3_ta7_9 96.35 96.57 98.95 96.57 96.11 96.56 96.12 

psi_20_ss3_3_ta7_9_sa2_9 96.39 96.60 98.96 96.65 96.10 96.55 96.21 

ss3_3_ta7_9_sa2_9 93.38 93.75 98.11 93.98 92.70 93.52 93.21 

Table 3.3.3 10-fold cross-validation accuracies of 9-mer similarity prediction on test data and at 

different concept hierarchy levels. Feature set in each dataset is summarized by the feature type 

followed by the number of features.                               
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Based on these results, the best feature set combinations are obtained as ta7_9 with 9 

torsion features at D3 level of concept hierarchy and psi_20_ss3_3_ta7_9_sa2_9 with a 

total of 41 features, in which D2 level is used for PSI-BLAST, D2 level for secondary 

structure, D2 level for torsion angle and D3 level for solvent accessibility features. 

Though using torsion predictions with 9 features alone has better overall accuracy, 

FScore, NPV and recall values, combining all feature groups has better AUC, precision 

and specificity. This shows that the torsion class predictions are the most useful set of 

features. Furthermore combining different feature sets has a positive effect on the 

accuracy of fragment similarity prediction.  

The above experiments are repeated for 3-mer datasets. Table 3.3.4 contains the 

3-mer similarity prediction accuracies on validation sets for different concept hierarchy 

levels. The experiment that considers D0 hierarchy for PSI-BLAST had to be repeated, 

which did not finish before the completion of this thesis. In this table, psi represents 

PSI-BLAST PSSM, ss3 denotes 3-state secondary structure, sa2 is 2-state solvent 

accessibility, ta7 refers to 7-state torsion angle. According Table 3.3.4, the best concept 

hierarchy for PSI-BLAST PSSM features is D1, which contains 60 features. This is 

followed by D2 containing 20 features. Here the D1 level is selected because it contains 

reasonable number of features. The best concept hierarchy for secondary structure 

distribution features is D1, which includes 9 features only both for fragment 1 and 

fragment 2. For solvent accessibility and torsion angle featuers, the best hierarcy level is 

obtained as D3 with 9 features. Again applying concept hierarchy by computing 

distance metrics significantly improves the accuracy of fragment similarity prediction as 

compared to using all the features at D0 level. This improvement is 9.42% for 

secondary structure features, 11.97% for solvent accessibility prediction and 16.10% for 

torsion angle prediction all of which are significant. 
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Dataset Accuracy FScore AUC 

psi_D1_60 78.91 80.22 86.93 

psi_D2_20 78.44 79.72 86.62 

psi_D3_3 76.81 78.13 85.07 

psi_D4_1 76.71 78.03 85.06 

ss3_D0_18 77.91 79.67 81.78 

ss3_D1_9 87.33 88.64 92.86 

ss3_D2_3 86.59 88.00 92.50 

ss3_D3_3 86.64 88.31 92.57 

ss3_D4_1 86.06 87.56 92.18 

sa2_D0_12 59.57 64.23 63.45 

sa2_D1_6 72.79 75.73 79.25 

sa2_D3_3 84.76 86.26 91.08 

sa2_D2_2 72.83 75.76 79.24 

sa2_D4_1 72.83 75.76 79.24 

ta7_D0_42 77.50 79.38 82.56 

ta7_D1_21 88.04 89.06 93.60 

ta7_D2_7 87.77 88.83 93.31 

ta7_D3_3 93.60 94.23 98.23 

ta7_D4_1 87.28 88.34 93.12 

Table 3.3.4 Accuracies of 3-mer similarity prediction on validation sets and at different concept 

hierarchy levels. Feature set in each dataset is summarized by the feature type followed by the 

concept hierarchy level followed by the number of features.  

 

Similar to 9-mers, after finding the optimum concept hierarcies for each feature 

category, various combinations between feature groups are formed for 3-mers. Table 

3.3.5 summarizes the accuracy metrics of these combinations for 3-mer similarity 

prediction on validation sets. In this table, psi represents PSI-BLAST PSSM, ss3 

denotes 3-state secondary structure, sa2 is 2-state solvent accessibility, ta7 refers to 7-

state torsion angle. For PSIBLAST D1, for ss3 D1, for ta7 D3 and for sa2 D3 level of 

concept hierarchy is used. 
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Dataset Accuracy Fscore AUC 

psi_60 78.91 80.22 86.93 

ss3_9 87.33 88.64 92.86 

sa2_3 84.76 86.26 91.08 

ta7_3 93.60 94.23 98.23 

psi_60_ss3_9 96.16 96.47 98.95 

psi_60_ss3_9_ta7_3 96.26 96.56 99.01 

psi_60_ss3_9_ta7_3_sa2_3 97.26 97.47 99.17 

ss3_9_ta7_3_sa2_3 93.31 93.81 98.02 

Table 3.3.5 Accuracies of 3-mer similarity prediction on validation sets for different feature 

combinations. Feature set in each dataset is summarized by the feature type followed by the 

number of features.  
 

