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ABSTRACT 

OPTIMIZING CLASSIFIERS FOR PROTEIN SECONDARY 

STRUCTURE PREDICTION  

 

Ömmu Gülsüm UZUT 

Master‟s program in Electrical and Computer Engineering Department 

Supervisor: Assist. Prof. Zafer AYDIN 

 

July 2017 

 

 

Protein secondary structure prediction (PSSP) is important for understanding protein 

structure and function. It can be seen as a bridge between amino acid sequence and 

three-dimensional (3-D) structure of a protein. To date, many methods have been 

proposed to improve prediction accuracy. There are multiple conditions that will affect 

the performance of a method. One of these is the selection of correct hyper parameters, 

which may not be learned directly from the regular training process. Optimizing these 

hyper-parameters enable us to fine-tune the model complexity preventing over-fitting 

and under-fitting. 

In this thesis, we optimized a support vector machine, a deep convolutional neural field 

and a random forest for the second stage of a hybrid classifier for protein secondary 

structure prediction. In addition, we built an ensemble classifier that combines the 

predictions from the individual methods in various combinations. We demonstrate that 

the overall accuracy of the ensemble is comparable to the success rates of the state-of-

the-art methods in the most difficult prediction setting and combining the selected 

models have the potential to further improve the accuracy of the base learners. 

 

 

Keywords: Bioinformatics, Protein Secondary Structure Prediction, Ensemble Methods, 

Hybrid Classifiers, Deep Learning. 
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ÖZET 

PROTEĠN ĠKĠNCĠL YAPISININ TAHMĠNĠ ĠÇĠN 

SINIFLANDIRMA YÖNTEMLERĠNĠN OPTĠMĠZASYONU 

Ömmu Gülsüm UZUT 

 Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı, Yüksek Lisans Programı 

Tez Yöneticisi:  Yrd. Doç. Dr. Zafer AYDIN 

 

Temmuz 2017 

 

Protein ikincil yapı tahmini, proteinin yapısını ve fonksiyonunu anlamak için önemli ve 

yaygın olarak kullanılan bir aĢamadır. Ġkincil yapı tahmin bilgisi üç boyutlu yapı 

tahmini için de kullanıldığından protein dizisiyle üç boyutlu yapısı arasında bir köprü 

olarak görülebilir. ġimdiye kadar, tahmin doğruluk oranını artırmak için birçok yöntem 

geliĢtirilmiĢtir. Yöntemlerin performansını etkileyecek birden fazla durum vardır. 

Bunlar arasında model hiper-parametrelerinin doğru seçilmesi önem taĢımaktadır. 

Model eğitme sürecinde direkt olarak öğrenilemeyen bu parametrelerin optimize 

edilmesiyle modellerin hassas olarak ayarlanması mümkündür. Bu sayede aĢırı uyum ve 

eksik uyum gibi davranıĢlardan kaçınılması amaçlanır.  

Bu tezde, destek vektör makinesi, derin katlamalı yapay sinir alanları ve rastgele orman 

yöntemleri bir hibrit sınıflandırıcının ikinci aĢamasında kullanılmak üzere optimize 

edilmiĢ ve ikincil yapı tahmini problemine uygulanmıĢtır. Buna ek olarak eğitilen 

sınıflandırıcılardan elde edilen tahminler bir topluluk yöntemi ile farklı 

kombinasyonlarda birleĢtirilmiĢ ve baĢarı oranları en zor tahmin koĢulu için 

incelenmiĢtir. GeliĢtirilen yöntemlerin doğruluk oranları literatürdeki en iyi yöntemler 

ile aynı seviyededir ve farklı modellerin birleĢtirilmesinin tahmin baĢarısını iyileĢtirme 

potansiyeli bulunduğu gösterilmiĢtir.  

 

Anahtar Kelimeler: Biyoenformatik, Protein İkincil Yapı Tahmini, Hibrit 

Sınıflandırıcılar, Topluluk Yöntemleri, Derin Öğrenme  

 

 

 

 

 

 



iii 

 

 

 

 

Acknowledgements 
 

 

I would like to express my deepest regards to my advisor Assistant Professor Zafer 

AYDIN, for his interest and invaluable helpfulness. I am so grateful to study with him. 

 

I would like to thank my family especially my father Zülküf UZUT and my mother 

Nisbet UZUT for being in favor of me in any case and believing in me. 

 

All computations were performed on TUBITAK ULAKBIM, High Performance and 

Grid Computing Center (TRUBA Resources). This work is supported by grant 113E550 

from 3501 TUBITAK National Young Researchers Career Award. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

TABLE OF CONTENTS 
 

 

 

 

1. INTRODUCTION .................................................................................................... 1 

2. STRUCTURE OF A PROTEIN .............................................................................. 4 

2.1. PROTEIN STRUCTURE LEVELS .................................................................... 4 

2.1.1. Primary Structure ................................................................................................................ 5 

2.1.2. Secondary Structure ............................................................................................................ 5 

2.1.3. Tertiary Structure ................................................................................................................ 6 

2.1.4. Quaternary Structure ........................................................................................................... 6 

2.2. PROTEIN STRUCTURE PREDICTION ........................................................... 6 

2.2.1. Secondary Structure Prediction ........................................................................................... 7 

2.2.2. Secondary Structure Types .................................................................................................. 7 

2.3. MEASURES FOR PREDICTION ACCURACY ............................................... 8 

3. METHODS ................................................................................................................ 9 

3.1. DATASET ........................................................................................................... 9 

3.2. FEATURE EXTRACTION ................................................................................. 9 

3.2.1. PSSM ................................................................................................................................. 10 

3.2.2. Position Specific Iterative BLAST (PSI-BLAST) ............................................................... 10 

3.2.3. HMM Profile Matrices ...................................................................................................... 11 

3.2.4. Structural Profiles ............................................................................................................. 11 

3.3. DSPRED METHOD .......................................................................................... 13 

3.4. SUPPORT VECTOR MACHINES ................................................................... 16 

3.4.1. Linear Separation .............................................................................................................. 16 

3.4.2. Non-linear Separation ....................................................................................................... 16 

3.4.3. MULTICLASS SVM ........................................................................................................... 17 

3.5. RANDOM FOREST .......................................................................................... 18 

3.6. DEEP CONVOLUTIONAL NEURAL FIELDS .............................................. 19 

3.6.1. Deep Convolutional Neural Networks ............................................................................... 19 

3.6.2. Deep Convolutional Neural Fields .................................................................................... 26 

3.7. MODEL EVALUATION BY CROSS VALIDATION .................................... 20 

3.8. PARAMETER OPTIMIZATION ..................................................................... 21 

3.8.1. Parameter Optimization for Support Vector Machines ..................................................... 21 

3.8.2. Parameter Optimization for Random Forest ..................................................................... 22 

3.8.3. Parameter Optimization for Deep Convolutional Neural Fields....................................... 22 

3.9. ENSEMBLE METHODS .................................................................................. 23 

3.9.1 Model Averaging ................................................................................................................ 23 

4. RESULTS ................................................................................................................ 24 

4.1. OPTIMIZATION RESULTS ............................................................................ 24 

4.1.1. SVM Optimization ............................................................................................................. 25 

4.1.2. Random Forest Optimization ............................................................................................. 26 

4.1.3. Deep CNF Optimization .................................................................................................... 27 

4.2. TRAIN-TEST RESULTS .................................................................................. 33 

4.3. ENSEMBLE METHOD RESULTS .................................................................. 37 



v 

 

4.3.1. Model Averaging Results on Validation and Test Sets ...................................................... 37 

4.4. COMPARISON OF RESULTS ......................................................................... 52 

5. CONCLUSION ......................................................................................................... 55 

6. BIBLIOGRAPHY ..................................................................................................... 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

LIST OF FIGURES 

 

Figure 2.1 The structure of an amino acid ........................................................................ 4 

Figure 2.1.1.1 Primary structure of an amino acid sequence ............................................ 5 

Figure 2.1.2.1 Secondary structure of an amino acid sequence ........................................ 5 

Figure 2.2.1.1 Three state secondary structure prediction ................................................ 7 

Figure 3.2.4.1 A structural profile for 3 state secondary structure prediction ................ 12 

Figure 3.3.1 The two-stage hybrid model for estimating the 3-state secondary structure 

using dynamic Bayesian networks and a support vector machine. ......................... 13 

Figure 3.3.2 A) A dynamic Bayesian network for protein secondary structure prediction 

B) The variables used for modeling the secondary structure segments .................. 15 

Figure 3.4.1.1 The linear SVM. ...................................................................................... 16 

Figure 3.4.2.1 The non-linear SVM. ............................................................................... 17 

Figure 3.4.3.1 One-vs-one SVM. .................................................................................... 17 

Figure 3.6.2.1 Design of Deep CNF. .............................................................................. 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/Gülsüm/Desktop/TEZSonHal.docx%23_Toc485778974
file:///C:/Users/Gülsüm/Desktop/TEZSonHal.docx%23_Toc485778975
file:///C:/Users/Gülsüm/Desktop/TEZSonHal.docx%23_Toc485778975


vii 

 

LIST OF TABLES 

 

 

 

Table 2.2.2.1.1 8 class representation of protein secondary structure .............................. 7 

Table 4.1.1.1 Optimum C and gamma parameters for SVM and overaa accuracy on 

validation sets of CB513 ......................................................................................... 25 

Table 4.1.1.2 Recall values for each class type and overall accuracy of the SVM on 

validation sets of CB513. ........................................................................................ 26 

Table 4.1.2.1 Optimum number of trees and overall accuracy of random forest on 

validation sets of CB513. ........................................................................................ 26 

Table 4.1.2.2 Recall values for each class type and overall accuracy of random forest on 

validation sets of CB513. ........................................................................................ 27 

Table 4.1.3.1.1 Optimum kernel width (window string), number of hidden nodes (node 

string), regularization parameter and overall accuracy of deep CNF with three 

hidden layers on validation sets of CB513.. ........................................................... 28 

Table 4.1.3.1.2 Recall values for each class type and overall accuracy of deep CNF with 

three hidden layers on validation sets of CB513.. .................................................. 29 

Table 4.1.3.2.1 Optimum kernel width (window string), number of hidden nodes (node 

string), regularization parameter and overall accuracy of deep CNF with four 

hidden layers on validation sets of CB513. ............................................................ 29 

Table 4.1.3.2.2 Recall values for each class type and overall accuracy of deep CNF with 

four hidden layers on validation sets of CB513. ..................................................... 30 

Table 4.1.3.3.1 Optimum kernel width (window string), number of hidden nodes (node 

string), regularization parameter and overall accuracy of deep CNF with five 

hidden layers on validation sets of CB513. ............................................................ 30 

Table 4.1.3.3.2 Recall values for each class type and overall accuracy of deep CNF with 

five hidden layers on validation sets of CB513 ...................................................... 31 

Table 4.1.3.4.1 Optimum kernel width (window string), number of hidden layers, 

number of hidden nodes (node string), regularization parameter and overall 

accuracy of deep CNF with optimum number of hidden layers on validation sets of 

CB513 ..................................................................................................................... 32 

Table 4.1.3.4.2 Recall values for each class type and overall accuracy of deep CNF with 

optimum number of hidden layers on validation sets of CB513 ............................ 32 

Table 4.2.1 Recall and precision measures for each class type and overall accuracy of 

SVM on test sets of 7-fold cross-validation on CB513. ......................................... 33 

Table 4.2.2 Recall and precision measures for each class type and overall accuracy of 

random forest on test sets of 7-fold cross-validation on CB513. ............................ 34 

Table 4.2.3 Recall and precision measures for each class type and overall accuracy of 

deep CNF with three hidden layers on test sets of 7-fold cross-validation on 

CB513. .................................................................................................................... 34 

Table 4.2.4 Recall and precision measures for each class type and overall accuracy of 

deep CNF with four hidden layers on test sets of 7-fold cross-validation on CB513

 ................................................................................................................................ 35 

Table 4.2.5 Recall and precision measures for each class type and overall accuracy of 

deep CNF with five hidden layers on test sets of 7-fold cross-validation on CB513

 ................................................................................................................................ 36 



viii 

 

Table 4.2.6 Recall and precision measures for each class type and overall accuracy of 

deep CNF with optimum number of hidden layers on test sets of 7-fold cross-

validation on CB513. .............................................................................................. 36 

Table 4.3.1.1.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and random forest on validation sets of 

CB513. .................................................................................................................... 37 

Table 4.3.1.1.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines SVM and random forest on test sets of 

7-fold cross-validation on CB513 . ......................................................................... 38 

Table 4.3.1.2.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and deep CNF with optimum number of 

hidden layers on validation sets of CB513. ............................................................ 39 

Table 4.3.1.2.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines SVM and deep CNF with optimum 

number of hidden layers on test sets of 7-fold cross-validation on CB513. ........... 39 

