
Ö
m

m
u
 G

ü
lsü

m

U
Z

U
T

OPTIMIZING CLASSIFIERS FOR

PROTEIN SECONDARY STRUCTURE

PREDICTION

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER‟S

By

Ömmu Gülsüm UZUT

July 2017

 O
P

T
IM

IZ
IN

G
 C

L
A

S
S

IF
IE

R
S

 F
O

R
 P

R
O

T
E

IN
 S

E
C

O
N

D
A

R
Y

S
T

R
U

C
T

U
R

E
 P

R
E

D
IC

T
IO

N

A
G

U

2
0
1
7

i

OPTIMIZING CLASSIFIERS FOR PROTEIN

SECONDARY STRUCTURE PREDICTION

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

AND COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF NATURAL SCIENCES OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER‟S

By

Ömmu Gülsüm UZUT

July 2017

ii

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules

and conduct, I have fully cited and referenced all materials and results that are not

original to this work.

Name-Surname: Ömmu Gülsüm UZUT

Signature :

iii

REGULATORY COMPLIANCE

M. Sc. thesis titled Optimizing Classifiers for Protein Secondary Structure Prediction

has been prepared in accordance with the Thesis Writing Guidelines of the Abdullah

Gül University, Graduate School of Engineering & Science.

Prepared By Advisor

Ömmu Gülsüm UZUT Assist. Prof. Zafer AYDIN

Head of the Electrical and Computer Engineering Program

Assoc. Prof. Vehbi Çağrı GÜNGÖR

iv

ACCEPTANCE AND APPROVAL

M. Sc. thesis titled Optimizing Classifiers for Protein Secondary Structure Prediction

and prepared by Ömmu Gülsüm UZUT has been accepted by the jury in the Electrical

and Computer Engineering Graduate Program at Abdullah Gül University, Graduate

School of Engineering & Science.

……….. /……….. / ………..

 (Thesis Defense Exam Date)

JURY:

 Advisor : Assist. Prof. Zafer AYDIN

 Member : Prof. Bülent YILMAZ

 Member : Assist. Prof. Ufuk NALBANTOĞLU

APPROVAL:

The acceptance of this M. Sc. thesis has been approved by the decision of the Abdullah

Gül University, Graduate School of Engineering & Science, Executive Board dated …..

/….. / ……….. and numbered .…………..……. .

……….. /……….. / ………..

(Date)

Graduate School Dean

Prof. Dr. Ġrfan ALAN

i

ABSTRACT

OPTIMIZING CLASSIFIERS FOR PROTEIN SECONDARY

STRUCTURE PREDICTION

Ömmu Gülsüm UZUT

Master‟s program in Electrical and Computer Engineering Department

Supervisor: Assist. Prof. Zafer AYDIN

July 2017

Protein secondary structure prediction (PSSP) is important for understanding protein

structure and function. It can be seen as a bridge between amino acid sequence and

three-dimensional (3-D) structure of a protein. To date, many methods have been

proposed to improve prediction accuracy. There are multiple conditions that will affect

the performance of a method. One of these is the selection of correct hyper parameters,

which may not be learned directly from the regular training process. Optimizing these

hyper-parameters enable us to fine-tune the model complexity preventing over-fitting

and under-fitting.

In this thesis, we optimized a support vector machine, a deep convolutional neural field

and a random forest for the second stage of a hybrid classifier for protein secondary

structure prediction. In addition, we built an ensemble classifier that combines the

predictions from the individual methods in various combinations. We demonstrate that

the overall accuracy of the ensemble is comparable to the success rates of the state-of-

the-art methods in the most difficult prediction setting and combining the selected

models have the potential to further improve the accuracy of the base learners.

Keywords: Bioinformatics, Protein Secondary Structure Prediction, Ensemble Methods,

Hybrid Classifiers, Deep Learning.

ii

ÖZET

PROTEĠN ĠKĠNCĠL YAPISININ TAHMĠNĠ ĠÇĠN

SINIFLANDIRMA YÖNTEMLERĠNĠN OPTĠMĠZASYONU

Ömmu Gülsüm UZUT

 Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı, Yüksek Lisans Programı

Tez Yöneticisi: Yrd. Doç. Dr. Zafer AYDIN

Temmuz 2017

Protein ikincil yapı tahmini, proteinin yapısını ve fonksiyonunu anlamak için önemli ve

yaygın olarak kullanılan bir aĢamadır. Ġkincil yapı tahmin bilgisi üç boyutlu yapı

tahmini için de kullanıldığından protein dizisiyle üç boyutlu yapısı arasında bir köprü

olarak görülebilir. ġimdiye kadar, tahmin doğruluk oranını artırmak için birçok yöntem

geliĢtirilmiĢtir. Yöntemlerin performansını etkileyecek birden fazla durum vardır.

Bunlar arasında model hiper-parametrelerinin doğru seçilmesi önem taĢımaktadır.

Model eğitme sürecinde direkt olarak öğrenilemeyen bu parametrelerin optimize

edilmesiyle modellerin hassas olarak ayarlanması mümkündür. Bu sayede aĢırı uyum ve

eksik uyum gibi davranıĢlardan kaçınılması amaçlanır.

Bu tezde, destek vektör makinesi, derin katlamalı yapay sinir alanları ve rastgele orman

yöntemleri bir hibrit sınıflandırıcının ikinci aĢamasında kullanılmak üzere optimize

edilmiĢ ve ikincil yapı tahmini problemine uygulanmıĢtır. Buna ek olarak eğitilen

sınıflandırıcılardan elde edilen tahminler bir topluluk yöntemi ile farklı

kombinasyonlarda birleĢtirilmiĢ ve baĢarı oranları en zor tahmin koĢulu için

incelenmiĢtir. GeliĢtirilen yöntemlerin doğruluk oranları literatürdeki en iyi yöntemler

ile aynı seviyededir ve farklı modellerin birleĢtirilmesinin tahmin baĢarısını iyileĢtirme

potansiyeli bulunduğu gösterilmiĢtir.

Anahtar Kelimeler: Biyoenformatik, Protein İkincil Yapı Tahmini, Hibrit

Sınıflandırıcılar, Topluluk Yöntemleri, Derin Öğrenme

iii

Acknowledgements

I would like to express my deepest regards to my advisor Assistant Professor Zafer

AYDIN, for his interest and invaluable helpfulness. I am so grateful to study with him.

I would like to thank my family especially my father Zülküf UZUT and my mother

Nisbet UZUT for being in favor of me in any case and believing in me.

All computations were performed on TUBITAK ULAKBIM, High Performance and

Grid Computing Center (TRUBA Resources). This work is supported by grant 113E550

from 3501 TUBITAK National Young Researchers Career Award.

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. STRUCTURE OF A PROTEIN .. 4

2.1. PROTEIN STRUCTURE LEVELS .. 4

2.1.1. Primary Structure .. 5

2.1.2. Secondary Structure .. 5

2.1.3. Tertiary Structure .. 6

2.1.4. Quaternary Structure ... 6

2.2. PROTEIN STRUCTURE PREDICTION ... 6

2.2.1. Secondary Structure Prediction ... 7

2.2.2. Secondary Structure Types .. 7

2.3. MEASURES FOR PREDICTION ACCURACY ... 8

3. METHODS .. 9

3.1. DATASET ... 9

3.2. FEATURE EXTRACTION ... 9

3.2.1. PSSM ... 10

3.2.2. Position Specific Iterative BLAST (PSI-BLAST) ... 10

3.2.3. HMM Profile Matrices .. 11

3.2.4. Structural Profiles ... 11

3.3. DSPRED METHOD .. 13

3.4. SUPPORT VECTOR MACHINES ... 16

3.4.1. Linear Separation .. 16

3.4.2. Non-linear Separation ... 16

3.4.3. MULTICLASS SVM ... 17

3.5. RANDOM FOREST .. 18

3.6. DEEP CONVOLUTIONAL NEURAL FIELDS .. 19

3.6.1. Deep Convolutional Neural Networks ... 19

3.6.2. Deep Convolutional Neural Fields .. 26

3.7. MODEL EVALUATION BY CROSS VALIDATION 20

3.8. PARAMETER OPTIMIZATION ... 21

3.8.1. Parameter Optimization for Support Vector Machines ... 21

3.8.2. Parameter Optimization for Random Forest ... 22

3.8.3. Parameter Optimization for Deep Convolutional Neural Fields....................................... 22

3.9. ENSEMBLE METHODS .. 23

3.9.1 Model Averaging .. 23

4. RESULTS .. 24

4.1. OPTIMIZATION RESULTS .. 24

4.1.1. SVM Optimization ... 25

4.1.2. Random Forest Optimization ... 26

4.1.3. Deep CNF Optimization .. 27

4.2. TRAIN-TEST RESULTS .. 33

4.3. ENSEMBLE METHOD RESULTS .. 37

v

4.3.1. Model Averaging Results on Validation and Test Sets .. 37

4.4. COMPARISON OF RESULTS ... 52

5. CONCLUSION ... 55

6. BIBLIOGRAPHY ... 56

vi

LIST OF FIGURES

Figure 2.1 The structure of an amino acid .. 4

Figure 2.1.1.1 Primary structure of an amino acid sequence .. 5

Figure 2.1.2.1 Secondary structure of an amino acid sequence .. 5

Figure 2.2.1.1 Three state secondary structure prediction .. 7

Figure 3.2.4.1 A structural profile for 3 state secondary structure prediction 12