The experiments in Table 3.3.5 are repeated for test data. For this purpose, the original 

(unreduced) train sets are used to train the models and predictions are computed on test 

sets as in regular 10-fold cross-validation. Then these predictions are concatenated and 

accuracy metrics are computed by comparing the predictions with true labels. Table 

3.3.6 summarizes the 10-fold cross-validation accuracy results on test data for 3-mer 

similarity prediction and for the best concept hierarchy levels. In this table, psi 

represents PSI-BLAST PSSM, ss3 denotes 3-state secondary structure, sa2 is 2-state 

solvent accessibility, ta7 refers to 7-state torsion angle. For psiblast_60 D1 level, for 

ss3_9 D1 level, for ta7_3 D3 level, for sa2_3 D3 level of concept hierarchy is used. 

Dataset_name Accuracy FScore AUC Precision NPV Recall Specificity 

psi_60 78.98 80.18 87.17 80.28 77.52 80.08 77.33 

ss3_9 87.15 88.19 93.08 86.14 88.42 90.34 83.53 

ta7_3 94.01 94.49 98.20 92.47 95.94 96.60 91.09 

psi_60_ss3_9 91.59 92.22 96.76 90.70 92.68 93.79 89.11 

psi_60_ss3_9_ta7_3 92.70 93.22 97.16 92.00 93.54 94.47 90.70 

psi_60_ss3_9_ta7_3_sa2_3 94.66 94.99 98.45 94.74 94.57 95.24 94.01 

ss3_9_ta7_3_sa2_3 89.11 89.83 95.19 89.17 89.04 90.49 87.55 

Table 3.3.6 10-fold cross-validation accuracies of 3-mer similarity prediction on test data and at 

different concept hierarchy levels. Feature set in each dataset is summarized by the feature type 

followed by the number of features.  

 

Based on these results, the optimum feature set combination is obtained as 

psiblast_60_ss3_9_ta7_3_sa2_3 with a total of 75 features at D1 level for PSI-BLAST, 
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D1 level for secondary structure, D3 level for torsion angle and D3 level for solvent 

accessibility features. This is followed by ta7_3 with 3 torsion features at D3 level of 

concept hierarchy. For 3-mer similarity prediction combining different feature groups 

gave the best overall accuracy, F-score, AUC, precision, and specificity values while 

using torsion angle prediction features alone had the best NPV and recall. Similar to 9-

mers, the torsion class predictions are the most useful set of features and combining 

different feature sets improves the accuracy of fragment similarity prediction 

considerably. 

 

3.4 Fragment similarity prediction using different 

classifiers and regressors 

 

3.4.1 Hyper-parameter optimization 

The following hyper-parameters are optimized for the classification problem: 

number of nearest neighbors parameter of k-NN, C, gamma pair of SVM with RBF 

kernel, number of iterations in AdaBoost and Bagging, number of trees in random 

forest, learning rate, momentum, number of epochs and number of hidden units in 

multi-layer perceptron. The hyper-parameters that are optimized for the regression 

problem are: ridge coefficient in linear regression, number of hidden layers, number of 

hidden units, momentum, and learning rate in multi-layer perceptron, and number of 

trees in random forest. The optimizations are performed by training the models on “train 

set for optimization” and testing on validation sets repeatedly for 10-folds. The 

procedure for generating these datasets is explained in Section 3.3. The overall accuracy 

is optimized for classification models and the correlation metric is optimized for the 

regression models.  

The following tables show the optimum parameters found on each validation set 

obtained from the train sets of the 10-fold cross-validation. In the tables below, k-NN 

stands for k-nearest neighbor, RF for random forest, SVM for support vector machine, 

MLP for multi-layer perceptron model with one hidden layer only. For classifier 

optimization, the I parameter in AdaBoost and Bagging stands for the number of 
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iterations, the K parameter in k-NN represents the number of nearest neightbours,  the I 

parameter in random forest is the number of trees, the L parameter in MLP stands for 

learning rate, M stands for momentum, N stands for number of epochs and H stands for 

the number of hidden units in an MLP with single hidden layer. For regressor 

optimization, K in linear regressor stands for the ridge parameter, Layer, Hunit, 

Momentum, and L.Rate represent number of hidden layers, number of hidden units, 

momentum and learning rate parameters of the multlayer perceptron, respectively, and 

Tree is the number of trees parameter in random forest.  