Table 4.3.1.3.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and deep CNF with three hidden layers on 

validation sets of CB513. ........................................................................................ 40 

Table 4.3.1.3.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines SVM and deep CNF with three hidden 

layers on test sets of 7-fold cross-validation on CB513 ......................................... 40 

Table 4.3.1.4.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and deep CNF with four hidden layers on 

validation sets of CB513. ........................................................................................ 41 

Table 4.3.1.4.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines SVM and deep CNF with four hidden 

layers on test sets of 7-fold cross-validation on CB513. ........................................ 41 

Table 4.3.1.5.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and deep CNF with five hidden layers on 

validation sets of CB513. ........................................................................................ 42 

Table 4.3.1.5.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines SVM and deep CNF with five hidden 

layers on test sets of 7-fold cross-validation on CB513 ......................................... 43 

Table 4.3.1.6.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines random forest and deep CNF with optimum 

number of hidden layers on validation sets of CB513. ........................................... 43 

Table 4.3.1.6.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines random forest and deep CNF with 

optimum number of hidden layers on test sets of 7-fold cross-validation on CB513

 ................................................................................................................................ 44 

Table 4.3.1.7.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines random forest and deep CNF with three hidden 

layers on validation sets of CB513 ......................................................................... 44 

Table 4.3.1.7.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines random forest and deep CNF with 

three hidden layers on test sets of 7-fold cross-validation on CB513 .................... 45 

Table 4.3.1.8.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines random forest and deep CNF with four hidden 

layers on validation sets of CB513 ......................................................................... 46 



ix 

 

Table 4.3.1.8.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines random forest and deep CNF with 

four hidden layers on test sets of 7-fold cross-validation on CB513 ...................... 46 

Table 4.3.1.9.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines random forest and deep CNF with five hidden 

layers on validation sets of CB513 ......................................................................... 47 

Table 4.3.1.9.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines random forest and deep CNF with five 

hidden layers on test sets of 7-fold cross-validation on CB513 ............................. 47 

Table 4.3.1.10.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM, random forest and deep CNF with 

optimum number of hidden layers on validation sets of CB513. ........................... 48 

Table 4.3.1.10.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines SVM, random forest and deep CNF 

with optimum number of hidden layers on test sets of 7-fold cross-validation on 

CB513 ..................................................................................................................... 48 

Table 4.3.1.11.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM, random forest and deep CNF with three 

hidden layers on validation sets of CB513 ............................................................. 49 

Table 4.3.1.11.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines SVM, random forest and deep CNF 

with three hidden layers on test sets of 7-fold cross-validation on CB513 ............ 50 

Table 4.3.1.12.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM, random forest and deep CNF with four 

hidden layers on validation sets of CB513 ............................................................. 50 

Table 4.3.1.12.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines SVM, random forest and deep CNF 

with four hidden layers on test sets of 7-fold cross-validation on CB513 .............. 51 

Table 4.3.1.13.1 Recall measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM, random forest and deep CNF with five 

hidden layers on validation sets of CB513 ............................................................. 51 

Table 4.3.1.13.2 Recall and precision measures for each class type and overall accuracy 

of model averaging ensemble that combines SVM, random forest and deep CNF 

with five hidden layers on test sets of 7-fold cross-validation on CB513 .............. 52 

Table 4.4.1  Recall measures for each class type and overall accuracy of all models on 

validation sets of CB513 ......................................................................................... 53 

Table 4.4.2  Recall and precision measures for each class type and overall accuracy of 

all models on test sets of 7-fold cross-validation on CB513 .................................. 54 

 
 

 

 

 

 



x 

 

 

 

 

 

 

This thesis is dedicated to my family



1 

 

 

Chapter 1  

 

1.Introduction 
 

 

 

 

 

Using computational techniques has gained widespread attention in 

bioinformatics because of the exponential growth, complexity and accessibility of 

biological data. On the path toward discovering the knowledge hidden in this large 

amounts of data, machine learning approaches has played an important role. It has been 

successfully applied to several problems including protein structure prediction [1], 

protein sequence analysis [2], protein fold recognition [3, 4, 5], protein function 

prediction [6], gene network inference [7], metabolic pathway analysis [8]. 

Prediction of three dimensional structure of a protein from its amino acid sequence 

is known as tertiary structure prediction [9], which has been one of the most challenging 

problems in bioinformatics. Three dimensional (3D) structure of a protein gives crucial 

information about its function. Despite being accurate, solving the structure through 

experiments is expensive and time consuming. In this respect, protein tertiary structure 

provides an alternative to experimental techniques. Furthermore the 3D structure 

information can also be used for designing new drugs. Due to the challenging nature of 

the problem instead of solving it directly first various structural properties of proteins 

are estimated such as sequence profiles, solvent accessibility, dihedral angles, and 

contact maps.  

Protein secondary structure is formed by regular hydrogen bonding patterns that 

stabilize the protein structure [10]. Protein secondary structure prediction (PSSP) aims 

to assign a structural state from a three letter alphabet, which includes H for helix, E for 

strand and L for loop. To predict secondary structure, typically supervised learning is 

used, in which a model is trained using proteins with known secondary structure labels 

derived from 3D structure information available in Protein Data Bank (PDB) [11]. 

Various methods have been proposed for secondary structure prediction. Among those 
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support vector machines (SVM) and neural networks stand out with promising accuracy 

values as compared to other methods. Ward et al. applied support vector machines to 3-

state protein secondary structure prediction on a set of 1460 proteins and obtained a 

77.07 % accuracy by cross-validation [12]. Hua and Sun showed that it is feasible to get 

improvement by adding PSI-BLAST generated profiles as input features to SVMs [13]. 

Kim and Park developed a new method, SVMpsi, to improve the prediction rate using 

PSI-BLAST PSSM profiles. The method obtained 4.9% and 3.1% improvements on 

RS126 [14] and CB513 [15] datasets, respectively [16]. Gubbi and Lai applied an SVM 

to protein secondary structure prediction and obtained a 77.9% accuracy by seven fold 

cross-validation on CB513 [17]. Also there are additional studies, in which SVM 

outperforms as compared to other machine learning classifiers [18]. 

Ensemble learning is an important technique in pattern recognition, machine 

learning and data mining. The main idea behind ensemble learning is to combine 

multiple classifiers for improving the accuracy rate [19]. 

Recently, many studies have been performed to improve the accuracy through 

combining different methods. King used ensemble methods that combine several 

machine learning approaches by voting and obtained a better accuracy than individual 

classifiers on CASP dataset [20]. Kountouris also combined machine learning 

techniques for secondary structure prediction and showed that the resulting method can 

improve the quality of the predictions, especially the SOV score [21]. Alirezaa also used 

a machine learning approach which included an ensemble of neural networks with 

different voting combination methods for class imbalance problem of protein secondary 

structure prediction and showed their ensemble system has better performance when 

compared with the individual classifier they employed [22]. Pollastri and Baldi have 

studied on ensembles of bidirectional recurrent neural network to improve contact and 

accessibility prediction [23]. There are additional studies that use ensemble methods 

and show improvement over the performance of individual classifiers [24-29]. Besides 

ensembles, there are also hybrid methods that combine the strengths of various 

classifiers. Yao et al. introduced a two-stage classifier that employs Dynamic Bayesian 

Networks (DBNs) and neural networks for protein secondary structure prediction [30]. 

Aydin et al. improved this model by incorporating features derived from HMM-profiles, 

sparsifying DBN models and employing an SVM classifier instead of neural networks, 

which provided state-of-the-art performance [31]. Recently Peng et al. proposed a deep 

conditional neural fields model that combines a deep convolutional network with a 
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conditional random field, which are trained jointly [32,33]. Based on these 

advancements, it is of interest to analyze how well the SVM and deepCNF models 

complement each other and whether combining predictions obtained from these 

methods improves the accuracy. 

In this thesis, we optimized the hyper-parameters of three classification methods: 

a support vector machine, a deepCNF and a random forest, which are employed at the 

second stage of the hybrid classifier introduced in Aydin et al. [31]. We then 

implemented an ensemble that combines the predictions of these models in various 

combinations by averaging the probability distributions of class labels. 

This thesis is organized as follows. Chapter 2 gives information about proteins 

and their structures. Pre-processing methods about preparing feature vectors are 

elucidated in chapter 3, which also includes the methods used for parameter 

optimization and prediction. Chapter 4 includes our results and conclusions of the thesis 

are provided in Chapter 5. 
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Chapter 2 
 

 

2. Structure of a Protein 
 

 

 Proteins are polymers of amino acids consisting of one or more polypeptide chains. 

“Proteins perform a vast array of functions within organisms, including catalysing 

metabolic reactions, DNA replication, responding to stimuli, and transporting molecules 

from one location to another. Proteins differ from one another primarily in their 

sequence of amino acids, which is dictated by the nucleotide sequence of their genes, 

and which usually results in protein folding into a specific three-dimensional structure 

that determines its activity.”[34] 

 Despite having the same general structure, the side 

chain (R group) of each amino acid is different. There 

are twenty types of amino acids commonly found in 

nature, which have different physical and chemical 

characteristics such as electrostatic charge, acid 

separation coefficient, hydrophobicity, size and 

functional group. These properties play an important role 

in determining the structure of a protein [35].    

2.1 Protein Structure Levels 
 

        There are four basic levels of protein structure: primary, secondary, tertiary and 

quaternary. Primary structure is the amino acid sequence of a protein. Secondary 

structure is formed through regular hydrogen bonds. Tertiary structure is the three 

dimensional structure of an amino acid chain. Quaternary structure is the three 

dimensional structure of multiple amino acid chains that form a protein. 

Figure 2.1 The structure of an 

amino acid [35]. 
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2.1.1 Primary Structure 

The primary structure of a protein consists of all the necessary information for 

determining the 3D structure. The alteration of one amino acid in the sequence can 

change the entire  protein.

Primary structure is important because 

 many genetic diseases occur due to 

abnormal amino acid sequences  

 it serves as a starting point for 

predicting secondary and tertiary 

structure.  

 it conveys information about the 

molecular system of proteins 

 

 

2.1.2 Secondary Structure 

Secondary structure of a protein is the local structural conformation that is 

formed by regular hydrogen bonding patterns that stabilize the coiling and folding of 

polypeptide chains. There are two regular and major structural elements of secondary 

structure. These are α helix and β strand. 

Coiling occurs, forming an α helix, due to the formation of repetitive hydrogen 

bonds between the nitrogen of one amino acid and the oxygen of another located in 

neighboring part of the polypeptide chain. The amino acids in α helix are usually 

arranged in a right-handed helical structure 

and each helix contains from 5 to 40 amino 

acids. 

 β pleated sheets are formed due to 

hydrogen bonding between different amino 

acid segments (peptides) arranged side by 

side. 

There are two types of pleated 

sheets: parallel and antiparallel. If two Figure 2.1.2.1 Secondary structure of an amino 

acid sequence [31] 

Figure 2.1.1.1 Primary structure of an amino acid 

sequence [35]. 
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peptides run in the same direction, it is called parallel β pleated sheets. For antiparallel β 

pleated sheets, the peptides must run in opposite directions. 

Loops are not regular structures in proteins unlike alpha helices and beta sheets. 

They are typically formed in between the helix and beta sheets and usually found at the 

surface of the protein. Loops contain turns, random coils and bends details of which are 

explained in [10]. 

2.1.3 Tertiary Structure 

Tertiary structure is the three dimensional coordinates of the atoms in an amino 

acid chain. Every protein has a unique three dimensional structure and the function of 

the protein depends closely on its structure. Understanding the function and structure 

opens the doors for diagnosing diseases, designing drugs and investigating new 

treatment models. 

The 3D structure is typically determined by X-ray crystallography and NMR 

(Nuclear Magnetic Resonance) spectroscopy. The atomic coordinates of the solved 

structures are collected in a database known as the Protein Data Bank (PDB) [11]. 

Despite providing accurate information about the structure of proteins, these methods 

are expensive and time consuming. Therefore, computational methods are applied as an 

alternative  solution  technique.   

2.1.4 Quaternary Structure 

Quaternary structure is the combination of two or more amino acid chains. It is 

stabilized by non-covalent and disulfide bonds which also stabilize tertiary structures. 

 

2.2 Protein  Structure Prediction 
 

 

Protein structure prediction is an important problem in bioinformatics due to relation 

between the function of a protein and its three dimensional structure. Although a lot of 

research has been performed on protein structure prediction, it has not been solved 

completely.
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2.2.1 Secondary Structure Prediction 

 

Secondary structure prediction aims to assign a secondary structure class label 

(H: helix, E: strands, L: loop) to each amino acid of a protein (Figure 2.2.1.1). 