Figure 3.3.1 The two-stage hybrid model for estimating the 3-state secondary structure

using dynamic Bayesian networks and a support vector machine. 13

Figure 3.3.2 A) A dynamic Bayesian network for protein secondary structure prediction

B) The variables used for modeling the secondary structure segments 15

Figure 3.4.1.1 The linear SVM. .. 16

Figure 3.4.2.1 The non-linear SVM. ... 17

Figure 3.4.3.1 One-vs-one SVM. .. 17

Figure 3.6.2.1 Design of Deep CNF. .. 20

file:///C:/Users/Gülsüm/Desktop/TEZSonHal.docx%23_Toc485778974
file:///C:/Users/Gülsüm/Desktop/TEZSonHal.docx%23_Toc485778975
file:///C:/Users/Gülsüm/Desktop/TEZSonHal.docx%23_Toc485778975

vii

LIST OF TABLES

Table 2.2.2.1.1 8 class representation of protein secondary structure 7

Table 4.1.1.1 Optimum C and gamma parameters for SVM and overaa accuracy on

validation sets of CB513 ... 25

Table 4.1.1.2 Recall values for each class type and overall accuracy of the SVM on

validation sets of CB513. .. 26

Table 4.1.2.1 Optimum number of trees and overall accuracy of random forest on

validation sets of CB513. .. 26

Table 4.1.2.2 Recall values for each class type and overall accuracy of random forest on

validation sets of CB513. .. 27

Table 4.1.3.1.1 Optimum kernel width (window string), number of hidden nodes (node

string), regularization parameter and overall accuracy of deep CNF with three

hidden layers on validation sets of CB513.. ... 28

Table 4.1.3.1.2 Recall values for each class type and overall accuracy of deep CNF with

three hidden layers on validation sets of CB513.. .. 29

Table 4.1.3.2.1 Optimum kernel width (window string), number of hidden nodes (node

string), regularization parameter and overall accuracy of deep CNF with four

hidden layers on validation sets of CB513. .. 29

Table 4.1.3.2.2 Recall values for each class type and overall accuracy of deep CNF with

four hidden layers on validation sets of CB513. ... 30

Table 4.1.3.3.1 Optimum kernel width (window string), number of hidden nodes (node

string), regularization parameter and overall accuracy of deep CNF with five

hidden layers on validation sets of CB513. .. 30

Table 4.1.3.3.2 Recall values for each class type and overall accuracy of deep CNF with

five hidden layers on validation sets of CB513 .. 31

Table 4.1.3.4.1 Optimum kernel width (window string), number of hidden layers,

number of hidden nodes (node string), regularization parameter and overall

accuracy of deep CNF with optimum number of hidden layers on validation sets of

CB513 ... 32

Table 4.1.3.4.2 Recall values for each class type and overall accuracy of deep CNF with

optimum number of hidden layers on validation sets of CB513 32

Table 4.2.1 Recall and precision measures for each class type and overall accuracy of

SVM on test sets of 7-fold cross-validation on CB513. ... 33

Table 4.2.2 Recall and precision measures for each class type and overall accuracy of

random forest on test sets of 7-fold cross-validation on CB513. 34

Table 4.2.3 Recall and precision measures for each class type and overall accuracy of

deep CNF with three hidden layers on test sets of 7-fold cross-validation on

CB513. .. 34

Table 4.2.4 Recall and precision measures for each class type and overall accuracy of

deep CNF with four hidden layers on test sets of 7-fold cross-validation on CB513

 .. 35

Table 4.2.5 Recall and precision measures for each class type and overall accuracy of

deep CNF with five hidden layers on test sets of 7-fold cross-validation on CB513

 .. 36

viii

Table 4.2.6 Recall and precision measures for each class type and overall accuracy of

deep CNF with optimum number of hidden layers on test sets of 7-fold cross-

validation on CB513. .. 36

Table 4.3.1.1.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and random forest on validation sets of

CB513. .. 37

Table 4.3.1.1.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines SVM and random forest on test sets of

7-fold cross-validation on CB513 38

Table 4.3.1.2.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and deep CNF with optimum number of

hidden layers on validation sets of CB513. .. 39

Table 4.3.1.2.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines SVM and deep CNF with optimum

number of hidden layers on test sets of 7-fold cross-validation on CB513. 39

Table 4.3.1.3.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and deep CNF with three hidden layers on

validation sets of CB513. .. 40

Table 4.3.1.3.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines SVM and deep CNF with three hidden

layers on test sets of 7-fold cross-validation on CB513 ... 40

Table 4.3.1.4.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and deep CNF with four hidden layers on

validation sets of CB513. .. 41

Table 4.3.1.4.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines SVM and deep CNF with four hidden

layers on test sets of 7-fold cross-validation on CB513. .. 41

Table 4.3.1.5.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and deep CNF with five hidden layers on

validation sets of CB513. .. 42

Table 4.3.1.5.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines SVM and deep CNF with five hidden

layers on test sets of 7-fold cross-validation on CB513 ... 43

Table 4.3.1.6.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines random forest and deep CNF with optimum

number of hidden layers on validation sets of CB513. ... 43

Table 4.3.1.6.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines random forest and deep CNF with

optimum number of hidden layers on test sets of 7-fold cross-validation on CB513

 .. 44

Table 4.3.1.7.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines random forest and deep CNF with three hidden

layers on validation sets of CB513 ... 44

Table 4.3.1.7.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines random forest and deep CNF with

three hidden layers on test sets of 7-fold cross-validation on CB513 45

Table 4.3.1.8.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines random forest and deep CNF with four hidden

layers on validation sets of CB513 ... 46

ix

Table 4.3.1.8.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines random forest and deep CNF with

four hidden layers on test sets of 7-fold cross-validation on CB513 46

Table 4.3.1.9.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines random forest and deep CNF with five hidden

layers on validation sets of CB513 ... 47

Table 4.3.1.9.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines random forest and deep CNF with five

hidden layers on test sets of 7-fold cross-validation on CB513 47

Table 4.3.1.10.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines SVM, random forest and deep CNF with

optimum number of hidden layers on validation sets of CB513. 48

Table 4.3.1.10.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines SVM, random forest and deep CNF

with optimum number of hidden layers on test sets of 7-fold cross-validation on

CB513 ... 48

Table 4.3.1.11.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines SVM, random forest and deep CNF with three

hidden layers on validation sets of CB513 ... 49

Table 4.3.1.11.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines SVM, random forest and deep CNF

with three hidden layers on test sets of 7-fold cross-validation on CB513 50

Table 4.3.1.12.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines SVM, random forest and deep CNF with four

hidden layers on validation sets of CB513 ... 50

Table 4.3.1.12.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines SVM, random forest and deep CNF

with four hidden layers on test sets of 7-fold cross-validation on CB513 51

Table 4.3.1.13.1 Recall measures for each class type and overall accuracy of model

averaging ensemble that combines SVM, random forest and deep CNF with five

hidden layers on validation sets of CB513 ... 51

Table 4.3.1.13.2 Recall and precision measures for each class type and overall accuracy

of model averaging ensemble that combines SVM, random forest and deep CNF

with five hidden layers on test sets of 7-fold cross-validation on CB513 52

Table 4.4.1 Recall measures for each class type and overall accuracy of all models on

validation sets of CB513 ... 53

Table 4.4.2 Recall and precision measures for each class type and overall accuracy of

all models on test sets of 7-fold cross-validation on CB513 54

x

This thesis is dedicated to my family

1

Chapter 1

1.Introduction

Using computational techniques has gained widespread attention in

bioinformatics because of the exponential growth, complexity and accessibility of

biological data. On the path toward discovering the knowledge hidden in this large

amounts of data, machine learning approaches has played an important role. It has been

successfully applied to several problems including protein structure prediction [1],

protein sequence analysis [2], protein fold recognition [3, 4, 5], protein function

prediction [6], gene network inference [7], metabolic pathway analysis [8].

Prediction of three dimensional structure of a protein from its amino acid sequence

is known as tertiary structure prediction [9], which has been one of the most challenging

problems in bioinformatics. Three dimensional (3D) structure of a protein gives crucial

information about its function. Despite being accurate, solving the structure through

experiments is expensive and time consuming. In this respect, protein tertiary structure

provides an alternative to experimental techniques. Furthermore the 3D structure

information can also be used for designing new drugs. Due to the challenging nature of

the problem instead of solving it directly first various structural properties of proteins

are estimated such as sequence profiles, solvent accessibility, dihedral angles, and

contact maps.

Protein secondary structure is formed by regular hydrogen bonding patterns that

stabilize the protein structure [10]. Protein secondary structure prediction (PSSP) aims

to assign a structural state from a three letter alphabet, which includes H for helix, E for

strand and L for loop. To predict secondary structure, typically supervised learning is

used, in which a model is trained using proteins with known secondary structure labels

derived from 3D structure information available in Protein Data Bank (PDB) [11].