For optimizing each classifer a specific range of parameters had been tested to 

find the optimum value for each fold. For Adaboost, the number of iterations starts from 

5 and goes until 100 with increments of 5. For Bagging, the number of iterations starts 

from 1 and is incremented by 1 until 5. Then it is incremented by 5 until 50. The k 

parameter of k-NN starts from 1 and is increment by 1 until 5. Subsequently it is 

incremented by 5 until 60. The number of trees parameter of random forest starts from 7 

and is incremented by 1 until 18. For the parameter grid of SVM, the C values are 

chosen as 0.03125, 0.125, 0.5, 2, 8, 32, 128, 512, 2048, 8192, 32768 and gamma values 

as 0.0000305176, 0.000122070, 0.000488281, 0.00195313, 0.0078125, 0.03125, 0.125, 

0.5, 2, 8, 32. Then all pairwise combinations of these parameters are considered. For 

MLP, the number of epochs starts from 1 and is incremented by 1 until 5. This 

parameter is later incremented by 5 until 50. The following values are considered for the 

number of hidden units: 5, 10, 15, 20, 25, 50, 75, 100, 125. The momentum coefficient 

starts from 0.1 and goes up to 0.9 with increments of 0.1. Finally the following values 

are selected for the learning rate: 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. Similar 

to SVM, all combinations of these parameters are considered in the parameter grid.  

For linear regression the ridge coefficient is chosen as 0.00001, 0.0001, 0.001, 

0.01, 0.1, 1, 10, 100, 1000, 10000, 100000. For MLP regression epoch is taken 200, the 

number of hidden layers are chosen as 1, 2, 3, 4, 5. The number of hidden units starts 

from 3 and is incremented by 2 until 51. The momentum parameter starts from 0.1 and 

is incremented by 0.1 until 0.9. The learning rate is chosen as 0.5, 0.1, 0.01, 0.005, 

0.001, 0.0005. For random forest regression number of trees start from 5 incremented 

by 5 untill 75.  
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Adaboost Bagging K-NN RF SVM MLP 

Parameter I I K I C, Gamma L, M, N, H 

Fold0 75 50 15 16 8, 0.5 0.05 ,0.1, 40, 50 

Fold1 35 40 15 13 8, 0.5 0.05 ,0.1, 40, 50 

Fold2 45 10 3 11 128, 0.125 0.05 ,0.1, 40, 50 

Fold3 35 40 15 18 8192, 0.03125 0.05 ,0.1, 40, 50 

Fold4 95 40 5 16 8192, 0.03125 0.05 ,0.1, 40, 50 

Fold5 45 35 15 14 8192, 0.03125 0.05 ,0.1, 40, 50 

Fold6 90 40 15 16 0.5, 0.5 0.05 ,0.1, 40, 50 

Fold7 45 30 15 18 2048, 0.03125 0.05 ,0.1, 40, 50 

Fold8 40 25 15 13 128, 0.125 0.05 ,0.1, 40, 50 

Fold9 45 30 15 12 0.5, 0.5 0.05 ,0.1, 40, 50 

Table 3.4.1.1 Optimum hyper-parameters for 9-mer fragment similarity classification on 

psi_20_ss3_3_ta7_9_sa2_9 dataset. Structure predictions are computed using the first stage of the 

DSPRED method. 

 

 
Adaboost Bagging K-NN RF SVM MLP 

Parameter I I K I C, Gamma L, M, N, H 

Fold0 45 50 5 11 8192, 0.00195313 0.01, 0.1, 50, 15 

Fold1 30 50 5 13 2048, 0.00195313 0.01, 0.1, 50, 15 

Fold2 40 35 5 14 2048, 0.00195313 0.01, 0.1, 50, 15 

Fold3 50 50 5 17 8192, 0.00195313 0.01, 0.1, 50, 15 

Fold4 95 50 5 14 32, 0.03125 0.01, 0.1, 50, 15 

Fold5 90 35 5 17 512, 0.0078125 0.01, 0.1, 50, 15 

Fold6 35 30 5 13 8, 0.03125 0.01, 0.1, 50, 15 

Fold7 45 35 5 13 32, 0.03125 0.01, 0.1, 50, 15 

Fold8 95 40 5 17 128, 0.0078125 0.01, 0.1, 50, 15 

Fold9 45 40 5 16 32, 0.03125 0.01, 0.1, 50, 15 

Table 3.4.1.2 Optimum hyper-parameters for 3-mer fragment similarity classification on 

psi_60_ss3_9_ta7_3_sa2_3 dataset. Structure predictions are computed using the first stage of the 

DSPRED method. 