 

 

 

Figure 2.2.1.1 Three state secondary structure prediction. The first line represents the amino acid 

sequence, the second line shows the secondary structure labels (H: coil, E: beta strand L: loop). 

 

For secondary structure prediction, generally supervised learning approaches are 

used. In supervised learning, a model is trained from the database with known 

secondary structure labels to make prediction for proteins with unknown structure. 

2.2.2 Secondary Structure Types 

2.2.2.1 8-state representation 

        DSSP (dictionary of secondary structure prediction) is a program that defines 

secondary structure of a protein starting from the 3D coordinate information. DSSP uses 

an eight state representation denoted by single letter codes [10]. There are also other 

programs that extract secondary structure labels starting from 3D coordinates of the 

atoms such as DEFINE [37] and STRIDE [38]. 

 

H  - helix 

G     – helix 

I  - helix (extremely rare) 

E  - strand 

B  - bridge 

T - turn 

S Bend 

L the rest 

 

Table 2.2.2.1.1 8 class representation of protein secondary structure. 

 



8 

 

Although the original definition of secondary structure contains eight states 

prediction methods are generally trained and evaluated with three states due to due to 

scarcity of data in certain classes and similarity between classes that belong to the same 

structural group. There are different conventions to map eight state representation to 

three states. In this thesis we used the following mapping: H, G, I  H; E, B  E; S, T, 

„ ‟  L, in which H refers to helix, E refers to strand and L refers to loop. This is the 

most widely used and the most difficult mapping. Other transformations include  

 H, G  H; E, B   E; I, S, T, „ ‟  L 

 H, G  H; E  E; B, I, S, T, „ ‟  L 

 H  H; E  E; G, B, I, S, T, „ ‟  L 

2.3 Measures for Prediction Accuracy 

        The overall accuracy denoted by    is the most popular measure in the literature 

when evaluating performance of secondary structure prediction methods. It is defined as 

the percentage of the amino acids that are correctly predicted to be one of the three 

states (H, E, L). 

 

 
   

                 

 
 

 

(2.3.1) 

 

where     is the number of true positives for helix,     is the number of true positives 

number for strand,     is the number of true positives number for loop and   is the 

total number of amino acids. Similar to equation 2.3.1 we can define the accuracy of 

each class type as follows  

 
    

        

   
 

 

                    (2.3.2) 

where     is the percentage of correctly predicted amino acids that belong to class    

with           ,      is number of true positives for    and     is the number of 

amino acids in state   . 

        In addition to the above there are also other measures used for evaluation such as 

the segment overlap (SOV) that is used for testing the average overlap between the 

observed and the predicted segments rather than individual residues [39] and Matthew‟s 

Correlation Coefficient (MCC) [40]. 
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Chapter 3 

 

3. Methods 
 

 

Analyzing large quantities of data manually is not feasible. At this stage, machine 

learning methods can be used to discover and learn patterns in data and make 

predictions for new data.  

In this thesis, we used the DSPRED method introduced in Aydin et al. [31], which is 

a hybrid classifier that combines dynamic Bayesian networks and a support vector 

machine (SVM) for predicting the secondary structure of proteins. We considered 

replacing the SVM with deep convolutional neural field [33] and random forest. 

Additionally we analyzed the effect of combining predictions from the three classifiers 

in an ensemble framework. 

 

3.1 Dataset 
 

We used the CB513 benchmark [15] dataset that contains 513 proteins and 

84,119 amino acid residues. It was obtained by combining 396 sequences in CB396 

benchmark and the 117 sequences in RS126 [14] after removing the duplicates. CB513 

is a popular benchmark used in protein secondary structure prediction.  

3.2 Feature Extraction 

 

In this thesis, we employ two types of input features: position specific scoring 

matrices (PSSM) derived from sequence alignments and structural profile matrices. The 

PSSMs are computed by PSI-BLAST [41] and HHBlits [42] programs and are named as 

PSI-BLAST PSSM and HHMAKE PSSM, which are used as input features for the 

DBN models as well as the classifiers in the second stage of the hybrid method. The 
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structural profile matrices are computed after the second stage of the HHBlits program 

using the structure labels of the PDB proteins aligned to the target. 

3.2.1 PSSM 

        A position specific scoring matrix (PSSM) contains scores summarizing the 

statistical characteristics of proteins in a family, which are assumed to have similar 

structure and function. Each column represents an amino acid position and contains the 

likelihood of observing the twenty amino acids at that position among proteins that 

belong to the same family. A PSSM can be constructed by aligning a query protein 

against a database of proteins, jointly aligning the hits that score above threshold using 

multiple alignment, and computing a weighted frequency of occurrence for the twenty 

amino acids at each position of the alignment. Following this procedure a different 

PSSM can be obtained for each query protein due to slight differences in the alignments 

between proteins in the same family. Therefore, a PSSM can be used as input features 

for structure prediction methods because it serves as a signature for a query protein 

summarizing the statistics of sequence-based similarities against the proteins in the 

same family. 

 

3.2.2 PSI-BLAST PSSM 

 

        PSI-BLAST is an iterative method that searches the database of sequences to find 

proteins that are distantly related to the query. In the first iteration, it performs a regular 

BLAST search and aligns the query to database proteins by pairwise alignment. Then it 

performs a multiple alignment and builds a profile matrix (i.e. PSSM) using proteins 

with scores above threshold. In the second and subsequent iterations, the profile matrix 

is aligned to the proteins in the database to discover more distant proteins (i.e. those 

with little sequence similarity but high structural and functional similarity). After this 

alignment proteins that score above threshold are multiply aligned and the profile 

matrix is updated. The procedure stops after reaching a certain number of iterations, 

which is a parameter set by the user. At the end a profile matrix of size      is 

generated, where N is the number of amino acids in the target protein. Because of being 

fast and simple to implement, possibility to search PSSMs on large database, providing 

efficiency and sensitivity, PSI-BLAST is one of the most commonly used profile matrix 

derivation method for structure prediction. However, PSI-BLAST can also perform 
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mismatches (i.e. false positives). Therefore the profile matrices derived from this 

method contain a certain noise. Nonetheless, the first profile matrix used in this thesis is 

obtained by the PSI-BLAST method due to its popularity and having a certain level of 

accuracy. PSI-BLAST PSSMs are computed by aligning the sequences in CB513 

dataset against the NR database. This is followed by scaling, in which the scores are 

normalized by a sigmoidal transformation. 

3.2.3 HHMAKE PSSM  

 Hidden Markov models (HMMs) are mainly used as a classifier in handwriting 

recognition, speech recognition [43], and in bioinformatics problems such as protein 

secondary structure prediction [30] and protein torsion angle prediction [44]. In 

bioinformatics HMMs can also be used to compute profiles to represent proteins in the 

same family. Profiles based on hidden Markov models (HMM-profiles) can be obtained 

after computing multiple alignments with the proteins found by sequence alignment 

algorithms. Similar to PSI-BLAST these HMM-profiles can be used iteratively for 

profile sequence alignment or profile-profile alignment [42] to discover distantly related 

proteins. HMM profiles are more sensitive than standard profiles and explore more 

distant protein similarities. One of the best software for computing HMM-profiles is 

HHBlits [42], which is faster than PSI-BLAST due to recent improvements on the speed 

of the original algorithm. 

In this thesis, HHMAKE PSSM features are derived from HMM-profile models 

computed by the first step of the HHBlits method. For this task, each target in CB513 is 

aligned against the NR20 database and hit proteins that score above the threshold are 

jointly aligned using a multiple alignment algorithm. Then an HMM-profile model is 

constructed starting from the multiple alignment. Finally the weighted frequencies in 

each match state of the HMM–profile are normalized by min-max scaling (i.e. linear 

transformation) into the interval [0,1] to obtain the HHMAKE PSSM. 

3.2.4 Structural Profiles 

        In addition to profile matrices based on multiple alignments of amino acid 

sequences for structural prediction, structural profile matrices have also been used as 

attributes. They are constructed using the structural sequences of the proteins found by 

sequence alignment methods. The dimension of a structural profile matrix formed for 

the secondary structure estimation is    , where   is the number of amino acids in the 
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target protein and each column has the weighted frequency scores of the three 

secondary structure states for an amino acid. Fig. 3.2.4.1 shows an example structural 

profile matrix. 

 

 1 2 … N 

H 0.4 0.5 … 0.2 

E 0.3 0.5 … 0.3 

L 0.3 0 … 0.5 

 

Figure 3.2.4.1 A structural profile for 3 state secondary structure prediction. Rows represent the 

secondary structure classes and columns denote the amino acids of the target. Sum of the scores in 

each column is equal to 1. 

 

        The scores in a structural profile can be considered as soft labels and included into 

prediction models as soft constraints. Note that since structural profiles also use label 

information of template proteins they can be evaluated separately from the methods that 

use sequence profiles only. In another category, secondary structure information of 

proteins that are highly similar to target protein can be used directly for prediction as 

hard constraints. In this regard, using structural profiles can be considered as a category 

between the case where the sequential profiles are used only and the case where the 

label information from templates is used directly.  

        If the template proteins that are used to construct the structural profile are closer to 

target then structure can be predicted more accurately. Furthermore, in cases where the 

target protein resembles a sub-region instead of the entire protein (local similarity), one 

can expect improvement in the accuracy of secondary structure prediction at those local 

regions. The improvement will be more significant when the resembling region is 

longer.  

     To compute the HHMAKE PSSMs, the HMM-profile model of the target proteins in 

CB513 are aligned to the HMM-profile models of PDB proteins, which have true 

secondary structure labels available. In the next step, templates for which the percentage 

of sequence identity score is above 20% are eliminated in order to realize the single-

sequence condition (allowing matches to distant templates only). Finally the frequency 

of occurrence counts are computed for the three secondary structure labels using labels 

of hit proteins that are aligned to amino acid positions of the target (represented by the 

columns of the profile matrix). This is followed by column normalization so that the 

sum of scores in each column is 1. If there is no match to an amino acid of the target, 
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then a value of 1/3 is assigned to all the profile values in the corresponding column. 

This can happen due to the fact that the alignments computed by HHBlits are local. 

 

3.3 DSPRED METHOD 
 

The DSPRED method is a two-stage classifier developed for the estimation of 

one dimensional structural properties such as secondary structure, dihedral angles and 

solvent accessibility. A similar approach has also been used for predicting dihedral 

angle classes replacing the support vector machine with neural networks [45, 46]. The 

steps of the DSPRED method is depicted in Figure 3.3.1. In DSPRED, separate 

dynamic Bayesian networks (DBNs) are trained for position specific scoring matrices 

obtained from PSI-BLAST [41] and HHBlits [42] methods. These input features are 

denoted as PSIBLAST PSSM and HHMAKE PSSM, respectively. 

Figure 3.3.1 The two-stage hybrid model for estimating the 3-state secondary structure using 

dynamic Bayesian networks and a support vector machine 

        There are two types of DBN models in DSPRED. DBN-Previous represents the 

model in which the probability density of the profile vector at a given amino acid 

position depends on previous positions and DBN-future represents the model in which 

the probability density of the profile vector at a given position depends on subsequent 

positions. The profile vectors are the columns of the profile matrix and there are as 

many columns as the number of amino acids. The output of each DBN is a marginal a 
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posteriori probability distribution for the secondary structure class labels given the input 

features. These distributions are combined through averaging to obtain the predictions 

for each feature type. For example, Distribution 1 represents the average of the 

predictive distributions produced by DBNs that use PSI-BLAST PSSMs, Distribution 2 

represents the average of the distributions generated by DBNs that use HHMAKE 

PSSM features and Distribution 3 is computed as the average of the Distribution 1, 

Distribution 2 and the structural profile matrix obtained using the HHBlits method. In 

this problem, since the number of secondary structure classes is three, the dimension of 

Distribution 1, 2, and 3 is 3×U where U is the number of amino acids. Consequently, 

each column contains the estimated probabilities of secondary structure classes at an 

amino acid position. In the second stage of DSPRED, the profile matrices (PSI-BLAST 

and HHMAKE) are combined with Distributions 1, 2, and 3 and sent to a discriminative 

classifier such as support vector machine. A symmetrical window is taken around each 

amino acid at which the secondary structure class is going to be predicted and features 

from these columns are concatenated to construct the input feature vector. The classifier 

in the second stage gives an estimate of the secondary structure label of the amino acid 

at the center of the window.  

 
(A) 
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State H H H H H L L L H H H E E E E E L L L L L L 

state count down 5 4 3 2 1 3 2 1 3 2 1 5 4 3 2 1 5 5 4 3 2 1 

change state 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

(B) 

 
Figure 3.3.2 A) A dynamic Bayesian network for protein secondary structure prediction. B) The 

variables used for modeling the secondary structure segments. State variable represents the 

secondary structure class label. The state count down (with Dmax=5) shows the number of 

remaining amino acids from the current position until the next segment. Change state is used to 

signal transition from one segment to another. 