Various methods have been proposed for secondary structure prediction. Among those

2

support vector machines (SVM) and neural networks stand out with promising accuracy

values as compared to other methods. Ward et al. applied support vector machines to 3-

state protein secondary structure prediction on a set of 1460 proteins and obtained a

77.07 % accuracy by cross-validation [12]. Hua and Sun showed that it is feasible to get

improvement by adding PSI-BLAST generated profiles as input features to SVMs [13].

Kim and Park developed a new method, SVMpsi, to improve the prediction rate using

PSI-BLAST PSSM profiles. The method obtained 4.9% and 3.1% improvements on

RS126 [14] and CB513 [15] datasets, respectively [16]. Gubbi and Lai applied an SVM

to protein secondary structure prediction and obtained a 77.9% accuracy by seven fold

cross-validation on CB513 [17]. Also there are additional studies, in which SVM

outperforms as compared to other machine learning classifiers [18].

Ensemble learning is an important technique in pattern recognition, machine

learning and data mining. The main idea behind ensemble learning is to combine

multiple classifiers for improving the accuracy rate [19].

Recently, many studies have been performed to improve the accuracy through

combining different methods. King used ensemble methods that combine several

machine learning approaches by voting and obtained a better accuracy than individual

classifiers on CASP dataset [20]. Kountouris also combined machine learning

techniques for secondary structure prediction and showed that the resulting method can

improve the quality of the predictions, especially the SOV score [21]. Alirezaa also used

a machine learning approach which included an ensemble of neural networks with

different voting combination methods for class imbalance problem of protein secondary

structure prediction and showed their ensemble system has better performance when

compared with the individual classifier they employed [22]. Pollastri and Baldi have

studied on ensembles of bidirectional recurrent neural network to improve contact and

accessibility prediction [23]. There are additional studies that use ensemble methods

and show improvement over the performance of individual classifiers [24-29]. Besides

ensembles, there are also hybrid methods that combine the strengths of various

classifiers. Yao et al. introduced a two-stage classifier that employs Dynamic Bayesian

Networks (DBNs) and neural networks for protein secondary structure prediction [30].

Aydin et al. improved this model by incorporating features derived from HMM-profiles,

sparsifying DBN models and employing an SVM classifier instead of neural networks,

which provided state-of-the-art performance [31]. Recently Peng et al. proposed a deep

conditional neural fields model that combines a deep convolutional network with a

3

conditional random field, which are trained jointly [32,33]. Based on these

advancements, it is of interest to analyze how well the SVM and deepCNF models

complement each other and whether combining predictions obtained from these

methods improves the accuracy.

In this thesis, we optimized the hyper-parameters of three classification methods:

a support vector machine, a deepCNF and a random forest, which are employed at the

second stage of the hybrid classifier introduced in Aydin et al. [31]. We then

implemented an ensemble that combines the predictions of these models in various

combinations by averaging the probability distributions of class labels.

This thesis is organized as follows. Chapter 2 gives information about proteins

and their structures. Pre-processing methods about preparing feature vectors are

elucidated in chapter 3, which also includes the methods used for parameter

optimization and prediction. Chapter 4 includes our results and conclusions of the thesis

are provided in Chapter 5.

4

Chapter 2

2. Structure of a Protein

 Proteins are polymers of amino acids consisting of one or more polypeptide chains.

“Proteins perform a vast array of functions within organisms, including catalysing

metabolic reactions, DNA replication, responding to stimuli, and transporting molecules

from one location to another. Proteins differ from one another primarily in their

sequence of amino acids, which is dictated by the nucleotide sequence of their genes,

and which usually results in protein folding into a specific three-dimensional structure

that determines its activity.”[34]

 Despite having the same general structure, the side

chain (R group) of each amino acid is different. There

are twenty types of amino acids commonly found in

nature, which have different physical and chemical

characteristics such as electrostatic charge, acid

separation coefficient, hydrophobicity, size and

functional group. These properties play an important role

in determining the structure of a protein [35].

2.1 Protein Structure Levels

 There are four basic levels of protein structure: primary, secondary, tertiary and

quaternary. Primary structure is the amino acid sequence of a protein. Secondary

structure is formed through regular hydrogen bonds. Tertiary structure is the three

dimensional structure of an amino acid chain. Quaternary structure is the three

dimensional structure of multiple amino acid chains that form a protein.

Figure 2.1 The structure of an

amino acid [35].

5

2.1.1 Primary Structure

The primary structure of a protein consists of all the necessary information for

determining the 3D structure. The alteration of one amino acid in the sequence can

change the entire protein.

Primary structure is important because

 many genetic diseases occur due to

abnormal amino acid sequences

 it serves as a starting point for

predicting secondary and tertiary

structure.

 it conveys information about the

molecular system of proteins

2.1.2 Secondary Structure

Secondary structure of a protein is the local structural conformation that is

formed by regular hydrogen bonding patterns that stabilize the coiling and folding of

polypeptide chains. There are two regular and major structural elements of secondary

structure. These are α helix and β strand.

Coiling occurs, forming an α helix, due to the formation of repetitive hydrogen

bonds between the nitrogen of one amino acid and the oxygen of another located in

neighboring part of the polypeptide chain. The amino acids in α helix are usually

arranged in a right-handed helical structure

and each helix contains from 5 to 40 amino

acids.

 β pleated sheets are formed due to

hydrogen bonding between different amino

acid segments (peptides) arranged side by

side.

There are two types of pleated

sheets: parallel and antiparallel. If two Figure 2.1.2.1 Secondary structure of an amino

acid sequence [31]

Figure 2.1.1.1 Primary structure of an amino acid

sequence [35].

6

peptides run in the same direction, it is called parallel β pleated sheets. For antiparallel β

pleated sheets, the peptides must run in opposite directions.

Loops are not regular structures in proteins unlike alpha helices and beta sheets.

They are typically formed in between the helix and beta sheets and usually found at the

surface of the protein. Loops contain turns, random coils and bends details of which are

explained in [10].

2.1.3 Tertiary Structure

Tertiary structure is the three dimensional coordinates of the atoms in an amino

acid chain. Every protein has a unique three dimensional structure and the function of

the protein depends closely on its structure. Understanding the function and structure

opens the doors for diagnosing diseases, designing drugs and investigating new

treatment models.

The 3D structure is typically determined by X-ray crystallography and NMR

(Nuclear Magnetic Resonance) spectroscopy. The atomic coordinates of the solved

structures are collected in a database known as the Protein Data Bank (PDB) [11].

Despite providing accurate information about the structure of proteins, these methods

are expensive and time consuming. Therefore, computational methods are applied as an

alternative solution technique.

2.1.4 Quaternary Structure

Quaternary structure is the combination of two or more amino acid chains. It is

stabilized by non-covalent and disulfide bonds which also stabilize tertiary structures.

2.2 Protein Structure Prediction

Protein structure prediction is an important problem in bioinformatics due to relation

between the function of a protein and its three dimensional structure. Although a lot of

research has been performed on protein structure prediction, it has not been solved

completely.

7

2.2.1 Secondary Structure Prediction

Secondary structure prediction aims to assign a secondary structure class label

(H: helix, E: strands, L: loop) to each amino acid of a protein (Figure 2.2.1.1).

Figure 2.2.1.1 Three state secondary structure prediction. The first line represents the amino acid

sequence, the second line shows the secondary structure labels (H: coil, E: beta strand L: loop).

For secondary structure prediction, generally supervised learning approaches are

used. In supervised learning, a model is trained from the database with known

secondary structure labels to make prediction for proteins with unknown structure.

2.2.2 Secondary Structure Types

2.2.2.1 8-state representation

 DSSP (dictionary of secondary structure prediction) is a program that defines

secondary structure of a protein starting from the 3D coordinate information. DSSP uses

an eight state representation denoted by single letter codes [10]. There are also other

programs that extract secondary structure labels starting from 3D coordinates of the

atoms such as DEFINE [37] and STRIDE [38].

H - helix

G – helix

I - helix (extremely rare)

E - strand

B - bridge

T - turn

S Bend

L the rest

Table 2.2.2.1.1 8 class representation of protein secondary structure.

8

Although the original definition of secondary structure contains eight states

prediction methods are generally trained and evaluated with three states due to due to

scarcity of data in certain classes and similarity between classes that belong to the same

structural group. There are different conventions to map eight state representation to

three states. In this thesis we used the following mapping: H, G, I H; E, B E; S, T,

„ ‟ L, in which H refers to helix, E refers to strand and L refers to loop. This is the

most widely used and the most difficult mapping. Other transformations include

 H, G H; E, B E; I, S, T, „ ‟ L

 H, G H; E E; B, I, S, T, „ ‟ L

 H H; E E; G, B, I, S, T, „ ‟ L

2.3 Measures for Prediction Accuracy

 The overall accuracy denoted by is the most popular measure in the literature

when evaluating performance of secondary structure prediction methods. It is defined as

the percentage of the amino acids that are correctly predicted to be one of the three

states (H, E, L).