 

 
Adaboost Bagging K-NN RF SVM MLP 

Parameter I I K I C, Gamma L, M, N, H 

Fold0 90 20 15 20 32, 2 0.5, 0.1, 10, 20 

Fold1 15 5 20 5 2, 8 0.5, 0.1, 10, 20 

Fold2 15 35 25 35 2, 8 0.5, 0.1, 10, 20 

Fold3 40 10 20 10 2, 8 0.5, 0.1, 10, 20 

Fold4 40 5 35 5 128, 2 0.5, 0.1, 10, 20 

Fold5 35 45 25 45 2, 8 0.5, 0.1, 10, 20 

Fold6 45 10 45 10 2, 8 0.5, 0.1, 10, 20 

Fold7 20 15 45 15 2, 8 0.5, 0.1, 10, 20 

Fold8 25 15 30 15 2, 32 0.5, 0.1, 10, 20 

Fold9 20 50 45 50 2, 2 0.5, 0.1, 10, 20 

Table 3.4.1.3 Optimum hyper-parameters for 9-mer fragment similarity classification on ta7_9 

dataset. Structure predictions are computed using the first stage of the DSPRED method. 
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Adaboost Bagging K-NN RF SVM MLP 

Parameter I I K I C, Gamma L, M, N, H 

Fold0 5 20 25 9 512, 0.0078125 0.005, 0.1, 45, 15 

Fold1 70 20 25 18 8192, 0.00195313 0.005, 0.1, 45, 15 

Fold2 70 20 25 15 512, 0.0078125 0.005, 0.1, 45, 15 

Fold3 65 20 25 18 32, 0.03125 0.005, 0.1, 45, 15 

Fold4 65 20 25 17 8, 0.125 0.005, 0.1, 45, 15 

Fold5 75 20 25 18 2, 0.125 0.005, 0.1, 45, 15 

Fold6 75 20 25 15 512, 0.0078125 0.005, 0.1, 45, 15 

Fold7 70 20 25 9 8, 0.03125 0.005, 0.1, 45, 15 

Fold8 70 20 25 11 8, 0.03125 0.005, 0.1, 45, 15 

Fold9 70 100 25 7 8192, 0.00195313 0.005, 0.1, 45, 15 

Table 3.4.1.4 Optimum hyper-parameters for 3-mer fragment similarity classification on 

psi_60_ss3_9_ta7_3_sa2_3_ds_2 dataset. Structure predictions are computed using the second stage 

of the DSPRED method.  

 

 
Adaboost Bagging K-NN RF SVM MLP 

Parameter I I K I C, Gamma L, M, N, H 

Fold0 40 25 7 7 8, 0.125 0.5, 0.1, 3, 20 

Fold1 75 10 7 16 8, 0.125 0.5, 0.1, 3, 20 

Fold2 55 5 7 18 32, 0.125 0.5, 0.1, 3, 20 

Fold3 65 100 7 7 2048, 0.03125 0.5, 0.1, 3, 20 

Fold4 60 4 7 15 32, 0.125 0.5, 0.1, 3, 20 

Fold5 75 100 7 7 2048, 0.03125 0.5, 0.1, 3, 20 

Fold6 75 100 7 18 8192, 0.0078125 0.5, 0.1, 3, 20 

Fold7 75 15 7 16 32768, 0.0078125 0.5, 0.1, 3, 20 

Fold8 65 100 7 16 8192, 0.0078125 0.5, 0.1, 3, 20 

Fold9 65 15 7 16 32768, 0.0078125 0.5, 0.1, 3, 20 

Table 3.4.1.5 Optimum hyper-parameters for 9-mer fragment similarity classification on 

psi_20_ss3_3_ta7_9_sa2_9_ds_2 dataset. Structure predictions are computed using the second stage 

of the DSPRED method. 

 

 

Linear 

Regression 
MLP Regression Random Forest Regression 

Parameter K Layer, Hunit, Momentum, L.Rate Tree 

Fold0 0.00001 4, 47, 0.1, 0.01 75 

Fold1 0.1 5, 15, 0.1, 0.005 60 

Fold2 1 3, 15, 0.1, 0.005 65 

Fold3 10 5, 15, 0.1, 0.005 55 

Fold4 1000 5, 43, 0.1, 0.01 75 

Fold5 0.00001 5, 11, 0.1, 0.005 75 

Fold6 0.00001 2, 23, 0.1, 0.01 65 

Fold7 0.00001 5, 17, 0.1, 0.005 55 

Fold8 0.00001 3, 15, 0.1, 0.005 70 

Fold9 0.00001 5, 17, 0.1, 0.005 70 

Table 3.4.1.6 Optimum hyper-parameters for 3-mer fragment similarity score prediction on 

psi_60_ss3_9_ta7_3_sa2_3_ds_2 dataset. Structure predictions are computed using the second stage 

of the DSPRED method. 
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Linear 

Regression 
MLP Regression Random Forest Regression 

Parameter K Layer, Hunit, Momentum, L.Rate Tree 

Fold0 0.00001 4, 35, 0.1, 0.005 75 

Fold1 0.00001 2, 23, 0.1, 0.01 65 

Fold2 0.00001 4, 45, 0.1, 0.01 75 

Fold3 0.00001 2, 37, 0.1, 0.005 45 

Fold4 0.00001 3, 35, 0.1, 0.01 60 

Fold5 0.00001 4, 45, 0.1, 0.005 55 

Fold6 10000 5, 39, 0.1, 0.005 70 

Fold7 1000 4, 31, 0.1, 0.001 70 

Fold8 10000 3, 31, 0.1, 0.005 70 

Fold9 0.00001 3, 31, 0.1, 0.005 70 

Table 3.4.1.7 Optimum hyper-parameters for 9-mer fragment similarity score prediction on 

psi_20_ss3_3_ta7_9_sa2_9_ds_2 dataset. Structure predictions are computed using the second stage 

of the DSPRED method. 