 

The dynamic Bayesian network model used for predicting secondary structure 

class with 3 states is shown in Figure 3.3.2 [31]. Dynamic Bayesian network (DBN) is a 

generative model and is the superset of Hidden Markov Model (HMM) [47]. DBNs 

model the generation of profile vectors from hidden class variables obeying certain 

probability rules. The nodes of the DBN in Figure 4.1.2 represent random variables. The 

state variable represents the secondary structure class label of an amino acid. The amino 

acid profile variable contains the profile vector of an amino acid and is observed during 

training and testing. These vectors correspond to the columns of the PSSMs produced 

by PSI-BLAST and HHMAKE (i.e. the first step of HHBlits). The current and previous 

secondary structure labels are concatenated and stored in state class history variable, 

which is used to fit a different conditional Gaussian distribution to each possible value 

of state class history. This conditional distribution is the likelihood of observing the 

amino acid profile given the state class history variable and is responsible from the 

generation of the input features. The state count down contains a distance value from 

the current position till the next secondary structure segment. This variable helps to 

model the length distribution of the segments. If the number of amino acids from the 

current position till the next segment (denoted by NA) is less than a threshold (called 

Dmax) then the state count down becomes equal to NA otherwise it is set to Dmax. For 

positions in which the state count down is less than Dmax the length distribution is 

estimated using the maximum likelihood approach, which employs the frequency of 

occurrence counts. For the remaining positions a geometric distribution is fit to the 

length distribution. Change state variable signals transition from one segment to 

another.  

After the DBN models are trained using proteins with known structure labels, 

the predictions that maximize the marginal a posteriori probability of class labels can be 
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computed by efficient algorithms. In our thesis, Linux based GMTK software package 

(Graphical Models Toolkit) is used to implement the DBN models [48]. The GMTK 

uses the EM algorithm for model training and in this thesis we used the junction tree 

algorithm for computing the predictions.  

3.4 Support Vector Machines 

 

Support vector machine is among the discriminative classifiers in machine 

learning. The main purpose of SVM is to identify a hyperplane which makes the most 

appropriate discrimination between two or more classes [49].  

SVM can classify both linear and nonlinear datasets. Suppose there are two 

classes. One can draw an infinitely many planes that separate data samples of these 

classes. At this point, the aim of SVM is to find the hyperplane that maximizes the 

distance between the samples closest to the plane.  

3.4.1 Linear Separation 

In linear separation, data from different classes can be linearly separable from 

each other in multiple ways (Figure 3.4.1.1). The goal 

is to find the plane    such that the distance from the 

closest data points (also called support vectors) to this 

plane is maximized. This distance is called the margin. 

If two hyperplanes (       are drawn that pass 

through these closest data samples    becomes at the 

center of these two planes, which is the optimum 

separation hyperplane. 

  

3.4.2 Non-linear Separation 

In real word problems, many datasets are not linearly separable. In this case, the 

data cannot be split by a linear decision boundary, therefore a non-linear mapping is 

applied [50]. The data samples in input feature space are mapped to a higher 

dimensional space and a linear hyperplane is found that separates the data samples in 

new space. Formulating the problem in dual space and using the kernel trick the 

optimization problem can be solved without explicitly moving the data points to the 

Figure  3.4.1.1 The linear SVM. 
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new space (though the kernel still defines a mapping to a non-linear feature space 

implicitly). 

 

 

Figure 3.4.2.1 The non-linear SVM [51] 

3.4.3 MULTICLASS SVM 

The standard SVM is formulated for binary classification problem for separating 

two classes only. If there are three or more classes to be classified, a multi class SVM 

should be derived. Different approaches can be used to solve the multi class problem.  

One versus one (OVO): In this approach, several binary classifiers are derived that 

separate pairs of classes and combined for the final prediction. For example, if there are 

three classes as 0, 1 and 2, a separate SVM is trained for 0 vs 1, 0 vs 2 and 1 vs 2. Then 

to classify a data sample a majority voting approach is used. This is summarized in the 

figure below.     

 

Figure 3.4.3.1 One-vs-one SVM   

One versus all (OVA): In OVA technique, a binary classifier is trained that separates a 

class and the rest of the classes. In other words, for each classifier one class is 

considered as positive and all other classes as negative. Then, the final prediction can be 

obtained by choosing the SVM with maximum decision function output.  

Multi Class Ranking: In this approach a single decision function is learned that aims to 

classify all classes. In this approach, classes of data samples are required to have an 
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ordering. A ranking function is learned that receives a feature vector as input and 

provides an output, which will be ranked according to the class ordering of the input. In 

other words, the ordering between the outputs of two data samples will be the same as 

the ordering between their classes. Ranking based SVM is the least preferred one 

because, the execution time can be high when compared to other approaches and a 

single function may not be found that can classify all the data samples. 

 

3.5 RANDOM FOREST 

 

Random forest is a method that forms an ensemble of decision trees used for 

classification or regression [52]. It is applied to many different problems including 

biomedical [53], physics, health, and bioinformatics. It is among the models that apply 

the bagging technique and combine the decisions of its base learners by weighted 

majority voting. Each tree is trained with a different subset of features selected 

randomly from the original feature set. Furthermore each tree model is constructed 

using a slightly different train set obtained by bootstrap sampling. To construct decision 

trees, Gini index is used as the impurity measure. In this thesis random forest is 

implemented using WEKA [54]. 

Random forests are preferred for a number of reasons. They are robust against 

overfitting. Increasing the number of features will not directly cause overfitting because 

a subset of features is randomly selected for each decision tree, which learns a specific 

concept in training data. As the dimension of the dataset increases the number of trees 

can be increased to learn all the concepts in training set. Therefore if the number of trees 

and the number of randomly selected features are selected properly a random forest can 

avoid the problem of overfitting. 

The other advantage of random forest is its efficient performance on big data. 

Convenience of setting parameters, handling missing values are among other 

advantages of random forests. 

Recently, random forests are compared with other classification models. For 

example, a comparison is made between random forest and SVM for microarray-based 

cancer classification, in which the SVM outperformed random forest [55]. Lee et al. 

[56] compared random forest with SVM to identify protein function using features that 
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are obtained from protein sequences attributes. They applied a correlation-based feature 

selection and compared them against the SVM and random forest models trained 

without feature selection. SVM with feature selection outperformed the random forest 

with and without feature selection. 

 

3.6 Deep Convolutional Neural Fields 

 

Deep learning is a machine learning technique that aims to learn highly non-

linear and complex relationships in data. It has been applied to many fields such as 

image recognition [57], bioinformatics [58, 59], natural language processing [60, 61]. 

The goal of deep learning approaches is to learn high level and more complex attributes 

using lower level attributes that are simpler [62]. Learning attributes at multiple levels 

of abstraction provide an opportunity for a system for resolving complicated functions 

that maps the inputs to an output directly from data. 

Deep learning has been improved in time. Firstly, deep belief network with 

Restricted Boltzmann Machines (RBM) [63] was introduced. This is followed by auto-

encoders and other algorithms. 

3.6.1 Deep Convolutional Neural Networks 

Convolutional neural networks (CNNs) are successful deep learning 

architectures because of the successful training of the hierarchical layers. In CNN, the 

convolution has replaced the general matrix multiplication in standard neural networks 

(NN). This way and due to weight sharing the number of weights is decreased, thereby 

reducing the complexity of the network. Another advantage of CNN is its minimal pre-

processing requirement because of the inherent feature extraction capability.  

3.6.2 Deep Convolutional Neural Fields 

        Conditional neural fields are developed due to the inconvenience of resolving the 

nonlinear connection between input features and output layer of CRF, especially for 

sequence labeling [32]. A deep convolutional neural field (CNF) is a hybrid classifier 

obtained by combining a deep CNN [64] and a conditional random field (CRF) [32]. As 

a deep learning technique, it enables to capture highly non-linear relationships between 
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the input features and the output. Furthermore it can model the correlation between the 

contiguous output labels by the CRF model in the last layer. As a result, it combines the 

advantages of CNN and CRF trained jointly in a single model. A deep CNF architecture 

is shown in Figure 3.6.2.1. 

 

 
Figure 3.6.2.1 Design of Deep CNF [65], where i is the position index and    the associated input 

features, while    is for the k-th hidden layer and    is for the output label. All the layers from the 

first to the top layer constitute a DCNN with parameter              .  The top layer and the 

label layer constitute a CRF with U and T as a model parameters. U determines association 

between output of the top layer and the label layer and T is used for adjacent label correlation. 

 

3.7 Model Evaluation by Cross-Validation 

        Datasets used in machine learning, data mining generally split into two parts as 

train and test set to evaluate predictive models. Train set is used to train the model and 

test set to evaluate the accuracy. K-fold cross validation is a technique to test the 

prediction model by dividing the data set into k equal sized subsets. In each iteration, 

one of the k subsets is used as the test set and the other k-1 subsets form the training set. 

This procedure is repeated k times until all subsets are used as test set.  

        In this thesis, seven fold cross validation is used to evaluate the accuracy of the 

methods. For this purpose, the CB513 dataset is divided into seven equal sized folds by 

randomly assigning proteins into each subset. For each iteration of cross-validation a 
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subset is selected as test data and the remaining subsets are used as train data. Before 

evaluating the cross-validation accuracy, first the hyper-parameters of the models are 

optimized separately for each cross-validation iteration. For this purpose, 10% of the 

proteins in each train set are randomly selected as validation set. The remaining 90% of 

the train set and the validation set are used to optimize the hyper-parameters of the 

models. After the optimization process is finished, all proteins in the training set are 

used to learn the models and predictions are computed on the corresponding test set. 

This procedure is repeated for each fold and seven accuracy rates are obtained for each 

model. The overall accuracy is calculated by taking the average of these accuracy 

values.  

3.8 Parameter Optimization  

 

There are multiple conditions that may affect the performance of a classifier. 

One of these is the selection of the correct hyper-parameters, which cannot be directly 

learned from the regular training process. Optimizing these parameters enable us to 

fine-tune the model complexity and prevent over-fitting as well as under-fitting. 

For optimization the classifier models are trained for various hyper-parameter 

combinations on a randomly selected subset that contains 90% of proteins from a train 

set (a total of 7 due to cross-validation) and predictions are computed on the 

corresponding validation set (randomly selected as 10% of train set). The hyper-

parameters that maximize the overall accuracy on validation set are chosen as the 

optimum values. This procedure is repeated seven times for each iteration of the cross-

validation experiment. 

3.8.1 Parameter Optimization for Support Vector Machines 

For SVM, we optimized C and Gamma (γ). C is a cost function parameter that 

controls the effect of each support vector. Selecting an appropriate value for C is 

important for tolerating the error. When the value of C is low, the decision is gets 

smoother and margin becomes larger. When the value of C is high, sensitivity at 

learning phase increases because of the decrease in margin. 
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Gamma parameter determines the amount of spreading influence. The decision 

boundary becomes closer to linear when the value of gamma parameter is small. When 

gamma gets higher value, the decision boundary becomes non-linear. 

For SVM optimization a grid of C and gamma values are considered. For each 

parameter we selected the following values.  

 C = ( ) 

Gamma = ( ) 

As a result, there are a total of 100 different combinations to consider. Once the 

optimum combination is found for a given cross-validation iteration (one that has the 

best accuracy on validation set) the model is trained on the full training set and 

predictions are computed on the test set. This procedure is repeated for other iterations 

of cross-validation experiment. 

3.8.2 Parameter Optimization for Random Forest 

The only parameter that is optimized for random forest is the number of trees 

(also called number of iterations in WEKA). The following values are considered for 

each fold of cross-validation.  

Number of trees = (5 10 15 20 25 50 75 100 125 150 175 200 225 250 275 300 

325 350 375 400 425 450 475 500). 

3.8.3 Parameter Optimization for Deep Convolutional Neural Fields 

The parameters that are optimized for deep CNF are the number of hidden 

layers, the number of hidden units in each layer, the width of the two dimensional 

kernel window applied at each hidden layer and the regularization coefficient. The 

window size is specified by a variable called window string. For example, when 

window string is 5, kernel window size will be 11 at each layer. The number of hidden 

nodes and number of hidden layers are specified by a variable called node string. For 

example if the node string is “50,50,50,50,50” the network contains five hidden layers 

with 50 hidden nodes in each layer. In deep CNF   -norm regularization is used. The 

following values are considered in the parameter grid used for optimization 

Number of Hidden Layers = (3, 4, 5) 

Number of Hidden Units = (75, 100, 125) 

Kernel Window Size= (3, 4, 5) 

Regularization Coefficient = (10, 50, 100) 
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3.9 Ensemble Methods 
 

        The basic idea behind ensemble methods is to combine the predictions of several 

classifiers for the purpose of improving prediction accuracy and robustness of the 

models. It is found that the performance of the final classifier can be improved by 

forming a method whose output is computed by combining the outputs of individual 

classifiers. 