(2.3.1)

where is the number of true positives for helix, is the number of true positives

number for strand, is the number of true positives number for loop and is the

total number of amino acids. Similar to equation 2.3.1 we can define the accuracy of

each class type as follows

 (2.3.2)

where is the percentage of correctly predicted amino acids that belong to class

with , is number of true positives for and is the number of

amino acids in state .

 In addition to the above there are also other measures used for evaluation such as

the segment overlap (SOV) that is used for testing the average overlap between the

observed and the predicted segments rather than individual residues [39] and Matthew‟s

Correlation Coefficient (MCC) [40].

9

Chapter 3

3. Methods

Analyzing large quantities of data manually is not feasible. At this stage, machine

learning methods can be used to discover and learn patterns in data and make

predictions for new data.

In this thesis, we used the DSPRED method introduced in Aydin et al. [31], which is

a hybrid classifier that combines dynamic Bayesian networks and a support vector

machine (SVM) for predicting the secondary structure of proteins. We considered

replacing the SVM with deep convolutional neural field [33] and random forest.

Additionally we analyzed the effect of combining predictions from the three classifiers

in an ensemble framework.

3.1 Dataset

We used the CB513 benchmark [15] dataset that contains 513 proteins and

84,119 amino acid residues. It was obtained by combining 396 sequences in CB396

benchmark and the 117 sequences in RS126 [14] after removing the duplicates. CB513

is a popular benchmark used in protein secondary structure prediction.

3.2 Feature Extraction

In this thesis, we employ two types of input features: position specific scoring

matrices (PSSM) derived from sequence alignments and structural profile matrices. The

PSSMs are computed by PSI-BLAST [41] and HHBlits [42] programs and are named as

PSI-BLAST PSSM and HHMAKE PSSM, which are used as input features for the

DBN models as well as the classifiers in the second stage of the hybrid method. The

10

structural profile matrices are computed after the second stage of the HHBlits program

using the structure labels of the PDB proteins aligned to the target.

3.2.1 PSSM

 A position specific scoring matrix (PSSM) contains scores summarizing the

statistical characteristics of proteins in a family, which are assumed to have similar

structure and function. Each column represents an amino acid position and contains the

likelihood of observing the twenty amino acids at that position among proteins that

belong to the same family. A PSSM can be constructed by aligning a query protein

against a database of proteins, jointly aligning the hits that score above threshold using

multiple alignment, and computing a weighted frequency of occurrence for the twenty

amino acids at each position of the alignment. Following this procedure a different

PSSM can be obtained for each query protein due to slight differences in the alignments

between proteins in the same family. Therefore, a PSSM can be used as input features

for structure prediction methods because it serves as a signature for a query protein

summarizing the statistics of sequence-based similarities against the proteins in the

same family.

3.2.2 PSI-BLAST PSSM

 PSI-BLAST is an iterative method that searches the database of sequences to find

proteins that are distantly related to the query. In the first iteration, it performs a regular

BLAST search and aligns the query to database proteins by pairwise alignment. Then it

performs a multiple alignment and builds a profile matrix (i.e. PSSM) using proteins

with scores above threshold. In the second and subsequent iterations, the profile matrix

is aligned to the proteins in the database to discover more distant proteins (i.e. those

with little sequence similarity but high structural and functional similarity). After this

alignment proteins that score above threshold are multiply aligned and the profile

matrix is updated. The procedure stops after reaching a certain number of iterations,

which is a parameter set by the user. At the end a profile matrix of size is

generated, where N is the number of amino acids in the target protein. Because of being

fast and simple to implement, possibility to search PSSMs on large database, providing

efficiency and sensitivity, PSI-BLAST is one of the most commonly used profile matrix

derivation method for structure prediction. However, PSI-BLAST can also perform

11

mismatches (i.e. false positives). Therefore the profile matrices derived from this

method contain a certain noise. Nonetheless, the first profile matrix used in this thesis is

obtained by the PSI-BLAST method due to its popularity and having a certain level of

accuracy. PSI-BLAST PSSMs are computed by aligning the sequences in CB513

dataset against the NR database. This is followed by scaling, in which the scores are

normalized by a sigmoidal transformation.

3.2.3 HHMAKE PSSM

 Hidden Markov models (HMMs) are mainly used as a classifier in handwriting

recognition, speech recognition [43], and in bioinformatics problems such as protein

secondary structure prediction [30] and protein torsion angle prediction [44]. In

bioinformatics HMMs can also be used to compute profiles to represent proteins in the

same family. Profiles based on hidden Markov models (HMM-profiles) can be obtained

after computing multiple alignments with the proteins found by sequence alignment

algorithms. Similar to PSI-BLAST these HMM-profiles can be used iteratively for

profile sequence alignment or profile-profile alignment [42] to discover distantly related

proteins. HMM profiles are more sensitive than standard profiles and explore more

distant protein similarities. One of the best software for computing HMM-profiles is

HHBlits [42], which is faster than PSI-BLAST due to recent improvements on the speed

of the original algorithm.

In this thesis, HHMAKE PSSM features are derived from HMM-profile models

computed by the first step of the HHBlits method. For this task, each target in CB513 is

aligned against the NR20 database and hit proteins that score above the threshold are

jointly aligned using a multiple alignment algorithm. Then an HMM-profile model is

constructed starting from the multiple alignment. Finally the weighted frequencies in

each match state of the HMM–profile are normalized by min-max scaling (i.e. linear

transformation) into the interval [0,1] to obtain the HHMAKE PSSM.

3.2.4 Structural Profiles

 In addition to profile matrices based on multiple alignments of amino acid

sequences for structural prediction, structural profile matrices have also been used as

attributes. They are constructed using the structural sequences of the proteins found by

sequence alignment methods. The dimension of a structural profile matrix formed for

the secondary structure estimation is , where is the number of amino acids in the

12

target protein and each column has the weighted frequency scores of the three

secondary structure states for an amino acid. Fig. 3.2.4.1 shows an example structural

profile matrix.

 1 2 … N

H 0.4 0.5 … 0.2

E 0.3 0.5 … 0.3

L 0.3 0 … 0.5

Figure 3.2.4.1 A structural profile for 3 state secondary structure prediction. Rows represent the

secondary structure classes and columns denote the amino acids of the target. Sum of the scores in

each column is equal to 1.

 The scores in a structural profile can be considered as soft labels and included into

prediction models as soft constraints. Note that since structural profiles also use label

information of template proteins they can be evaluated separately from the methods that

use sequence profiles only. In another category, secondary structure information of

proteins that are highly similar to target protein can be used directly for prediction as

hard constraints. In this regard, using structural profiles can be considered as a category

between the case where the sequential profiles are used only and the case where the

label information from templates is used directly.

 If the template proteins that are used to construct the structural profile are closer to

target then structure can be predicted more accurately. Furthermore, in cases where the

target protein resembles a sub-region instead of the entire protein (local similarity), one

can expect improvement in the accuracy of secondary structure prediction at those local

regions. The improvement will be more significant when the resembling region is

longer.

 To compute the HHMAKE PSSMs, the HMM-profile model of the target proteins in

CB513 are aligned to the HMM-profile models of PDB proteins, which have true

secondary structure labels available. In the next step, templates for which the percentage

of sequence identity score is above 20% are eliminated in order to realize the single-

sequence condition (allowing matches to distant templates only). Finally the frequency

of occurrence counts are computed for the three secondary structure labels using labels

of hit proteins that are aligned to amino acid positions of the target (represented by the

columns of the profile matrix). This is followed by column normalization so that the

sum of scores in each column is 1. If there is no match to an amino acid of the target,

13

then a value of 1/3 is assigned to all the profile values in the corresponding column.

This can happen due to the fact that the alignments computed by HHBlits are local.

3.3 DSPRED METHOD

The DSPRED method is a two-stage classifier developed for the estimation of

one dimensional structural properties such as secondary structure, dihedral angles and

solvent accessibility. A similar approach has also been used for predicting dihedral

angle classes replacing the support vector machine with neural networks [45, 46]. The

steps of the DSPRED method is depicted in Figure 3.3.1. In DSPRED, separate

dynamic Bayesian networks (DBNs) are trained for position specific scoring matrices

obtained from PSI-BLAST [41] and HHBlits [42] methods. These input features are

denoted as PSIBLAST PSSM and HHMAKE PSSM, respectively.

Figure 3.3.1 The two-stage hybrid model for estimating the 3-state secondary structure using

dynamic Bayesian networks and a support vector machine

 There are two types of DBN models in DSPRED. DBN-Previous represents the

model in which the probability density of the profile vector at a given amino acid

position depends on previous positions and DBN-future represents the model in which

the probability density of the profile vector at a given position depends on subsequent

positions. The profile vectors are the columns of the profile matrix and there are as

many columns as the number of amino acids. The output of each DBN is a marginal a

14

posteriori probability distribution for the secondary structure class labels given the input

features. These distributions are combined through averaging to obtain the predictions

for each feature type. For example, Distribution 1 represents the average of the

predictive distributions produced by DBNs that use PSI-BLAST PSSMs, Distribution 2

represents the average of the distributions generated by DBNs that use HHMAKE

PSSM features and Distribution 3 is computed as the average of the Distribution 1,

Distribution 2 and the structural profile matrix obtained using the HHBlits method. In

this problem, since the number of secondary structure classes is three, the dimension of

Distribution 1, 2, and 3 is 3×U where U is the number of amino acids. Consequently,

each column contains the estimated probabilities of secondary structure classes at an

amino acid position. In the second stage of DSPRED, the profile matrices (PSI-BLAST

and HHMAKE) are combined with Distributions 1, 2, and 3 and sent to a discriminative

classifier such as support vector machine. A symmetrical window is taken around each

amino acid at which the secondary structure class is going to be predicted and features

from these columns are concatenated to construct the input feature vector. The classifier

in the second stage gives an estimate of the secondary structure label of the amino acid

at the center of the window.