 

3.4.2 Performance of Classification Models 

 After optimizing the hyper-parameters, classification models are trained using 

the optimum hyper-parameter configurations on the full train sets and predictions are 

computed on test sets of the 10-fold cross-validation experiment. The following 

classification models are implemented by WEKA software: logistic regression, support 

vector machine (SVM), k nearest neighbour (k-NN), multi-layer perceptron (MLP), 

naive Bayes (NBayes), BayesNet, desicion tree (DT with J48), bagging, random forest 

(RF) and AdaBoost. C and gamma parameters in SVM, the number of nearest 

neighbours in k-NN and number of trees in random forest have been optimized as 

explained in Section 3.4.1. For 3-mers psiblast_60_ss3_9_ta7_3_sa2_3 is employed as 

the feature set combination, which contains 60 features from PSI-BLAST PSSMs at 

concept hierarchy D1, 9 features from secondary structure distributions at concept 

hierarchy D1, 3 features from torsion angle distributions at concept hierarchy D3 and 3 

features from solvent accessibility distributions at concept hierarchy level D3 giving a 

total of 75 features. Table 3.4.2.1 includes the accuracy metrics of various classification 

methods trained for predicting the fragment similarity class of 3-mers. A 10-fold cross-

validation experiment is performed for each classifier. Note that the structure 

predictions (i.e. secondary structure, torsion angle class and solvent accessibility) are 

computed using the first stage of the DSPRED method, which combines the output of 

dynamic Bayesian networks with a structural profile matrix. Except for NPV and recall 
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measures the best accuracies are obtained by the bagging method. This is followed by 

MLP. Furthermore, the accuracies of logistic regression are close to the accuracy of best 

performing methods. This shows that most of the data samples can be separated using 

linear decision boundaries. Using non-linear models improves the accuracy of logistic 

regression by approximately 0.9% only.  

 

 Accuracy Fscore AUC Precision NPV Recall Specificity MCC0 MCC1 

Adaboost 94.10 94.52 98.38 93.31 95.04 95.76 92.23 0.88 0.88 

Bagging 95.56 95.80 98.81 96.28 94.76 95.32 95.83 0.91 0.91 

BayesNet 93.26 93.70 95.80 93.02 93.53 94.39 91.98 0.86 0.86 

Dtj48 94.24 94.56 92.87 94.83 93.57 94.28 94.18 0.88 0.88 

k-NN 90.16 91.24 94.98 86.53 95.42 96.48 82.99 0.81 0.81 

NBayes 92.57 93.13 94.31 91.49 93.90 94.84 90.00 0.85 0.85 

Random 

forest 
95.12 95.42 98.52 95.05 95.19 95.79 94.35 0.90 0.90 

SVM 94.94 95.24 - 95.22 94.63 95.26 94.59 0.90 0.90 

MLP 95.36 95.62 98.51 95.96 94.69 95.28 95.46 0.91 0.91 

Logistic 

regression 
94.66 94.99 98.45 94.74 94.57 95.24 94.01 0.94 0.94 

Table 3.4.2.1 10-fold cross-validation accuracies of methods developed for 3-mer fragment 

similarity class prediction. Structure predictions are computed using the first step of the DSPRED 

method. psi_60_ss3_9_ta7_3_sa2_3 is used as the dataset.  

 

For 9-mers, the following feature set combinations are employed: ta7_9, which 

contains a total of 9 features from torsion angle distributions at concept hierarchy D3 

and psiblast_20_ss3_3_ta7_9_sa2_9, which contains 20 features from PSI-BLAST 

PSSMs at concept hierarchy D2, 3 features from secondary structure distributions at 

concept hierarchy D2, 9 features from torsion angle distributions at concept hierarchy 

D3 and 9 features from solvent accessibility distributions at concept hierarchy level D3 

producing a total of 41 features. Table 3.4.2.2 includes the accuracy metrics of various 

classification methods trained for predicting the fragment similarity class of 9-mers 

when ta7_9 is used as the feature set. A 10-fold cross-validation experiment is 

performed for each classifier. The best performing methods can be listed as k-NN, 

bagging and decision tree. 
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 Accuracy Fscore AUC Precision NPV Recall Specificity MCC0 MCC1 