3.9.1 Model Averaging 

Model averaging computes the weighted sum of prediction scores from multiple 

methods to generate a consensus prediction. Combining classifiers by model averaging 

generally achieves better results than any of the individual classifiers because of the 

possibility of reducing variance. The procedure is formulated as 

 

    |   
 

 
∑     |  

 

   

 

 

(3.9.1.1) 

where   is the input feature vector of an amino acid,   is the output class label (which 

can be H, E, or L representing helix, strand or loop, respectively),     |   is the 

posteriori probability of class label given feature vector, n is the index of the model 

used in the ensemble,     |   is the posteriori probability of class label given input 

vector from the     model, and   is the number of models in the ensemble. The final 

class prediction is obtained by selecting the secondary structure labels that maximize the 

    |  . In this thesis, model averaging is applied to combine predictions obtained by 

SVM, deepCNF and random forest. The probability estimates are obtained for SVM 

using the –b option in libSVM [66] and for random forest using the –distribution option 

in WEKA [54]. Deep CNF automatically provides probability scores as the output [67]. 

The following combinations are considered in the ensemble  

 SVM + random forest  

 SVM + deep CNF  

 deep CNF + random forest  

 SVM + deep CNF + random forest 
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Chapter 4 

 

4. Results 
 

 

For SVM and random forest, our train and test datasets contain 49 features for 

each amino acid after concatenating 20 PSSM features for PSI-BLAST, 20 PSSM 

features for HHMAKE, 3 features for Distribution 1, 3 features for Distribution 2, 3 

features for Distribution 3. When we repeat the concatenation for all amino acids within 

the window of size 11 around the center amino acid, we obtain a total of 539 features. In 

deepCNF we excluded Distributions 1 and 2 from the feature set and represented each 

amino acid by 43 features because in our preliminary tests this combination gave 

slightly better accuracy (result not shown). Due to applying a kernel window of size 11 

in the temporal domain effectively deepCNF uses 11*43=473 features.   

We train all models using the CB513 dataset and applied seven fold cross 

validation to determine the model hyper-parameters for each training method. . We 

divide our dataset into 7 equal size subsets for 7-fold cross validation. Each subset is 

used as test to validate and other 6 subsets are used as training. 10% of train test splits 

are taken as validation. These were randomly selected at the protein level. After 

selecting all each fold as test set and evaluate the model, 7 accuracy rates are obtained. 

Overall accuracy is calculated by taking average of 7 results obtained. 

4.1 Optimization Results 

 

The hyper-parameters of the models are optimized for each iteration of the seven 

fold cross-validation experiment on CB513. The following sections summarize the 
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optimum parameters found and the accuracy on validation sets for the SVM, random 

forest and deep CNF when models are trained using the optimums. 

4.1.1 SVM Optimization 

 

        Table 4.1.1.1 shows the optimum C and gamma parameters for the SVM as well as 

the    accuracy on validation sets. A separate optimum is found for each fold of the 

cross-validation experiment on CB513. A tie occurred for the fourth fold. 

 

Fold Number C parameter Gamma parameter    

1 32 0.00195313 84.0 

2 32 0.00195313 81.3 

3 2 0.03125 84.3 

4 

32 0.00195313 83.7 

8192 0.000122070 83.7 

5 2 0.0078125 84.5 

6 2 0.03125 82.7 

7 2048 0.000122070 83.2 

Overall Accuracy: 83.4 

 

Table 4.1.1.1 Optimum C and gamma parameters and overall accuracy of SVM on validation sets 

of CB513. 

 

Table 4.1.1.2 shows the             measures for the SVM on validation sets of 

CB513.     is the overall accuracy and           are the recall values for secondary 

structure classes. A separate SVM model is trained for each fold using the optimum C, 

gamma combination. According to these results, prediction accuracy of helices and 

loops are close to each other and higher than the accuracy of strands.  

 

Fold Number             

1 84.0 86.6 74.6 86.0 
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2 81.4 84.0 69.0 85.2 

3 84.3 85.6 77.3 87.0 

4 

83.8 84.7 79.0 86.0 

83.8 87.0 80.3 84.5 

5 84.5 85.3 73.2 85.5 

6 82.7 83.2 77.0 86.3 

7 83.2 86.6 74.6 86.0 

Overall 

Accuracy: 
83.4 85.2 75.7 85.8 

 

Table 4.1.1.2 Recall values for each class type and overall accuracy of the SVM on validation sets of 

CB513.  

 

4.1.2 Random Forest Optimization 

        Table 4.1.2.1 shows the optimum number of trees for random forest and the 

   accuracy on validation sets. A separate optimum is found for each fold of the cross-

validation experiment on CB513. 

 

Fold Number Number of trees    

1 375 83.0 

2 500 79.9 

3 425 82.8 

4 500 82.5 

5 225 82.8 

6 300 80.9 

7 100 81.9 

Overall Accuracy: 81.9 

 

Table 4.1.2.1 Optimum number of trees and overall accuracy of random forest on validation sets of 

CB513. 
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        Table 4.1.2.2 shows the             measures for the random forest on 

validation sets of CB513.     is the overall accuracy and           are the recall 

values for secondary structure classes. A separate random forest model is trained for 

each fold using the optimum number of trees. 

  

Fold Number             

1 83.0 84.5 70.8 87.2 

2 79.9 82.1 65.7 85.0 

3 82.8 83.1 73.4 88.0 

4 82.5 82.6 75.1 86.7 

5 82.8 85.0 75.8 84.4 

6 80.9 81.7 69.4 86.2 

7 81.9 82.7 74.3 85.4 

Overall 

Accuracy: 
81.9 83.1 72.0 86.1 

 

Table 4.1.2.2 Recall values for each class type and overall accuracy of random forest on validation 

sets of CB513. 

 

4.1.3 Deep CNF Optimization 

 

        Two types of optimization experiments are performed. The first one fixes the 

number of hidden layers and optimizes the remaining hyper-parameters. For this 

approach the number of hidden layers is set to 3, 4 and 5 one at a time and for each of 

these values the optimization experiment is repeated. The second approach optimizes 

the number of hidden layers together with the other hyper-parameters.  

4.1.3.1 Deep CNF Optimization for Three Hidden Layers 

 

        Table 4.1.3.1.1 shows the optimum hyper-parameters for deep CNF with 3 hidden 

layers and the    accuracy on validation sets. A separate optimum is found for each fold 

of the cross-validation experiment on CB513. The optimum regularization coefficient is 
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obtained as 50, the optimum number of hidden nodes is obtained as 100 and the 

optimum kernel size is obtained as 3-4 in most of the cross-validation folds. 

 

Number of Hidden 

Layers 

Fold 

Number 

Window 

string 
Node string 

Reg. 

Coefficient 
   

3  1 3,3,3 100,100,100 50 90.5 

3  2 3,3,3 100,100,100 10 88.8 

3  3 3,3,3 125,125,125 50 92.0 

3  4 4,4,4 100,100,100 50 88.9 

3  5 4,4,4 125,125,125 50 89.7 

3  6 4,4,4 100,100,100 50 91.3 

3  7 4,4,4 100,100,100 100 89.6 

Overall Accuracy: 90.1 

 

Table 4.1.3.1.1 Optimum kernel width (window string), number of hidden nodes (node string), 

regularization parameter and overall accuracy of deep CNF with three hidden layers on validation 

sets of CB513. 

 

        Table 4.1.3.1.2 shows the             measures for the deep CNF with three 

hidden layers on validation sets of CB513. Though the accuracy values are larger they 

are obtained on validation sets as part of the optimization process and could be due to 

overfitting. Therefore the performance evaluations should be based on predictions on 

test data. 

  

Number of Hidden 

Layers 

Fold 

Number 
            

3 1 90.5 92.2 89.4 89.7 

3 2 88.8 91.8 85.8 88.2 

3 3 92.0 95.2 91.2 89.6 

3 4 89.0 91.8 87.3 88.0 

3 5 89.7 91.1 87.0 89.9 

3 6 91.2 93.7 88.5 90.1 
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3 7 89.6 90.3 83.3 90.1 

Overall Accuracy:  90.1 92.3 87.5 89.3 

 

Table 4.1.3.1.2 Recall values for each class type and overall accuracy of deep CNF with three 

hidden layers on validation sets of CB513. 

4.1.3.2 Deep CNF Optimization for Four Hidden Layers 

 

        Table 4.1.3.2.1 shows the optimum hyper-parameters for deep CNF with four 

hidden layers and the    accuracy on validation sets. The optimum regularization 

coefficient is obtained as 10 or 50, the optimum number of hidden nodes is obtained as 

75, 100 or 125 and the optimum kernel size is obtained as 3 or 4. 

 

Number of Hidden 

Layers 

Fold 

Number 

Window 

string 
Node string 

Reg. 

Coefficient 
   

4  1 3,3,3,3 75,75,75,75 100 90.6 

4  2  3,3,3,3 100,100,100,100 10 88.8 

4  3  4,4,4,4 125,125,125,125 50 91.9 

4  4  3,3,3,3 125,125,125,125 50 88.9 

4  5  3,3,3,3 75,75,75,75 10 89.8 

4  6  3,3,3,3 125,125,125,125 50 91.3 

4  7  3,3,3,3 75,75,75,75 50 89.6 

Overall Accuracy: 90.2 

 

Table 4.1.3.2.1 Optimum kernel width (window string), number of hidden nodes (node string), 

regularization parameter and overall accuracy of deep CNF with four hidden layers on validation 

sets of CB513. 

 

        Table 4.1.3.2.2 shows the             measures for the deep CNF with four 

hidden layers on validation sets of CB513. Similar accuracy values are obtained as in 

the model with three hidden layers. 

 

Number of Hidden 

Layers 

Fold 

Number 
            

4 1 90.4 92.4 88.5 89.5 
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4 2 88.5 90.9 85.2 88.8 

4 3 91.8 94.7 91.2 89.6 

4 4 89.0 92.2 87.6 87.8 

4 5 89.6 90.6 87.9 89.6 

4 6 91.4 93.8 89.5 90.4 

4 7 89.4 89.6 83.8 91.8 

Overall Accuracy: 90.0 91.9 87.7 89.6 

 

Table 4.1.3.2.2 Recall values for each class type and overall accuracy of deep CNF with four hidden 

layers on validation sets of CB513. 

 

4.1.3.3 Deep CNF Model with 5-Hidden Layers 

 

        Table 4.1.3.3.1 shows the optimum hyper-parameters for deep CNF with five 

hidden layers and the    accuracy on validation sets. The optimum regularization 

coefficient is obtained as 50, the optimum number of hidden nodes is obtained as 75 or 

125 and the optimum kernel size is obtained as 3 or 4. 

 

Number of 

hidden layers 

Fold 

Number 

Window 

string 
Node string 

Reg. 

Coefficient 
   

5  1 3,3,3,3,3 125,125,125,125,125 50 90.7 

5  2  4,4,4,4,4 125,125,125,125,125 50 88.7 

5  3  4,4,4,4,4 75,75,75,75,75 50 91.8 

5  4  4,4,4,4,4 125,125,125,125,125 50 89.1 

5  5  3,3,3,3,3 125,125,125,125,125 50 89.8 

5  6  3,3,3,3,3 75,75,75,75,75 50 91.4 

5  7  3,3,3,3,3 125,125,125,125,125 

50 

89.5 

100 

Overall Accuracy: 90.1 
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Table 4.1.3.3.1 Optimum kernel width (window string), number of hidden nodes (node string), 

regularization parameter and overall accuracy of deep CNF with five hidden layers on validation 

sets of CB513. 

Table 4.1.3.3.2 shows the             measures for the deep CNF with five 

hidden layers on validation sets of CB513. Similar accuracy values are obtained as in 

the model with three and four hidden layers. 

 

Number of Hidden 

Layers 

Fold 

Number 
            

5 1 90.4 92.2 89.4 89.0 

5 2 88.6 91.1 86.1 88.3 

5 3 91.6 94.8 91.7 89.0 

5 4 88.8 90.8 86.5 88.9 

5 5 89.6 91.5 89.0 88.4 

5 6 91.1 94.0 89.5 89.5 

5 7 
89.4 

90.2 85.2 90.9 

90.4 

Overall Accuracy: 90.0 91.9 87.7 89.6 

 

Table 4.1.3.3.2 Recall values for each class type and overall accuracy of deep CNF with five hidden 

layers on validation sets of CB513. 

 

4.1.3.4 Deep CNF Optimization for all Hyper-parameters 

 

        In this part, the number of hidden layers is also optimized together with the number 

of hidden nodes, kernel width, and regularization coefficient. Table 4.1.3.4.1 shows the 

optimum hyper-parameters for deep CNF and the accuracy values on validation sets. 