(A)

15

State H H H H H L L L H H H E E E E E L L L L L L

state count down 5 4 3 2 1 3 2 1 3 2 1 5 4 3 2 1 5 5 4 3 2 1

change state 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

(B)

Figure 3.3.2 A) A dynamic Bayesian network for protein secondary structure prediction. B) The

variables used for modeling the secondary structure segments. State variable represents the

secondary structure class label. The state count down (with Dmax=5) shows the number of

remaining amino acids from the current position until the next segment. Change state is used to

signal transition from one segment to another.

The dynamic Bayesian network model used for predicting secondary structure

class with 3 states is shown in Figure 3.3.2 [31]. Dynamic Bayesian network (DBN) is a

generative model and is the superset of Hidden Markov Model (HMM) [47]. DBNs

model the generation of profile vectors from hidden class variables obeying certain

probability rules. The nodes of the DBN in Figure 4.1.2 represent random variables. The

state variable represents the secondary structure class label of an amino acid. The amino

acid profile variable contains the profile vector of an amino acid and is observed during

training and testing. These vectors correspond to the columns of the PSSMs produced

by PSI-BLAST and HHMAKE (i.e. the first step of HHBlits). The current and previous

secondary structure labels are concatenated and stored in state class history variable,

which is used to fit a different conditional Gaussian distribution to each possible value

of state class history. This conditional distribution is the likelihood of observing the

amino acid profile given the state class history variable and is responsible from the

generation of the input features. The state count down contains a distance value from

the current position till the next secondary structure segment. This variable helps to

model the length distribution of the segments. If the number of amino acids from the

current position till the next segment (denoted by NA) is less than a threshold (called

Dmax) then the state count down becomes equal to NA otherwise it is set to Dmax. For

positions in which the state count down is less than Dmax the length distribution is

estimated using the maximum likelihood approach, which employs the frequency of

occurrence counts. For the remaining positions a geometric distribution is fit to the

length distribution. Change state variable signals transition from one segment to

another.

After the DBN models are trained using proteins with known structure labels,

the predictions that maximize the marginal a posteriori probability of class labels can be

16

computed by efficient algorithms. In our thesis, Linux based GMTK software package

(Graphical Models Toolkit) is used to implement the DBN models [48]. The GMTK

uses the EM algorithm for model training and in this thesis we used the junction tree

algorithm for computing the predictions.

3.4 Support Vector Machines

Support vector machine is among the discriminative classifiers in machine

learning. The main purpose of SVM is to identify a hyperplane which makes the most

appropriate discrimination between two or more classes [49].

SVM can classify both linear and nonlinear datasets. Suppose there are two

classes. One can draw an infinitely many planes that separate data samples of these

classes. At this point, the aim of SVM is to find the hyperplane that maximizes the

distance between the samples closest to the plane.

3.4.1 Linear Separation

In linear separation, data from different classes can be linearly separable from

each other in multiple ways (Figure 3.4.1.1). The goal

is to find the plane such that the distance from the

closest data points (also called support vectors) to this

plane is maximized. This distance is called the margin.

If two hyperplanes (are drawn that pass

through these closest data samples becomes at the

center of these two planes, which is the optimum

separation hyperplane.

3.4.2 Non-linear Separation

In real word problems, many datasets are not linearly separable. In this case, the

data cannot be split by a linear decision boundary, therefore a non-linear mapping is

applied [50]. The data samples in input feature space are mapped to a higher

dimensional space and a linear hyperplane is found that separates the data samples in

new space. Formulating the problem in dual space and using the kernel trick the

optimization problem can be solved without explicitly moving the data points to the

Figure 3.4.1.1 The linear SVM.

17

new space (though the kernel still defines a mapping to a non-linear feature space

implicitly).

Figure 3.4.2.1 The non-linear SVM [51]

3.4.3 MULTICLASS SVM

The standard SVM is formulated for binary classification problem for separating

two classes only. If there are three or more classes to be classified, a multi class SVM

should be derived. Different approaches can be used to solve the multi class problem.

One versus one (OVO): In this approach, several binary classifiers are derived that

separate pairs of classes and combined for the final prediction. For example, if there are

three classes as 0, 1 and 2, a separate SVM is trained for 0 vs 1, 0 vs 2 and 1 vs 2. Then

to classify a data sample a majority voting approach is used. This is summarized in the

figure below.

Figure 3.4.3.1 One-vs-one SVM

One versus all (OVA): In OVA technique, a binary classifier is trained that separates a

class and the rest of the classes. In other words, for each classifier one class is

considered as positive and all other classes as negative. Then, the final prediction can be

obtained by choosing the SVM with maximum decision function output.

Multi Class Ranking: In this approach a single decision function is learned that aims to

classify all classes. In this approach, classes of data samples are required to have an

18

ordering. A ranking function is learned that receives a feature vector as input and

provides an output, which will be ranked according to the class ordering of the input. In

other words, the ordering between the outputs of two data samples will be the same as

the ordering between their classes. Ranking based SVM is the least preferred one

because, the execution time can be high when compared to other approaches and a

single function may not be found that can classify all the data samples.

3.5 RANDOM FOREST

Random forest is a method that forms an ensemble of decision trees used for

classification or regression [52]. It is applied to many different problems including

biomedical [53], physics, health, and bioinformatics. It is among the models that apply

the bagging technique and combine the decisions of its base learners by weighted

majority voting. Each tree is trained with a different subset of features selected

randomly from the original feature set. Furthermore each tree model is constructed

using a slightly different train set obtained by bootstrap sampling. To construct decision

trees, Gini index is used as the impurity measure. In this thesis random forest is

implemented using WEKA [54].

Random forests are preferred for a number of reasons. They are robust against

overfitting. Increasing the number of features will not directly cause overfitting because

a subset of features is randomly selected for each decision tree, which learns a specific

concept in training data. As the dimension of the dataset increases the number of trees

can be increased to learn all the concepts in training set. Therefore if the number of trees

and the number of randomly selected features are selected properly a random forest can

avoid the problem of overfitting.

The other advantage of random forest is its efficient performance on big data.

Convenience of setting parameters, handling missing values are among other

advantages of random forests.

Recently, random forests are compared with other classification models. For

example, a comparison is made between random forest and SVM for microarray-based

cancer classification, in which the SVM outperformed random forest [55]. Lee et al.

[56] compared random forest with SVM to identify protein function using features that

19

are obtained from protein sequences attributes. They applied a correlation-based feature

selection and compared them against the SVM and random forest models trained

without feature selection. SVM with feature selection outperformed the random forest

with and without feature selection.

3.6 Deep Convolutional Neural Fields

Deep learning is a machine learning technique that aims to learn highly non-

linear and complex relationships in data. It has been applied to many fields such as

image recognition [57], bioinformatics [58, 59], natural language processing [60, 61].

The goal of deep learning approaches is to learn high level and more complex attributes

using lower level attributes that are simpler [62]. Learning attributes at multiple levels

of abstraction provide an opportunity for a system for resolving complicated functions

that maps the inputs to an output directly from data.

Deep learning has been improved in time. Firstly, deep belief network with

Restricted Boltzmann Machines (RBM) [63] was introduced. This is followed by auto-

encoders and other algorithms.

3.6.1 Deep Convolutional Neural Networks

Convolutional neural networks (CNNs) are successful deep learning

architectures because of the successful training of the hierarchical layers. In CNN, the

convolution has replaced the general matrix multiplication in standard neural networks

(NN). This way and due to weight sharing the number of weights is decreased, thereby

reducing the complexity of the network. Another advantage of CNN is its minimal pre-

processing requirement because of the inherent feature extraction capability.

3.6.2 Deep Convolutional Neural Fields

 Conditional neural fields are developed due to the inconvenience of resolving the

nonlinear connection between input features and output layer of CRF, especially for

sequence labeling [32]. A deep convolutional neural field (CNF) is a hybrid classifier

obtained by combining a deep CNN [64] and a conditional random field (CRF) [32]. As

a deep learning technique, it enables to capture highly non-linear relationships between

20

the input features and the output. Furthermore it can model the correlation between the

contiguous output labels by the CRF model in the last layer. As a result, it combines the

advantages of CNN and CRF trained jointly in a single model. A deep CNF architecture

is shown in Figure 3.6.2.1.

Figure 3.6.2.1 Design of Deep CNF [65], where i is the position index and the associated input

features, while is for the k-th hidden layer and is for the output label. All the layers from the

first to the top layer constitute a DCNN with parameter . The top layer and the

label layer constitute a CRF with U and T as a model parameters. U determines association

between output of the top layer and the label layer and T is used for adjacent label correlation.