Adaboost 96.50 96.72 98.85 96.44 96.57 96.99 95.95 0.93 0.93 

Bagging 97.15 97.31 99.11 97.70 96.54 96.91 97.42 0.94 0.94 

BayesNet 95.56 95.86 97.05 95.05 96.17 96.69 94.29 0.91 0.91 

DT 97.05 97.20 98.19 97.82 96.20 96.60 97.56 0.94 0.94 

k-NN 97.20 97.36 98.89 97.61 96.74 97.11 97.31 0.94 0.94 

Nbayes 96.61 96.83 97.06 96.42 96.83 97.23 95.91 0.93 0.93 

RF 97.05 97.21 98.64 97.57 96.48 96.86 97.26 0.94 0.94 

SVM 97.12 97.28 - 97.45 96.75 97.12 97.12 0.94 0.94 

MLP 97.15 97.31 98.71 97.42 96.84 97.21 97.08 0.94 0.94 

Logistic 

regression 
96.71 96.92 98.71 96.65 97.15 97.52 95.80 0.93 0.93 

Table 3.4.2.2 10-fold cross-validation accuracies of methods developed for 9-mer fragment 

similarity class prediction. Structure predictions are computed using the first stage of the DSPRED 

method. ta7_9 is used as the dataset.  

 

Table 3.4.2.3 includes the accuracy metrics of various classification methods 

trained for predicting the fragment similarity class of 9-mers when 

psiblast_20_ss3_3_ta7_9_sa2_9 is used as the feature set, which contains 20 features 

from PSI-BLAST PSSMs at concept hierarchy D2, 3 features from secondary structure 

distributions at concept hierarchy D2, 9 features from torsion angle distributions at 

concept hierarchy D3 and 9 features from solvent accessibility distributions at concept 

hierarchy level D3 giving a total of 41 features. A 10-fold cross-validation experiment 

is performed for each classifier. The best performing methods can be listed as MLP, k-

NN, bagging and random forest. Note that MLP is the best performing method in most 

of the accuracy measures. 
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 Accuracy Fscore AUC Precision NPV Recall Specificity MCC0 MCC1 

Adaboost 96.06 96.29 98.92 96.22 95.88 96.37 95.71 0.92 0.92 

Bagging 96.92 97.08 99.16 97.84 95.92 96.34 97.59 0.94 0.94 

BayesNet 96.39 96.56 97.66 97.73 94.94 95.41 97.49 0.93 0.93 

DT 95.83 96.05 95.87 96.50 95.08 95.61 96.07 0.92 0.92 

k-NN 96.75 96.96 98.62 96.60 96.94 97.32 96.12 0.93 0.93 

Nbayes 96.27 96.45 97.37 97.55 94.89 95.37 97.28 0.93 0.93 

RF 96.99 97.15 98.89 97.71 96.19 96.60 97.43 0.94 0.94 

SVM 96.30 96.51 - 96.63 95.92 96.39 96.20 0.93 0.93 

MLP 97.19 97.34 99.04 97.96 96.35 96.73 97.72 0.94 0.94 

Logistic 96.39 96.60 98.96 96.65 96.10 96.55 96.21 0.93 0.93 

Table 3.4.2.3 10-fold cross-validation accuracies of methods developed for 9-mer fragment 

similarity class prediction. Structure predictions are computed using the first stage of the DSPRED 

method. psi_20_ss3_3_ta7_9_sa2_9 is used as the dataset.  

 

The structure predictions (i.e. secondary structure, torsion angle class and 

solvent accessibility) used to construct feature sets of the learning models in Tables 

3.4.2.1- 3.4.2.3 are obtained as the outputs of the first stage of the DSPRED method. If 

the second stage, which employs an SVM classifier is also used then the structure 

predictions become more accurate approximately by 2-3%. Tables 3.4.2.4 and 3.4.2.5 

include the accuracy metrics of the classifiers for 3-mers and 9-mers, respectively, when 

the second stage of DSPRED is used to compute structure predictions for fragment 1. 

For 3-mers the best performing methods are obtained as bagging, k-NN and random 

forest. For 9-mers, MLP, bagging, k-NN, naive Bayes and random forest performs the 

best. Note that as compared to Tables 3.4.2.1 and 3.4.2.3, which use the same feature set 

combination as Tables 3.4.2.4 and 3.4.2.5 respectively, the fragment similarity 

performance does not improve significantly when more accurate predictions from 

DSPRED are used in feature sets (i.e. when DSPRED predictions are more accurate by 

2-3%). 
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 Accuracy Fscore AUC Precision NPV Recall Specificity MCC0 MCC1 