The optimum regularization coefficient is obtained as 10 or 50, the optimum number of 

hidden nodes is obtained as 75, 100 or 125 and the optimum kernel size is obtained as 3 

or 4. 

 

Fold 

Number 

Number of 

hidden layers 
Window string Node string 

Reg. 

Coefficient 
   

1 5 3,3,3,3,3 125,125,125,125,125 50 90.7 
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2 

4 3,3,3,3 100,100,100,100 10 88.8 

3 3,3,3 100,100,100 10 88.8 

3 3 3,3,3 125,125,125 50 92.0 

4 5 4,4,4,4,4 125,125,125,125,125 50 89.0 

5 5 3,3,3,3,3 125,125,125,125,125 50 89.8 

6 5 3,3,3,3,3 75,75,75,75,75 50 91.4 

7 3 4,4,4 100,100,100 100 89.6 

Overall Accuracy: 90.2 

 

Table 4.1.3.4.1 Optimum kernel width (window string), number of hidden layers, number of hidden 

nodes (node string), regularization parameter and overall accuracy of deep CNF with optimum 

number of hidden layers combination on validation sets of CB513. 

 

Fold Number 
Number of hidden 

layers 
            

1 5 90.7 90.2 89.4 89.0 

2 

4 88.8 91.0 85.0 88.8 

3 88.8 91.8 85.0 88.0 

3 3 92.0 95.0 91.2 89.0 

4 5 89.0 90.0 86.5 89.0 

5 5 89.8 91.5 89.0 88.4 

6 5 91.4 94.0 89.5 89.5 

7 3 89.6 90.3 83.3 91.2 

Overall Accuracy: 90.2 91.8 87.7 89.3 

 

Table 4.1.3.4.2 Recall values for each class type and overall accuracy of deep CNF with optimum 

number of hidden layers on validation sets of CB513. 

 

Table 4.1.3.4.2 shows the             measures for the deep CNF with hidden 

layers combination on validation sets of CB513. Similar accuracy values are obtained as 

in the model with three four and five hidden layers. This demonstrates that it is 
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sufficient to have three to five hidden layers for secondary structure prediction and the 

validation accuracies of the models for each hidden layer configuration are comparable 

to each other. Therefore there is not much gain when the number of hidden layers is 

greater than three. 

4.2 Train-Test Results 

 

Once the optimum hyper-parameters are found for each cross-validation 

iteration, models are trained on the full train sets and predictions are computed on test 

sets. Table 4.2.1 shows the recall and precision measures for each class type and the 

overall accuracy of the SVM on test sets of CB513. As shown in the table, accuracies 

are approximately between 82% and 83% on test data, except for the seventh fold, 

which has 85% accuracy.    is the recall measure for strands secondary and is the lower 

than the accuracy of other class types. 

 

Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 82.1 85.3 72.0 85.7 89.6 84.7 75.6 

2 82.2 85.0 76.5 83.4 86.0 84.2 78.6 

3 82.9 84.6 75.8 85.5 88.7 84.9 77.9 

4 82.7 84.1 75.7 85.0 88.3 82.5 78.7 

5 82.2 84.1 78.1 82.7 88.7 78.3 79.3 

6 82.5 84.9 76.7 83.5 88.5 79.5 79.7 

7 85.0 87.3 78.2 85.8 91.4 84.2 79.5 

Overall 

Accuracy: 
82.8 85.1 76.1 84.5 88.9 82.6 78.5 

 

Table 4.2.1 Recall and precision measures for each class type and overall accuracy of SVM on test 

sets of 7-fold cross-validation on CB513. 

 

Table 4.2.2 shows the recall and precision measures for each class type and the 

overall accuracy of the random forest on test sets of CB513. As shown in this table, 
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generally, accuracies obtained for each fold have close rates. Overall accuracy is 81.8%, 

which is 1% lower than the accuracy of SVM. 

Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 81.1 83.2 70.5 86.0 89.8 84.2 73.9 

2 81.4 82.4 75.2 84.3 87.4 82.6 77.3 

3 81.8 82.2 72.7 86.4 89.9 83.9 75.5 

4 81.5 82.8 73.3 84.8 87.6 81.8 77.3 

5 81.2 81.9 76.1 83.2 88.7 78.5 77.3 

6 82.0 82.8 74.5 85.1 89.8 79.2 78.2 

7 83.4 86.0 73.7 85.4 90.5 83.6 77.2 

Overall 

Accuracy: 
81.8 83.2 73.7 85.0 89.2 81.9 76.7 

 

Table 4.2.2 Recall and precision measures for each class type and overall accuracy of random forest 

on test sets of 7-fold cross-validation on CB513. 

 

Table 4.2.3 shows the recall and precision measures for each class type and the 

overall accuracy of the deep CNF with three hidden layers on test sets of CB513. The 

overall accuracy is obtained as 82.6%, which is comparable to the accuracy of the SVM.  

 

Fold 

Number 

Hidden 

Layer 

Number 

            PrecisionH PrecisionE PrecisionL 

1 3 81.9 86.7 73.5 83.1 88.6 82.5 76.6 

2 3 81.6 86.0 76.5 81.4 84.4 83.2 78.8 

3 3 82.8 84.7 75.4 85.4 88.5 84.6 78.0 

4 3 82.4 86.1 76.6 82.6 86.6 80.8 80.0 

5 3 82.0 85.4 78.3 81.2 87.7 77.5 80.0 

6 3 82.5 85.3 78.3 82.5 88.4 78.1 80.4 

7 3 84.5 87.7 77.1 84.9 90.6 83.6 79.4 

Overall Accuracy: 82.6 86.0 76.5 83.0 88.0 81.4 79.1 
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Table 4.2.3 Recall and precision measures for each class type and overall accuracy of deep CNF 

with three hidden layers on test sets of 7-fold cross-validation on CB513. 

 

Table 4.2.4 shows the recall and precision measures for each class type and the 

overall accuracy of the deep CNF with four hidden layers on test sets of CB513. The 

overall accuracy is obtained as 82.6%, which is comparable to the accuracy of the SVM 

and the deep CNF with three hidden layers. 

 

Fold 

Number 

Hidden 

Layer 

Number 

            PrecisionH PrecisionE PrecisionL 

1 4 82.1 85.2 73.5 84.9 90.3 83.0 75.9 

2 4 82.0 85.5 76.5 82.8 85.3 84.1 78.8 

3 4 82.7 85.4 76.0 84.1 87.2 84.8 78.3 

4 4 82.4 85.9 76.5 82.8 86.5 81.3 79.9 

5 4 81.8 84.8 77.7 81.6 87.3 78.8 79.3 

6 4 82.4 84.6 77.1 83.4 88.5 79.1 79.8 

7 4 84.6 88.2 78.2 84.1 90.3 83.1 79.9 

Overall Accuracy: 82.6 85.8 76.5 83.3 88.0 82.0 78.9 

 

Table 4.2.4 Recall and precision measures for each class type and overall accuracy of deep CNF 

with four hidden layers on test sets of 7-fold cross-validation on CB513. 

 

Table 4.2.5 shows the recall and precision measures for each class type and the 

overall accuracy of the deep CNF with five hidden layers on test sets of CB513. The 

overall accuracy is obtained as 82.6%, which is comparable to the accuracy of the SVM 

and the deep CNFs with three and four hidden layers. 

 

Fold 

Number 

Hidden 

Layer 

Numbers 

            PrecisionH PrecisionE PrecisionL 

1 5 82.1 86.2 73.1 84.4 89.6 83.5 76.1 

2 5 81.9 86.6 77.0 81.4 84.4 83.0 79.6 
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3 5 82.9 85.7 75.6 84.5 87.7 84.8 78.3 

4 5 82.0 86.8 76.3 81.3 85.3 80.3 80.3 

5 5 81.9 85.5 77.7 81.3 87.3 77.9 79.9 

6 5 82.7 85.6 77.0 83.2 88.1 79.2 80.4 

7 5 84.6 88.3 77.4 84.3 90.2 83.6 79.8 

Overall Accuracy: 82.6 86.5 76.3 82.9 87.6 81.7 79.2 

 

Table 4.2.5 Recall and precision measures for each class type and overall accuracy of deep CNF 

with five hidden layers on test sets of 7-fold cross-validation on CB513. 

 

Table 4.2.6 shows the recall and precision measures for each class type and the 

overall accuracy of the deep CNF with optimum number of hidden layers on test sets of 

CB513. The optimum values are also used for the other hyper-parameters. The overall 

accuracy is obtained as 82.6%, which is comparable to the accuracy of the SVM and the 

deep CNFs with three four and five hidden layers. 

 

Fold 

Number 

Number 

of hidden 

layer 

            PrecisionH PrecisionE PrecisionL 

1 5 82.1 86.2 73.1 84.4 89.6 83.5 76.1 

2 

4 82.0 85.5 76.5 82.8 85.3 84.1 78.8 

3 81.6 86.0 76.5 81.4 84.4 83.2 78.8 

3 3 82.8 84.7 75.4 85.4 88.5 84.6 78.0 

4 5 82.0 86.8 76.3 81.3 85.3 80.3 80.3 

5 5 81.9 85.5 77.7 81.3 87.3 77.9 79.9 

6 5 82.7 85.7 77.0 83.2 88.1 79.2 80.4 

7 3 84.5 87.7 77.2 85.0 90.6 83.6 79.4 
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Overall Accuracy: 82.6 86.1 76.2 83.3 87.9 81.8 79.0 

 

Table 4.2.6 Recall and precision measures for each class type and overall accuracy of deep CNF 

with optimum number of hidden layers on test sets of 7-fold cross-validation on CB513. 

 

4.3 Ensemble Method Results 
 

4.3.1 Model Averaging Results on Validation and Test Sets 

4.3.1.1 Support Vector Machines and Random Forest 

        In the first ensemble, we applied model averaging to combine the outputs of 

support vector machine and random forest. For this purpose, predicted probability 

scores are obtained for the three classes and for each amino acid. Then, the average of 

these scores are computed and the class label with the maximum score is selected as the 

prediction. Tables 4.3.1.1.1 and 4.3.1.1.2 show the results of combining support vector 

machine and random forest on validation and test sets of seven fold cross-validation 

experiment on CB513, respectively. The overall accuracy    is obtained as 83.2% on 

validation sets and 82.8% on test sets. 

 

Fold Number             

1 84.0 85.8 73.8 87.5 

2 83.0 83.8 67.8 85.6 

3 83.0 85.0 76.0 87.8 

4 83.0 83.7 77.5 86.7 

5 83.0 86.2 78.4 85.0 

6 83.0 84.2 71.4 86.0 

7 83.0 83.4 76.9 86.7 

Overall Accuracy: 83.2 84.6 74.5 86.5 

 

Table 4.3.1.1.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines SVM and random forest on validation sets of CB513. 
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Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 81.9 84.4 71.3 86.4 90.1 85.0 74.9 

2 82.5 84.5 76.5 84.5 87.2 84.3 78.6 

3 82.8 83.9 74.9 86.3 89.3 85.2 77.3 

4 82.5 83.7 75.2 85.4 88.4 82.8 78.5 

5 82.0 83.2 77.6 83.2 88.9 78.9 78.7 

6 82.7 84.3 76.0 84.8 89.4 80.2 79.3 

7 84.7 86.9 76.6 86.3 91.2 85.0 78.8 

Overall 

Accuracy: 
82.8 84.5 75.4 85.2 89.3 83.0 78.1 

 

Table 4.3.1.1.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and random forest on test sets of 7-fold cross-validation on 

CB513. 

 

4.3.1.2 Support Vector Machines and Deep CNF 

        As a second ensemble, model averaging is applied to support vector machines and 

deep convolutional neural field method. Here, we used the deep CNF that has the 

optimum number of hidden layers. Tables 4.3.1.2.1 and 4.3.1.2.2 show the results of 

combining support vector machine and deep CNF on validation and test sets of seven 

fold cross-validation experiment on CB513, respectively. The overall accuracy    is 

obtained as 83.5% on validation sets and 83.0% on test sets. 

 

Fold Number             

1 84.0 87.0 75.2 86.6 

2 83.0 85.3 70.8 84.3 

3 83.0 85.3 77.6 87.0 

4 84.0 85.5 79.8 85.5 

5 84.0 87.5 80.3 84.0 

6 83.0 85.4 73.2 85.0 
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7 83.0 83.8 77.5 85.6 

Overall Accuracy: 83.5 85.7 76.3 85.4 

 

Table 4.3.1.2.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines SVM and deep CNF with optimum number of hidden layers on validation 

sets of CB513. 