3.7 Model Evaluation by Cross-Validation

 Datasets used in machine learning, data mining generally split into two parts as

train and test set to evaluate predictive models. Train set is used to train the model and

test set to evaluate the accuracy. K-fold cross validation is a technique to test the

prediction model by dividing the data set into k equal sized subsets. In each iteration,

one of the k subsets is used as the test set and the other k-1 subsets form the training set.

This procedure is repeated k times until all subsets are used as test set.

 In this thesis, seven fold cross validation is used to evaluate the accuracy of the

methods. For this purpose, the CB513 dataset is divided into seven equal sized folds by

randomly assigning proteins into each subset. For each iteration of cross-validation a

21

subset is selected as test data and the remaining subsets are used as train data. Before

evaluating the cross-validation accuracy, first the hyper-parameters of the models are

optimized separately for each cross-validation iteration. For this purpose, 10% of the

proteins in each train set are randomly selected as validation set. The remaining 90% of

the train set and the validation set are used to optimize the hyper-parameters of the

models. After the optimization process is finished, all proteins in the training set are

used to learn the models and predictions are computed on the corresponding test set.

This procedure is repeated for each fold and seven accuracy rates are obtained for each

model. The overall accuracy is calculated by taking the average of these accuracy

values.

3.8 Parameter Optimization

There are multiple conditions that may affect the performance of a classifier.

One of these is the selection of the correct hyper-parameters, which cannot be directly

learned from the regular training process. Optimizing these parameters enable us to

fine-tune the model complexity and prevent over-fitting as well as under-fitting.

For optimization the classifier models are trained for various hyper-parameter

combinations on a randomly selected subset that contains 90% of proteins from a train

set (a total of 7 due to cross-validation) and predictions are computed on the

corresponding validation set (randomly selected as 10% of train set). The hyper-

parameters that maximize the overall accuracy on validation set are chosen as the

optimum values. This procedure is repeated seven times for each iteration of the cross-

validation experiment.

3.8.1 Parameter Optimization for Support Vector Machines

For SVM, we optimized C and Gamma (γ). C is a cost function parameter that

controls the effect of each support vector. Selecting an appropriate value for C is

important for tolerating the error. When the value of C is low, the decision is gets

smoother and margin becomes larger. When the value of C is high, sensitivity at

learning phase increases because of the decrease in margin.

22

Gamma parameter determines the amount of spreading influence. The decision

boundary becomes closer to linear when the value of gamma parameter is small. When

gamma gets higher value, the decision boundary becomes non-linear.

For SVM optimization a grid of C and gamma values are considered. For each

parameter we selected the following values.

 C = ()

Gamma = ()

As a result, there are a total of 100 different combinations to consider. Once the

optimum combination is found for a given cross-validation iteration (one that has the

best accuracy on validation set) the model is trained on the full training set and

predictions are computed on the test set. This procedure is repeated for other iterations

of cross-validation experiment.

3.8.2 Parameter Optimization for Random Forest

The only parameter that is optimized for random forest is the number of trees

(also called number of iterations in WEKA). The following values are considered for

each fold of cross-validation.

Number of trees = (5 10 15 20 25 50 75 100 125 150 175 200 225 250 275 300

325 350 375 400 425 450 475 500).

3.8.3 Parameter Optimization for Deep Convolutional Neural Fields

The parameters that are optimized for deep CNF are the number of hidden

layers, the number of hidden units in each layer, the width of the two dimensional

kernel window applied at each hidden layer and the regularization coefficient. The

window size is specified by a variable called window string. For example, when

window string is 5, kernel window size will be 11 at each layer. The number of hidden

nodes and number of hidden layers are specified by a variable called node string. For

example if the node string is “50,50,50,50,50” the network contains five hidden layers

with 50 hidden nodes in each layer. In deep CNF -norm regularization is used. The

following values are considered in the parameter grid used for optimization

Number of Hidden Layers = (3, 4, 5)

Number of Hidden Units = (75, 100, 125)

Kernel Window Size= (3, 4, 5)

Regularization Coefficient = (10, 50, 100)

23

3.9 Ensemble Methods

 The basic idea behind ensemble methods is to combine the predictions of several

classifiers for the purpose of improving prediction accuracy and robustness of the

models. It is found that the performance of the final classifier can be improved by

forming a method whose output is computed by combining the outputs of individual

classifiers.

3.9.1 Model Averaging

Model averaging computes the weighted sum of prediction scores from multiple

methods to generate a consensus prediction. Combining classifiers by model averaging

generally achieves better results than any of the individual classifiers because of the

possibility of reducing variance. The procedure is formulated as

 |

∑ |

(3.9.1.1)

where is the input feature vector of an amino acid, is the output class label (which

can be H, E, or L representing helix, strand or loop, respectively), | is the

posteriori probability of class label given feature vector, n is the index of the model

used in the ensemble, | is the posteriori probability of class label given input

vector from the model, and is the number of models in the ensemble. The final

class prediction is obtained by selecting the secondary structure labels that maximize the

 | . In this thesis, model averaging is applied to combine predictions obtained by

SVM, deepCNF and random forest. The probability estimates are obtained for SVM

using the –b option in libSVM [66] and for random forest using the –distribution option

in WEKA [54]. Deep CNF automatically provides probability scores as the output [67].

The following combinations are considered in the ensemble

 SVM + random forest

 SVM + deep CNF

 deep CNF + random forest

 SVM + deep CNF + random forest

24

Chapter 4

4. Results

For SVM and random forest, our train and test datasets contain 49 features for

each amino acid after concatenating 20 PSSM features for PSI-BLAST, 20 PSSM

features for HHMAKE, 3 features for Distribution 1, 3 features for Distribution 2, 3

features for Distribution 3. When we repeat the concatenation for all amino acids within

the window of size 11 around the center amino acid, we obtain a total of 539 features. In

deepCNF we excluded Distributions 1 and 2 from the feature set and represented each

amino acid by 43 features because in our preliminary tests this combination gave

slightly better accuracy (result not shown). Due to applying a kernel window of size 11

in the temporal domain effectively deepCNF uses 11*43=473 features.

We train all models using the CB513 dataset and applied seven fold cross

validation to determine the model hyper-parameters for each training method. . We

divide our dataset into 7 equal size subsets for 7-fold cross validation. Each subset is

used as test to validate and other 6 subsets are used as training. 10% of train test splits

are taken as validation. These were randomly selected at the protein level. After

selecting all each fold as test set and evaluate the model, 7 accuracy rates are obtained.

Overall accuracy is calculated by taking average of 7 results obtained.

4.1 Optimization Results

The hyper-parameters of the models are optimized for each iteration of the seven

fold cross-validation experiment on CB513. The following sections summarize the

25

optimum parameters found and the accuracy on validation sets for the SVM, random

forest and deep CNF when models are trained using the optimums.

4.1.1 SVM Optimization

 Table 4.1.1.1 shows the optimum C and gamma parameters for the SVM as well as

the accuracy on validation sets. A separate optimum is found for each fold of the

cross-validation experiment on CB513. A tie occurred for the fourth fold.

Fold Number C parameter Gamma parameter

1 32 0.00195313 84.0

2 32 0.00195313 81.3

3 2 0.03125 84.3

4

32 0.00195313 83.7

8192 0.000122070 83.7

5 2 0.0078125 84.5

6 2 0.03125 82.7

7 2048 0.000122070 83.2

Overall Accuracy: 83.4

Table 4.1.1.1 Optimum C and gamma parameters and overall accuracy of SVM on validation sets

of CB513.

Table 4.1.1.2 shows the measures for the SVM on validation sets of

CB513. is the overall accuracy and are the recall values for secondary

structure classes. A separate SVM model is trained for each fold using the optimum C,

gamma combination. According to these results, prediction accuracy of helices and

loops are close to each other and higher than the accuracy of strands.

Fold Number

1 84.0 86.6 74.6 86.0

26

2 81.4 84.0 69.0 85.2

3 84.3 85.6 77.3 87.0

4

83.8 84.7 79.0 86.0

83.8 87.0 80.3 84.5

5 84.5 85.3 73.2 85.5

6 82.7 83.2 77.0 86.3

7 83.2 86.6 74.6 86.0

Overall

Accuracy:
83.4 85.2 75.7 85.8

Table 4.1.1.2 Recall values for each class type and overall accuracy of the SVM on validation sets of

CB513.

4.1.2 Random Forest Optimization

 Table 4.1.2.1 shows the optimum number of trees for random forest and the

 accuracy on validation sets. A separate optimum is found for each fold of the cross-

validation experiment on CB513.

Fold Number Number of trees

1 375 83.0

2 500 79.9

3 425 82.8

4 500 82.5

5 225 82.8

6 300 80.9

7 100 81.9

Overall Accuracy: 81.9

Table 4.1.2.1 Optimum number of trees and overall accuracy of random forest on validation sets of

CB513.

27

 Table 4.1.2.2 shows the measures for the random forest on

validation sets of CB513. is the overall accuracy and are the recall

values for secondary structure classes. A separate random forest model is trained for

each fold using the optimum number of trees.