Adaboost 93.21 93.72 97.98 92.17 94.48 95.31 90.83 0.86 0.86 

Bagging 95.42 95.67 98.83 96.24 94.52 95.10 95.79 0.91 0.91 

BayesNet 93.26 93.70 95.98 93.05 93.51 94.36 92.01 0.86 0.86 

DT 94.11 94.44 92.83 94.76 93.38 94.11 94.11 0.88 0.88 

k-NN 88.89 90.30 96.05 84.15 96.45 97.43 79.22 0.79 0.79 

Nbayes 90.63 91.42 92.17 88.99 92.72 93.98 86.83 0.81 0.81 

RF 94.86 95.19 98.49 94.74 95.01 95.64 93.98 0.90 0.90 

SVM 93.47 93.96 - 92.38 94.81 95.60 91.06 0.87 0.87 

MLP 93.62 94.09 97.95 92.61 94.85 95.62 91.36 0.87 0.87 

Logistic 

regression 
92.96 93.50 97.79 91.75 94.45 95.32 90.29 0.86 0.86 

Table 3.4.2.4 10-fold cross-validation accuracies of methods developed for 3-mer fragment 

similarity class prediction. Structure predictions are computed using the second stage of the 

DSPRED method. psi_60_ss3_9_ta7_3_sa2_3_ds_2 is used as the dataset, which includes more 

accurate structure predictions.  

 

 Accuracy Fscore AUC Precision NPV Recall Specificity MCC0 MCC1 

Adaboost 96.44 96.65 99.02 96.69 96.16 96.61 96.26 0.93 0.93 

Bagging 97.09 97.25 99.21 97.87 96.23 96.62 97.62 0.94 0.94 

BayesNet 96.44 96.60 97.59 98.12 94.66 95.12 97.94 0.93 0.93 

DT 96.07 96.29 95.84 96.60 95.48 95.98 96.17 0.92 0.92 

k-NN 96.91 97.09 98.49 96.89 96.93 97.30 96.46 0.94 0.94 

NBayes 96.21 96.36 97.19 98.26 94.06 94.53 98.11 0.92 0.92 

RF 97.09 97.25 98.87 97.87 96.24 96.63 97.62 0.94 0.94 

SVM 96.28 96.50 - 96.46 96.08 96.55 95.98 0.93 0.93 

MLP 97.18 97.33 98.87 98.01 96.28 96.66 97.78 0.94 0.94 

Logistic 

regression 
96.60 96.80 98.96 96.85 96.31 96.74 96.44 0.93 0.93 

Table 3.4.2.5 10-fold cross-validation accuracies of methods developed for 9-mer fragment 

similarity class prediction. Structure predictions are computed using the second stage of the 

DSPRED method. psi_20_ss3_3_ta7_9_sa2_9_ds_2 is used as the dataset, which includes more 

accurate structure predictions.  
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3.4.3 Performance of Regression Models  

 The fragment similarity score can also be predicted directly as a continuous 

variable using regression models. The following regressors are implemented: linear 

regression, MLP regression, polynomial regression, random forest regression and 

Bayesian ridge regression. Similar to Section 3.4.2, first hyper-parameters of these 

models are optimized on the validation sets generated from train sets. Then the models 

are trained using the optimum hyper-parameter configurations on the full train sets and 

predictions are computed on test sets of the 10-fold cross-validation experiment. C and 

gamma parameters in SVM, the number of trees in random forest have been optimized 

as explained in Section 3.4.1. For 3-mers psi_60_ss3_9_ta7_3_sa2_3_ds_2 is employed 

as the dataset, which contains 60 features from PSI-BLAST PSSMs at concept 

hierarchy D1, 9 features from secondary structure distributions at concept hierarchy D1, 

3 features from torsion angle distributions at concept hierarchy D3 and 3 features from 

solvent accessibility distributions at concept hierarchy level D3 giving a total of 75 

features. In this dataset, the structure predictions (i.e. secondary structure, torsion angle 

class and solvent accessibility) are computed using the second stage of the DSPRED 

method, which employs an SVM. Table 3.4.3.1 includes the accuracy metrics of various 

regression methods trained for predicting the fragment similarity score of 3-mers. A 10-

fold cross-validation experiment is performed for each regressor. The best performance 

metrics are obtained by the random forest method. Using non-linear models improves 

the accuracy of linear models (e.g. linear regression) by approximately 9%. 
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 Correlation 
R2 

Score 

Relative 

Absolute 

Error 

Root Relative 

Squared Error 

Mean 

Absolute 

Error 

Root Mean 

Squared 

Error 

Liner Regression 0.8073 0.6518 0.4592 0.5900 0.2193 0.3011 

MLP Regression 0.8366 0.6996 0.3775 0.5480 0.1802 0.2796 

Polynomial 

Regression 
0.8442 0.7119 0.4083 0.5366 0.1949 0.2739 

Random Forest 

Regression 
0.8935 0.7981 0.3004 0.4492 0.1434 0.2292 

Bayesian Ridge 

Regression 
0.8077 0.6524 0.4586 0.5895 0.2190 0.3008 

Table 3.4.3.1 10-fold cross-validation accuracies of methods developed for 3-mer fragment 

similarity score prediction. Structure predictions are computed using the second stage of the 

DSPRED method. psi_60_ss3_9_ta7_3_sa2_3_ds_2 is used as the dataset, which includes more 

accurate structure predictions..  