 

Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 82.5 86.0 73.2 85.5 90.0 84.5 76.1 

2 82.4 85.4 76.8 83.5 86.0 84.4 79.0 

3 83.3 85.0 76.0 86.0 88.9 85.5 78.2 

4 82.6 85.7 76.5 83.3 86.8 81.8 79.8 

5 82.2 84.6 78.0 82.4 88.4 78.4 79.6 

6 82.9 85.4 77.2 83.9 88.7 79.8 80.3 

7 84.9 87.5 77.8 85.6 91.1 84.1 79.6 

Overall 

Accuracy: 
83.0 85.7 76.5 84.3 88.7 82.6 79.0 

 

Table 4.3.1.2.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and deep CNF with optimum number of hidden layers on 

test sets of 7-fold cross-validation on CB513. 

 

4.3.1.3 Support Vector Machines and Deep CNF with Three Hidden Layers 

        The third ensemble combines support vector machine and deep convolutional 

neural field with three hidden layers. Tables 4.3.1.3.1 and 4.3.1.3.2 show the results of 

combining support vector machine and deep CNF on validation and test sets of seven 

fold cross-validation experiment on CB513, respectively. The overall accuracy    is 

obtained as 83.4% on validation sets and 83.0% on test sets. These are similar to the 

results obtained when the deep CNF with optimum number of hidden layers is used. 

 

Fold Number             

1 84.0 87.0 75.7 86.0 
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2 83.0 85.0 70.8 84.3 

3 83.0 85.7 77.0 86.8 

4 83.0 84.6 79.8 85.5 

5 84.0 87.5 80.3 84.0 

6 83.0 85.3 71.7 85.6 

7 83.0 84.0 77.5 85.7 

Overall Accuracy: 83.4 85.6 76.0 85.4 

Table 4.3.1.3.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines SVM and deep CNF with three hidden layers on validation sets of CB513. 

 

Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 82.3 86.1 73.3 84.8 89.5 84.0 76.3 

2 82.3 85.6 77.0 83.2 85.7 84.4 79.0 

3 83.3 85.0 76.0 86.0 88.9 85.5 78.2 

4 82.9 85.6 76.5 84.2 87.9 81.9 79.8 

5 82.3 84.9 78.3 82.3 88.7 78.2 79.6 

6 82.9 85.3 77.8 83.5 88.8 79.1 80.4 

7 84.9 87.6 77.8 85.6 91.1 84.1 79.6 

Overall 

Accuracy: 
83.0 85.8 76.6 84.2 88.8 82.4 79.1 

 

Table 4.3.1.3.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and deep CNF with three hidden layers on test sets of 7-

fold cross-validation on CB513. 

 

4.3.1.4 Support Vector Machines and Deep CNF with Four Hidden Layers 

        The fourth ensemble combines support vector machine and deep convolutional 

neural fields with four hidden layers. Tables 4.3.1.4.1 and 4.3.1.4.2 show the results of 

combining support vector machine and deep CNF on validation and test sets of seven 

fold cross-validation experiment on CB513, respectively. The overall accuracy    is 

obtained as 83.3% on validation sets and 83.0% on test sets. These are similar to the 
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results obtained when the deep CNF with three or optimum number of hidden layers is 

used. 

Fold Number             

1 84.0 87.0 75.2 86.6 

2 83.0 84.5 69.4 85.3 

3 83.0 85.3 77.6 87.0 

4 83.0 85.5 79.8 85.5 

5 84.0 87.0 80.7 84.0 

6 83.0 85.0 73.0 85.0 

7 83.0 83.7 77.7 85.7 

Overall Accuracy: 83.3 85.4 76.2 85.6 

 

Table 4.3.1.4.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines SVM and deep CNF with four hidden layers on validation sets of CB513. 

 

Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 82.3 85.4 73.0 85.5 89.8 84.5 75.9 

2 82.4 85.4 76.8 83.5 86.0 84.4 79.0 

3 83.2 85.1 76.2 85.4 88.5 85.4 78.3 

4 82.9 85.3 76.2 84.4 87.7 82.4 79.6 

5 82.2 84.5 77.8 82.7 88.4 78.9 79.3 

6 82.9 85.0 77.4 84.0 89.0 79.8 80.0 

7 85.1 88.0 78.4 85.4 91.1 84.4 79.9 

Overall 

Accuracy: 
83.0 85.6 76.5 84.4 88.8 82.8 78.9 

 
Table 4.3.1.4.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and deep CNF with four hidden layers on test sets of 7-fold 

cross-validation on CB513. 
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4.3.1.5 Support Vector Machines and Deep CNF with 5 Hidden Layer 

        The fifth ensemble combines support vector machine and deep convolutional 

neural field with five hidden layers. Tables 4.3.1.5.1 and 4.3.1.5.2 show the results of 

combining support vector machine and deep CNF on validation and test sets of seven 

fold cross-validation experiment on CB513, respectively. The overall accuracy    is 

obtained as 83.3% on validation sets and 83.0% on test sets. These are similar to the 

results obtained when the deep CNF with three, four or optimum number of hidden 

layers is used. 

 

Fold Number             

1 84.0 87.0 75.3 85.8 

2 83.0 84.5 69.8 85.3 

3 83.0 85.4 78.0 87.0 

4 83.0 85.2 79.8 85.0 

5 84.0 88.0 80.3 83.5 

6 83.0 85.5 73.2 85.0 

7 83.0 83.8 77.5 85.6 

Overall Accuracy: 83.3 85.6 76.3 85.3 

 

Table 4.3.1.5.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines SVM and deep CNF with five hidden layers on validation sets of CB513. 

 

 

Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 82.5 85.9 73.2 85.5 90.0 84.5 76.1 

2 82.4 85.8 77.2 83.0 85.7 84.0 79.4 

3 83.4 85.3 76.3 85.7 88.7 85.6 78.5 

4 82.6 85.7 76.5 83.3 86.8 81.8 79.8 

5 82.2 84.7 78.0 82.4 88.4 78.4 79.6 
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6 83.0 85.4 77.2 83.9 88.7 79.8 80.3 

7 84.8 87.8 78.1 85.0 90.7 84.4 79.6 

Overall 

Accuracy: 
83.0 85.9 76.6 84.1 88.5 82.6 79.1 

Table 4.3.1.5.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM and deep CNF with five hidden layers on test sets of 7-fold 

cross-validation on CB513. 

 

4.3.1.6 Random Forest and Deep Convolutional Neural Field 

        The sixth ensemble combines random forest and deep convolutional neural field 

with optimum number of hidden layers. Tables 4.3.1.6.1 and 4.3.1.6.2 show the results 

of combining random forest and deep CNF on validation and test sets of seven fold 

cross-validation experiment on CB513, respectively. The overall accuracy    is 

obtained as 83.1% on validation sets and 82.8% on test sets. These are close to the 

results obtained for the other ensembles. 

 

Fold Number             

1 84.0 86.0 73.0 87.0 

2 83.0 85.7 69.5 84.4 

3 83.0 84.7 75.6 87.8 

4 83.0 84.7 78.2 86.0 

5 83.0 86.5 78.8 84.4 

6 83.0 84.0 71.5 85.3 

7 83.0 83.7 76.0 83.0 

Overall Accuracy: 83.1 85.0 74.6 85.8 

 

Table 4.3.1.6.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines random forest and deep CNF with optimum number of hidden layers on 

validation sets of CB513. 

 

Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 82.2 85.3 72.5 85.6 90.2 84.4 75.6 
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2 82.2 84.4 76.3 84.0 86.8 83.7 78.4 

3 83.0 84.5 75.1 86.1 89.2 84.9 77.7 

4 82.4 85.5 75.4 83.6 87.0 81.6 79.4 

5 81.9 84.1 77.4 82.6 88.1 78.7 79.1 

6 82.8 84.9 75.8 84.6 89.4 79.6 79.7 

7 84.5 87.4 75.8 85.8 91.1 84.2 78.9 

Overall 

Accuracy: 
82.8 85.2 75.5 84.6 88.9 82.4 78.5 

 

Table 4.3.1.6.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines random forest and deep CNF with optimum number of hidden 

layers on test sets of 7-fold cross-validation on CB513. 

 

4.3.1.7 Random Forest and Deep CNF with Three Hidden Layers 

        The seventh ensemble combines random forest and deep convolutional neural field 

with three hidden layers. Tables 4.3.1.7.1 and 4.3.1.7.2 show the results of combining 

random forest and deep CNF on validation and test sets of seven fold cross-validation 

experiment on CB513, respectively. The overall accuracy    is obtained as 82.1% on 

validation sets and 82.7% on test sets.  

 

Fold Number             

1 82.0 86.3 73.0 86.0 

2 82.0 85.7 69.5 84.0 

3 82.0 85.0 75.5 87.6 

4 82.0 84.0 78.2 86.0 

5 82.0 86.5 78.8 84.4 

6 82.0 83.6 70.0 85.7 

7 83.0 84.0 76.0 85.4 

Overall Accuracy: 82.1 85.0 74.4 85.6 
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Table 4.3.1.7.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines random forest and deep CNF with three hidden layers on validation sets of 

CB513. 

 

Fold Number             PrecisionH PrecisionE PrecisionL 

1 82.0 85.5 72.8 84.7 89.6 83.3 75.8 

2 82.2 84.8 76.3 83.6 86.4 83.7 78.6 

3 83.0 84.5 75.1 86.1 89.2 84.9 77.7 

4 82.6 85.0 75.8 84.2 87.7 81.5 79.4 

5 82.0 84.1 77.6 82.7 88.8 78.4 79.0 

6 82.7 84.5 76.9 84.1 89.2 79.2 79.8 

7 84.5 87.4 75.8 85.8 91.1 84.2 78.9 

Overall 

Accuracy: 
82.7 85.2 75.8 84.4 89.0 82.1 78.5 

 

Table 4.3.1.7.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines random forest and deep CNF with three hidden layers on test 

sets of 7-fold cross-validation on CB513. 

 

4.3.1.8 Random Forest and Deep CNF with Four Hidden Layers 

        The eighth ensemble combines random forest and deep convolutional neural field 

with four hidden layers. Tables 4.3.1.8.1 and 4.3.1.8.2 show the results of combining 

random forest and deep CNF on validation and test sets of seven fold cross-validation 

experiment on CB513, respectively. The overall accuracy    is obtained as 82.1% on 

validation sets and 82.8% on test sets. 

 

Fold Number             

1 82.0 86.0 73.0 87.0 

2 82.0 84.4 67.7 85.2 

3 82.0 84.7 75.6 87.8 

4 82.0 84.7 78.2 86.0 

5 82.0 86.2 79.3 84.4 
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6 82.0 83.8 72.0 85.2 

7 83.0 83.7 76.0 85.8 

Overall Accuracy: 82.1 84.8 74.5 86.0 

 

 

Table 4.3.1.8.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines random forest and deep CNF with four hidden layers on validation sets of 

CB513. 

 

Fold Number             PrecisionH PrecisionE PrecisionL 

1 82.1 84.8 72.4 86.0 90.6 84.2 75.4 

2 82.2 84.4 76.3 84.0 86.8 83.7 78.4 

3 82.9 84.5 75.3 85.7 88.5 85.4 77.8 

4 82.6 85.1 75.4 84.3 87.9 81.7 79.2 

5 81.9 83.8 77.3 82.7 88.2 79.2 78.7 

6 82.8 84.3 76.5 84.8 89.4 80.1 79.6 

7 84.6 87.8 76.4 85.4 90.9 84.4 79.1 

Overall 

Accuracy: 
82.8 85.1 75.7 84.7 89.0 82.6 78.4 

 

Table 4.3.1.8.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines random forest and deep CNF with four hidden layers on test sets 

of 7-fold cross-validation on CB513. 

 

4.3.1.9 Random Forest and Deep CNF with 5 Hidden Layers 

        The ninth ensemble method combines random forest and deep convolutional neural 

field with five hidden layers classifiers. Tables 4.3.1.9.1 and 4.3.1.9.2 show the results 

of combining random forest and deep CNF on validation and test sets of seven fold 

cross-validation experiment on CB513, respectively. The overall accuracy    is 

obtained as 82.5% on validation sets and 82.7% on test sets. 

 

Fold Number             
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1 82.2 86.0 74.0 86.3 

2 82.3 84.2 68.0 85.3 

3 82.2 84.8 76.2 87.7 

4 82.2 84.8 77.5 85.0 

5 82.3 87.0 79.2 84.2 

6 82.3 84.0 71.5 85.3 

7 83.3 83.7 760 85.8 

Overall Accuracy: 82.5 85.0 74.6 85.6 

 

Table 4.3.1.9.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines random forest and deep CNF with five hidden layers on validation sets of 

CB513. 