Fold Number

1 83.0 84.5 70.8 87.2

2 79.9 82.1 65.7 85.0

3 82.8 83.1 73.4 88.0

4 82.5 82.6 75.1 86.7

5 82.8 85.0 75.8 84.4

6 80.9 81.7 69.4 86.2

7 81.9 82.7 74.3 85.4

Overall

Accuracy:
81.9 83.1 72.0 86.1

Table 4.1.2.2 Recall values for each class type and overall accuracy of random forest on validation

sets of CB513.

4.1.3 Deep CNF Optimization

 Two types of optimization experiments are performed. The first one fixes the

number of hidden layers and optimizes the remaining hyper-parameters. For this

approach the number of hidden layers is set to 3, 4 and 5 one at a time and for each of

these values the optimization experiment is repeated. The second approach optimizes

the number of hidden layers together with the other hyper-parameters.

4.1.3.1 Deep CNF Optimization for Three Hidden Layers

 Table 4.1.3.1.1 shows the optimum hyper-parameters for deep CNF with 3 hidden

layers and the accuracy on validation sets. A separate optimum is found for each fold

of the cross-validation experiment on CB513. The optimum regularization coefficient is

28

obtained as 50, the optimum number of hidden nodes is obtained as 100 and the

optimum kernel size is obtained as 3-4 in most of the cross-validation folds.

Number of Hidden

Layers

Fold

Number

Window

string
Node string

Reg.

Coefficient

3 1 3,3,3 100,100,100 50 90.5

3 2 3,3,3 100,100,100 10 88.8

3 3 3,3,3 125,125,125 50 92.0

3 4 4,4,4 100,100,100 50 88.9

3 5 4,4,4 125,125,125 50 89.7

3 6 4,4,4 100,100,100 50 91.3

3 7 4,4,4 100,100,100 100 89.6

Overall Accuracy: 90.1

Table 4.1.3.1.1 Optimum kernel width (window string), number of hidden nodes (node string),

regularization parameter and overall accuracy of deep CNF with three hidden layers on validation

sets of CB513.

 Table 4.1.3.1.2 shows the measures for the deep CNF with three

hidden layers on validation sets of CB513. Though the accuracy values are larger they

are obtained on validation sets as part of the optimization process and could be due to

overfitting. Therefore the performance evaluations should be based on predictions on

test data.

Number of Hidden

Layers

Fold

Number

3 1 90.5 92.2 89.4 89.7

3 2 88.8 91.8 85.8 88.2

3 3 92.0 95.2 91.2 89.6

3 4 89.0 91.8 87.3 88.0

3 5 89.7 91.1 87.0 89.9

3 6 91.2 93.7 88.5 90.1

29

3 7 89.6 90.3 83.3 90.1

Overall Accuracy: 90.1 92.3 87.5 89.3

Table 4.1.3.1.2 Recall values for each class type and overall accuracy of deep CNF with three

hidden layers on validation sets of CB513.

4.1.3.2 Deep CNF Optimization for Four Hidden Layers

 Table 4.1.3.2.1 shows the optimum hyper-parameters for deep CNF with four

hidden layers and the accuracy on validation sets. The optimum regularization

coefficient is obtained as 10 or 50, the optimum number of hidden nodes is obtained as

75, 100 or 125 and the optimum kernel size is obtained as 3 or 4.

Number of Hidden

Layers

Fold

Number

Window

string
Node string

Reg.

Coefficient

4 1 3,3,3,3 75,75,75,75 100 90.6

4 2 3,3,3,3 100,100,100,100 10 88.8

4 3 4,4,4,4 125,125,125,125 50 91.9

4 4 3,3,3,3 125,125,125,125 50 88.9

4 5 3,3,3,3 75,75,75,75 10 89.8

4 6 3,3,3,3 125,125,125,125 50 91.3

4 7 3,3,3,3 75,75,75,75 50 89.6

Overall Accuracy: 90.2

Table 4.1.3.2.1 Optimum kernel width (window string), number of hidden nodes (node string),

regularization parameter and overall accuracy of deep CNF with four hidden layers on validation

sets of CB513.

 Table 4.1.3.2.2 shows the measures for the deep CNF with four

hidden layers on validation sets of CB513. Similar accuracy values are obtained as in

the model with three hidden layers.

Number of Hidden

Layers

Fold

Number

4 1 90.4 92.4 88.5 89.5

30

4 2 88.5 90.9 85.2 88.8

4 3 91.8 94.7 91.2 89.6

4 4 89.0 92.2 87.6 87.8

4 5 89.6 90.6 87.9 89.6

4 6 91.4 93.8 89.5 90.4

4 7 89.4 89.6 83.8 91.8

Overall Accuracy: 90.0 91.9 87.7 89.6

Table 4.1.3.2.2 Recall values for each class type and overall accuracy of deep CNF with four hidden

layers on validation sets of CB513.

4.1.3.3 Deep CNF Model with 5-Hidden Layers

 Table 4.1.3.3.1 shows the optimum hyper-parameters for deep CNF with five

hidden layers and the accuracy on validation sets. The optimum regularization

coefficient is obtained as 50, the optimum number of hidden nodes is obtained as 75 or

125 and the optimum kernel size is obtained as 3 or 4.

Number of

hidden layers

Fold

Number

Window

string
Node string

Reg.

Coefficient

5 1 3,3,3,3,3 125,125,125,125,125 50 90.7

5 2 4,4,4,4,4 125,125,125,125,125 50 88.7

5 3 4,4,4,4,4 75,75,75,75,75 50 91.8

5 4 4,4,4,4,4 125,125,125,125,125 50 89.1

5 5 3,3,3,3,3 125,125,125,125,125 50 89.8

5 6 3,3,3,3,3 75,75,75,75,75 50 91.4

5 7 3,3,3,3,3 125,125,125,125,125

50

89.5

100

Overall Accuracy: 90.1

31

Table 4.1.3.3.1 Optimum kernel width (window string), number of hidden nodes (node string),

regularization parameter and overall accuracy of deep CNF with five hidden layers on validation

sets of CB513.

Table 4.1.3.3.2 shows the measures for the deep CNF with five

hidden layers on validation sets of CB513. Similar accuracy values are obtained as in

the model with three and four hidden layers.

Number of Hidden

Layers

Fold

Number

5 1 90.4 92.2 89.4 89.0

5 2 88.6 91.1 86.1 88.3

5 3 91.6 94.8 91.7 89.0

5 4 88.8 90.8 86.5 88.9

5 5 89.6 91.5 89.0 88.4

5 6 91.1 94.0 89.5 89.5

5 7
89.4

90.2 85.2 90.9

90.4

Overall Accuracy: 90.0 91.9 87.7 89.6

Table 4.1.3.3.2 Recall values for each class type and overall accuracy of deep CNF with five hidden

layers on validation sets of CB513.

4.1.3.4 Deep CNF Optimization for all Hyper-parameters

 In this part, the number of hidden layers is also optimized together with the number

of hidden nodes, kernel width, and regularization coefficient. Table 4.1.3.4.1 shows the

optimum hyper-parameters for deep CNF and the accuracy values on validation sets.

The optimum regularization coefficient is obtained as 10 or 50, the optimum number of

hidden nodes is obtained as 75, 100 or 125 and the optimum kernel size is obtained as 3

or 4.

Fold

Number

Number of

hidden layers
Window string Node string

Reg.

Coefficient

1 5 3,3,3,3,3 125,125,125,125,125 50 90.7

32

2

4 3,3,3,3 100,100,100,100 10 88.8

3 3,3,3 100,100,100 10 88.8

3 3 3,3,3 125,125,125 50 92.0

4 5 4,4,4,4,4 125,125,125,125,125 50 89.0

5 5 3,3,3,3,3 125,125,125,125,125 50 89.8

6 5 3,3,3,3,3 75,75,75,75,75 50 91.4

7 3 4,4,4 100,100,100 100 89.6

Overall Accuracy: 90.2

Table 4.1.3.4.1 Optimum kernel width (window string), number of hidden layers, number of hidden

nodes (node string), regularization parameter and overall accuracy of deep CNF with optimum

number of hidden layers combination on validation sets of CB513.

Fold Number
Number of hidden

layers

1 5 90.7 90.2 89.4 89.0

2

4 88.8 91.0 85.0 88.8

3 88.8 91.8 85.0 88.0

3 3 92.0 95.0 91.2 89.0

4 5 89.0 90.0 86.5 89.0

5 5 89.8 91.5 89.0 88.4

6 5 91.4 94.0 89.5 89.5

7 3 89.6 90.3 83.3 91.2

Overall Accuracy: 90.2 91.8 87.7 89.3

Table 4.1.3.4.2 Recall values for each class type and overall accuracy of deep CNF with optimum

number of hidden layers on validation sets of CB513.

Table 4.1.3.4.2 shows the measures for the deep CNF with hidden

layers combination on validation sets of CB513. Similar accuracy values are obtained as

in the model with three four and five hidden layers. This demonstrates that it is

33

sufficient to have three to five hidden layers for secondary structure prediction and the

validation accuracies of the models for each hidden layer configuration are comparable

to each other. Therefore there is not much gain when the number of hidden layers is

greater than three.