 

Table 3.4.3.2 includes the performance metrics of various regression methods trained 

for predicting the fragment similarity score of 9-mers when 

psi_20_ss3_3_ta7_9_sa2_9_ds_2 is used as the dataset, which contains 20 features from 

PSI-BLAST PSSMs at concept hierarchy D2, 3 features from secondary structure 

distributions at concept hierarchy D2, 9 features from torsion angle distributions at 

concept hierarchy D3 and 9 features from solvent accessibility distributions at concept 

hierarchy level D3 giving a total of 41 features. The structure predictions (i.e. secondary 

structure, torsion angle class and solvent accessibility) are computed using the second 

stage of the DSPRED method, which employs an SVM. A 10-fold cross-validation 

experiment is performed for each classifier. The best performing methods are found as 

random forest and MLP regressor. 

 

 Correlation 
R2 

Score 

Relative 

Absolute 

Error 

Root Relative 

Squared Error 

Mean 

Absolute 

Error 

Root Mean 

Squared 

Error 

Liner Regression 0.8814 0.7769 0.3553 0.4722 0.1696 0.2410 

MLP Regression 0.9149 0.8370 0.2638 0.4036 0.1260 0.2060 

Polynomial 

Regression 
0.9018 0.8132 0.3088 0.4321 0.1474 0.2205 

Random Forest 

Regression 
0.9149 0.8370 0.2606 0.4036 0.1244 0.2060 

Bayesian Ridge 

Regression 
0.8815 0.7771 0.3551 0.4720 0.1696 0.2409 

Table 3.4.3.2 10-fold cross-validation accuracies of methods developed for 9-mer fragment 

similarity class prediction. Structure predictions are computed using the second stage of the 

DSPRED method. psiblast_20_ss3_3_ta7_9_sa2_9_ds_2 is used as the dataset, which includes more 

accurate structure predictions. 
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3.5 Fragment selection using fragment similarity 

prediction  

A fragment selection method that employs the fragment similarity class 

prediction is implemented in C language. 66 test proteins shorter than 200 amino acids 

are selected from the vall dataset such that none of the 66 proteins have a percentage of 

sequence identity greater than 20% with the remaining proteins in vall. Then a sliding 

window is chosen on each target and on the remaining proteins in vall dataset. The 

window length is set to 3 for 3-mers and 9 for 9-mers. For each fragment window on 

target, feature sets are constructed for all fragment windows of the remaining proteins in 

vall dataset and fragment similarity class is predicted along with the prediction score 

(i.e. a probability score from 0 to 1) using logistic regression classifier. The fragments 

in vall dataset are ranked with respect to their prediction scores and the best 200 

fragments are selected for each window segment of the target protein. When executed 

on a single CPU core, it takes approximately 20 days to select fragments for a single 

protein. This experiment is performed on a workstation with 128 GB RAM and  Intel(R) 

Xeon(R) E5-2690 v4 @ 2.60GHz CPUs. The reason for this time duration is due to the 

multiple nested for loops and repeated commands that read protein sequences and their 

features from files. The fragment selection method can be made faster considerably if 

the for loops can be parallelized on GPU cores. 

 

 

 

 

 

 

 

 

 

 



63 

 

Chapter 4 
 

 

Conclusions 

 

In this thesis, classification and regression methods have been implemented and 

optimized for fragment similarity prediction and fragment selection. Fragment sizes are 

selected as 3 and 9. A concept hierarchy approach has been developed that finds the 

best projection of feature sets to lower dimensional subspaces. Furthermore the best 

feature group combination has been found. Implementing non-linear models improved 

the accuracy of fragment similarity prediction by 0.9% in classification and 9% in 

regression problem. Using 2-3% more accurate predictions for secondary structure, 

torsion angles and solvent accessibility did not improve the fragment similarity 

prediction considerably.  

As a future work, first, the fragment selection method will be parallelized using 

CUDA language. Second, the fragment selection method developed in this thesis will be 

compared to the fragment selection methods in Rosetta and I-TASSER software in 

terms of the 3D structure prediction accuracy. For this purpose, 3D structure of the 66 

test proteins will be computed by Rosetta and I-TASSER using the standard fragment 

selection methods available in these software and using the proposed method. Both 

classification and regression methods as well as linear vs non-linear models will be 

tested for fragment selection.  

As an alternative direction, clustering-based fragment selection can also be 

implemented and compared to the existing method. In clustering-based approach, how 

the fragments in the library will match to those on the target is an open problem. The 

two approaches can be combined in a single model or they can be applied separately 

and the selected fragments can be combined. Furthermore during fragment selection the 

fragment windows on target are choosen independently from each other. However, 

windows that are close to each other or that correspond to long-range interactions 

between beta-strands can be correlated. The search space can be reduced further by 

taking this information into account. 
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