 

Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 82.2 85.3 72.5 85.6 90.2 84.4 75.6 

2 82.1 85.3 76.2 83.2 86.0 83.4 78.8 

3 83.0 84.7 75.1 86.0 89.0 85.2 77.8 

4 82.4 85.5 75.4 83.6 87.0 81.6 79.4 

5 81.9 84.1 77.4 82.5 88.1 78.7 79.1 

6 82.8 84.9 75.8 84.6 89.4 79.6 79.7 

7 84.3 87.5 76.1 85.1 90.6 83.9 78.8 

Overall 

Accuracy: 
82.7 85.4 75.5 84.3 88.7 82.4 78.5 

 

Table 4.3.1.9.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines random forest and deep CNF with five hidden layers on test sets 

of 7-fold cross-validation on CB513. 

 

4.3.1.10 Support Vector Machines, Random Forest and Deep CNF 

        The tenth ensemble combines support vector machines, random forest and deep 

CNF with optimum number of hidden layers. Tables 4.3.1.10.1 and 4.3.1.10.2 show the 

results of combining SVM, random forest and deep CNF on validation and test sets of 
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seven fold cross-validation experiment on CB513, respectively. The overall accuracy    

is obtained as 82.6% on validation sets and 83.0% on test sets. 

 

Fold Number             

1 82.0 86.3 74.2 87.0 

2 82.0 85.0 69.7 85.4 

3 83.0 85.2 76.6 87.7 

4 83.0 84.6 78.2 86.0 

5 82.0 86.8 79.3 84.6 

6 83.0 84.2 72.2 85.5 

7 83.0 83.7 77.0 86.2 

Overall Accuracy: 82.6 85.1 75.3 86.0 

 

Table 4.3.1.10.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines SVM, random forest and deep CNF with optimum number of hidden 

layers on validation sets of CB513. 

 

Fold 

Number 
            PrecisionH PrecisionE PrecisionL 

1 82.4 85.5 72.5 86.1 90.4 84.8 75.8 

2 82.5 85.0 76.6 84.1 86.8 84.4 78.8 

3 83.1 84.5 75.1 86.4 89.3 85.4 77.8 

4 82.7 85.1 76.0 84.4 87.5 82.3 79.5 

5 82.0 84.0 77.7 82.5 88.6 78.2 79.0 

6 83.0 85.0 76.7 84.5 89.3 79.9 79.9 

7 84.8 87.4 77.0 86.1 91.3 84.8 79.2 

Overall 

Accuracy: 
83.0 85.3 76.0 84.8 89.1 82.7 78.6 
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Table 4.3.1.10.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM, random forest and deep CNF with optimum number of 

hidden layers on test sets of 7-fold cross-validation on CB513. 

 

4.3.1.11 Support Vector Machines, Random Forest and Deep CNF with Three 

Hidden Layers 

        The eleventh ensemble combines support vector machine, random forest and deep 

convolutional neural field with three hidden layers. Tables 4.3.1.11.1 and 4.3.1.11.2 

show the results of combining SVM, random forest and deep CNF on validation and test 

sets of seven fold cross-validation experiment on CB513, respectively. The overall 

accuracy    is obtained as 82.4% on validation sets and 83.0% on test sets. 

 

Fold Number             

1 82.0 86.3 74.0 86.6 

2 82.0 85.0 69.7 85.4 

3 83.0 85.2 76.4 87.4 

4 83.0 84.3 78.3 86.0 

5 82.0 86.8 79.3 84.6 

6 82.0 84.6 71.2 86.2 

7 83.0 84.0 77.0 86.2 

Overall Accuracy: 82.4 85.2 75.1 86.0 

 

Table 4.3.1.11.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines SVM, random forest and deep CNF with three hidden layers on validation 

sets of CB513. 

 

Fold Number             PrecisionH PrecisionE PrecisionL 

1 82.2 85.5 72.7 85.6 90.1 84.3 75.7 

2 82.4 85.1 76.5 84.0 86.6 84.2 78.8 

3 83.1 84.5 75.1 86.4 89.3 85.4 77.8 
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4 82.8 85.0 75.6 84.8 88.1 82.4 79.2 

5 82.1 84.0 77.8 83.0 89.0 78.4 79.1 

6 82.9 85.0 77.1 84.3 89.2 79.6 80.1 

7 84.8 87.4 77.0 86.1 91.3 84.8 79.2 

Overall 

Accuracy: 
83.0 85.3 76.0 84.8 89.2 82.7 78.6 

 

Table 4.3.1.11.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM, random forest and deep CNF with three hidden layers on 

test sets of 7-fold cross-validation on CB513. 

 

4.3.1.12 Support Vector Machines, Random Forest and Deep CNF with Four 

Hidden Layers 

        The twelfth ensemble combines support vector machine, random forest and deep 

convolutional neural field with four hidden layers. Tables 4.3.1.12.1 and 4.3.1.12.2 

show the results of combining SVM, random forest and deep CNF on validation and test 

sets of seven fold cross-validation experiment on CB513, respectively. The overall 

accuracy    is obtained as 82.6% on validation sets and 83.0% on test sets. 

 

Fold Number             

1 82.0 86.3 74.2 87.0 

2 82.0 84.4 68.7 85.7 

3 83.0 85.2 76.6 87.7 

4 83.0 84.6 78.2 86.0 

5 82.0 86.7 79.7 84.6 

6 83.0 84.5 72.4 85.6 

7 83.0 83.7 77.3 86.0 

Overall 

Accuracy: 
82.6 85.0 75.3 86.0 

 

Table 4.3.1.12.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines SVM, random forest and deep CNF with four hidden layers on validation 

sets of CB513. 
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Fold 

Number  
            PrecisionH PrecisionE PrecisionL 

1 82.3 85.0 72.6 86.2 90.5 84.7 75.7 

2 82.5 85.0 76.6 84.1 86.8 84.4 78.8 

3 83.1 84.5 75.7 86.0 88.9 85.5 77.9 

4 82.8 85.0 75.5 85.0 88.0 82.6 79.2 

5 82.1 83.7 78.0 83.0 88.6 79.0 79.1 

6 83.0 84.6 76.7 84.8 89.5 80.4 79.7 

7 84.8 87.7 77.4 85.6 91.1 84.5 79.4 

Overall 

Accuracy: 
83.0 85.2 76.0 85.0 89.2 82.9 78.6 

 

Table 4.3.1.12.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM, random forest and deep CNF with four hidden layers on 

test sets of 7-fold cross-validation on CB513. 

 

4.3.1.13 Support Vector Machines, Random Forest and Deep CNF with Five 

Hidden Layers 

        The thirteenth ensemble combines support vector machine, random forest and deep 

convolutional neural field with five hidden layers classifiers. Tables 4.3.1.13.1 and 

4.3.1.13.2 show the results of combining SVM, random forest and deep CNF on 

validation and test sets of seven fold cross-validation experiment on CB513, 

respectively. The overall accuracy    is obtained as 82.6% on validation sets and 83.0% 

on test sets. 

 

Fold Number             

1 82.0 86.4 74.0 86.8 

2 82.0 84.2 69.0 85.6 

3 83.0 85.0 76.8 87.7 

4 83.0 84.7 78.2 86.0 

5 82.0 87.1 79.8 84.6 
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6 83.0 84.2 72.1 85.5 

7 83.0 83.7 76.9 86.2 

Overall 

Accuracy: 
82.6 85.0 75.3 86.0 

 

Table 4.3.1.13.1 Recall measures for each class type and overall accuracy of model averaging 

ensemble that combines SVM, random forest and deep CNF with five hidden layers on validation 

sets of CB513. 

 

Fold Number             PrecisionH PrecisionE PrecisionL 

1 82.4 85.5 72.5 86.1 90.4 84.8 75.8 

2 82.5 85.5 76.8 83.8 86.5 84.3 79.1 

3 83.3 84.8 75.6 86.3 89.3 85.6 78.1 

4 82.7 85.1 76.0 84.4 87.5 82.3 79.5 

5 81.9 84.0 77.7 82.5 88.6 78.2 79.0 

6 83.0 85.0 76.7 84.5 89.3 79.9 79.9 

7 84.7 87.6 77.2 85.6 90.9 84.7 79.2 

Overall 

Accuracy: 
83.0 85.4 76.0 84.7 89.0 82.7 78.7 

 

Table 4.3.1.13.2 Recall and precision measures for each class type and overall accuracy of model 

averaging ensemble that combines SVM, random forest and deep CNF with five hidden layers on 

test sets of 7-fold cross-validation on CB513. 

 

4.4 Comparison of Results 
 

 

Tables 4.4.1 and 4.4.2 show the recall measures for all methods implemented in 

this thesis on validation and test sets of CB513, respectively. Based on these results the 

best accuracy is obtained when the SVM and deep CNF methods are combined. The 

accuracy of the ensemble that combines SVM, deep CNF and random forest is also 

comparable. 
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Method             

SVM 83.4 85.2 75.7 85.8 

RF 82.0 83.0 72.0 86.0 

         

 
89.8 92.3 87.5 89.3 

         

 
90.0 91.9 87.7 89.6 

         

 
90.1 92.1 88.2 89.1 

             

 
90.2 91.8 87.7 89.3 

SVM+RF 83.2 84.6 74.5 86.5 

SVM+             

 
83.5 85.7 76.3 85.4 

SVM+         

 
82.9 85.0 74.4 85.6 

SVM+         

 
83.5 85.4 76.2 85.6 

SVM+         

 
83.4 85.6 76.3 85.3 

RF+             

 
83.0 85.0 74.6 85.8 

RF+         

 
82.9 85.0 74.4 85.6 

RF+         

 
83.0 84.8 74.5 86.0 

RF+         

 
82.9 85.0 74.6 85.6 

SVM+RF+             

 
83.4 85.0 75.3 86.0 

SVM+RF+         

 
83.3 85.2 75.0 86.0 

SVM+RF+         

 
83.3 85.0 75.3 86.0 

SVM+RF+         

 
83.3 85.0 75.3 86.0 

 

Table 4.4.1 Recall measures for each class type and overall accuracy of all models on validation sets 

of CB513. 

 

 

Method             PrecisionH PrecisionE PrecisionL 

SVM 82.8 85.1 76.1 84.5 88.9 82.6 78.5 

RF 81.8 83.2 73.7 85.0 89.2 81.9 76.7 

         

 
82.6 86.0 76.5 83.0 88.0 81.4 79.1 
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82.6 85.8 76.5 83.3 88.0 82.0 78.9 

         

 
82.6 86.5 76.3 82.9 87.6 81.7 79.2 

             

 
82.6 86.1 76.2 83.3 87.9 81.8 79.0 

SVM+RF 82.8 84.5 75.4 85.2 89.3 83.0 78.1 

SVM+             

 
83.0 85.7 76.5 84.3 88.7 82.6 79.0 

SVM+         

 
83.0 85.8 76.6 84.2 88.8 82.4 79.1 

SVM+         

 
83.0 85.6 76.5 84.4 88.8 82.8 78.9 

SVM+         

 
83.0 85.9 76.6 84.1 88.5 82.6 79.1 

RF+             

 
82.8 85.2 75.5 84.6 88.9 82.4 78.5 

RF+         

 
82.7 85.2 75.8 84.4 89.0 82.1 78.5 

RF+         

 
82.8 85.1 75.7 84.7 89.0 82.6 78.4 

RF+         

 
82.7 85.4 75.5 84.3 88.7 82.4 78.5 

SVM+RF+             

 
83.0 85.3 76.0 84.8 89.1 82.7 78.6 

SVM+RF+         

 
83.0 85.3 76.0 84.8 89.2 82.7 78.6 

SVM+RF+         

 
83.0 85.2 76.0 85.0 89.2 82.9 78.6 

SVM+RF+         

 
83.0 85.4 76.0 84.7 89.0 82.7 78.7 

 
Table 4.4.2 Recall and precision measures for each class type and overall accuracy of all models on 

test sets of 7-fold cross-validation on CB513. 
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CHAPTER 5 

 

 
 

CONCLUSION 

 
 

 

In this thesis, we optimized a support vector machine, a deep CNF and a random 

forest classifier for protein secondary structure prediction. These are employed at the 

second stage of a hybrid method. We also analyzed the performance of an ensemble 

method that combines the predictions of the classifiers. When the individual classifiers 

are compared, the most accurate method is the support vector machine, followed by 

deep CNF and random forest. The ensemble methods achieve better accuracy rates 

although the improvement is small. Nonetheless the ensemble approach has the 

potential to improve the accuracy of secondary structure prediction. We are planning to 

implement and compare other ensemble techniques such as stacking as a future work.  

In constructing structural profile matrices we used distant templates by setting 

the percentage of sequence identity threshold to 20% (i.e. removing templates having 

greater similarity than this threshold to query). Therefore our results are obtained in the 

most difficult setting. In previous studies that are conducted at similar difficulty levels 

approximately 80% - 83% accuracy has been obtained. In this study, we achieve nearly 

83% accuracy by the ensemble method, which is comparable to state-of-the art. As a 

future work we are planning to repeat the optimization experiments for other difficulty 

levels and for dihedral angle class and solvent accessibility class predictions. 
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