4.2 Train-Test Results

Once the optimum hyper-parameters are found for each cross-validation

iteration, models are trained on the full train sets and predictions are computed on test

sets. Table 4.2.1 shows the recall and precision measures for each class type and the

overall accuracy of the SVM on test sets of CB513. As shown in the table, accuracies

are approximately between 82% and 83% on test data, except for the seventh fold,

which has 85% accuracy. is the recall measure for strands secondary and is the lower

than the accuracy of other class types.

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 82.1 85.3 72.0 85.7 89.6 84.7 75.6

2 82.2 85.0 76.5 83.4 86.0 84.2 78.6

3 82.9 84.6 75.8 85.5 88.7 84.9 77.9

4 82.7 84.1 75.7 85.0 88.3 82.5 78.7

5 82.2 84.1 78.1 82.7 88.7 78.3 79.3

6 82.5 84.9 76.7 83.5 88.5 79.5 79.7

7 85.0 87.3 78.2 85.8 91.4 84.2 79.5

Overall

Accuracy:
82.8 85.1 76.1 84.5 88.9 82.6 78.5

Table 4.2.1 Recall and precision measures for each class type and overall accuracy of SVM on test

sets of 7-fold cross-validation on CB513.

Table 4.2.2 shows the recall and precision measures for each class type and the

overall accuracy of the random forest on test sets of CB513. As shown in this table,

34

generally, accuracies obtained for each fold have close rates. Overall accuracy is 81.8%,

which is 1% lower than the accuracy of SVM.

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 81.1 83.2 70.5 86.0 89.8 84.2 73.9

2 81.4 82.4 75.2 84.3 87.4 82.6 77.3

3 81.8 82.2 72.7 86.4 89.9 83.9 75.5

4 81.5 82.8 73.3 84.8 87.6 81.8 77.3

5 81.2 81.9 76.1 83.2 88.7 78.5 77.3

6 82.0 82.8 74.5 85.1 89.8 79.2 78.2

7 83.4 86.0 73.7 85.4 90.5 83.6 77.2

Overall

Accuracy:
81.8 83.2 73.7 85.0 89.2 81.9 76.7

Table 4.2.2 Recall and precision measures for each class type and overall accuracy of random forest

on test sets of 7-fold cross-validation on CB513.

Table 4.2.3 shows the recall and precision measures for each class type and the

overall accuracy of the deep CNF with three hidden layers on test sets of CB513. The

overall accuracy is obtained as 82.6%, which is comparable to the accuracy of the SVM.

Fold

Number

Hidden

Layer

Number

 PrecisionH PrecisionE PrecisionL

1 3 81.9 86.7 73.5 83.1 88.6 82.5 76.6

2 3 81.6 86.0 76.5 81.4 84.4 83.2 78.8

3 3 82.8 84.7 75.4 85.4 88.5 84.6 78.0

4 3 82.4 86.1 76.6 82.6 86.6 80.8 80.0

5 3 82.0 85.4 78.3 81.2 87.7 77.5 80.0

6 3 82.5 85.3 78.3 82.5 88.4 78.1 80.4

7 3 84.5 87.7 77.1 84.9 90.6 83.6 79.4

Overall Accuracy: 82.6 86.0 76.5 83.0 88.0 81.4 79.1

35

Table 4.2.3 Recall and precision measures for each class type and overall accuracy of deep CNF

with three hidden layers on test sets of 7-fold cross-validation on CB513.

Table 4.2.4 shows the recall and precision measures for each class type and the

overall accuracy of the deep CNF with four hidden layers on test sets of CB513. The

overall accuracy is obtained as 82.6%, which is comparable to the accuracy of the SVM

and the deep CNF with three hidden layers.

Fold

Number

Hidden

Layer

Number

 PrecisionH PrecisionE PrecisionL

1 4 82.1 85.2 73.5 84.9 90.3 83.0 75.9

2 4 82.0 85.5 76.5 82.8 85.3 84.1 78.8

3 4 82.7 85.4 76.0 84.1 87.2 84.8 78.3

4 4 82.4 85.9 76.5 82.8 86.5 81.3 79.9

5 4 81.8 84.8 77.7 81.6 87.3 78.8 79.3

6 4 82.4 84.6 77.1 83.4 88.5 79.1 79.8

7 4 84.6 88.2 78.2 84.1 90.3 83.1 79.9

Overall Accuracy: 82.6 85.8 76.5 83.3 88.0 82.0 78.9

Table 4.2.4 Recall and precision measures for each class type and overall accuracy of deep CNF

with four hidden layers on test sets of 7-fold cross-validation on CB513.

Table 4.2.5 shows the recall and precision measures for each class type and the

overall accuracy of the deep CNF with five hidden layers on test sets of CB513. The

overall accuracy is obtained as 82.6%, which is comparable to the accuracy of the SVM

and the deep CNFs with three and four hidden layers.

Fold

Number

Hidden

Layer

Numbers

 PrecisionH PrecisionE PrecisionL

1 5 82.1 86.2 73.1 84.4 89.6 83.5 76.1

2 5 81.9 86.6 77.0 81.4 84.4 83.0 79.6

36

3 5 82.9 85.7 75.6 84.5 87.7 84.8 78.3

4 5 82.0 86.8 76.3 81.3 85.3 80.3 80.3

5 5 81.9 85.5 77.7 81.3 87.3 77.9 79.9

6 5 82.7 85.6 77.0 83.2 88.1 79.2 80.4

7 5 84.6 88.3 77.4 84.3 90.2 83.6 79.8

Overall Accuracy: 82.6 86.5 76.3 82.9 87.6 81.7 79.2

Table 4.2.5 Recall and precision measures for each class type and overall accuracy of deep CNF

with five hidden layers on test sets of 7-fold cross-validation on CB513.

Table 4.2.6 shows the recall and precision measures for each class type and the

overall accuracy of the deep CNF with optimum number of hidden layers on test sets of

CB513. The optimum values are also used for the other hyper-parameters. The overall

accuracy is obtained as 82.6%, which is comparable to the accuracy of the SVM and the

deep CNFs with three four and five hidden layers.

Fold

Number

Number

of hidden

layer

 PrecisionH PrecisionE PrecisionL

1 5 82.1 86.2 73.1 84.4 89.6 83.5 76.1

2

4 82.0 85.5 76.5 82.8 85.3 84.1 78.8

3 81.6 86.0 76.5 81.4 84.4 83.2 78.8

3 3 82.8 84.7 75.4 85.4 88.5 84.6 78.0

4 5 82.0 86.8 76.3 81.3 85.3 80.3 80.3

5 5 81.9 85.5 77.7 81.3 87.3 77.9 79.9

6 5 82.7 85.7 77.0 83.2 88.1 79.2 80.4

7 3 84.5 87.7 77.2 85.0 90.6 83.6 79.4

37

Overall Accuracy: 82.6 86.1 76.2 83.3 87.9 81.8 79.0

Table 4.2.6 Recall and precision measures for each class type and overall accuracy of deep CNF

with optimum number of hidden layers on test sets of 7-fold cross-validation on CB513.

4.3 Ensemble Method Results

4.3.1 Model Averaging Results on Validation and Test Sets

4.3.1.1 Support Vector Machines and Random Forest

 In the first ensemble, we applied model averaging to combine the outputs of

support vector machine and random forest. For this purpose, predicted probability

scores are obtained for the three classes and for each amino acid. Then, the average of

these scores are computed and the class label with the maximum score is selected as the

prediction. Tables 4.3.1.1.1 and 4.3.1.1.2 show the results of combining support vector

machine and random forest on validation and test sets of seven fold cross-validation

experiment on CB513, respectively. The overall accuracy is obtained as 83.2% on

validation sets and 82.8% on test sets.

Fold Number

1 84.0 85.8 73.8 87.5

2 83.0 83.8 67.8 85.6

3 83.0 85.0 76.0 87.8

4 83.0 83.7 77.5 86.7

5 83.0 86.2 78.4 85.0

6 83.0 84.2 71.4 86.0

7 83.0 83.4 76.9 86.7

Overall Accuracy: 83.2 84.6 74.5 86.5

Table 4.3.1.1.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines SVM and random forest on validation sets of CB513.

38

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 81.9 84.4 71.3 86.4 90.1 85.0 74.9

2 82.5 84.5 76.5 84.5 87.2 84.3 78.6

3 82.8 83.9 74.9 86.3 89.3 85.2 77.3

4 82.5 83.7 75.2 85.4 88.4 82.8 78.5

5 82.0 83.2 77.6 83.2 88.9 78.9 78.7

6 82.7 84.3 76.0 84.8 89.4 80.2 79.3

7 84.7 86.9 76.6 86.3 91.2 85.0 78.8

Overall

Accuracy:
82.8 84.5 75.4 85.2 89.3 83.0 78.1

Table 4.3.1.1.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and random forest on test sets of 7-fold cross-validation on

CB513.

4.3.1.2 Support Vector Machines and Deep CNF

 As a second ensemble, model averaging is applied to support vector machines and

deep convolutional neural field method. Here, we used the deep CNF that has the

optimum number of hidden layers. Tables 4.3.1.2.1 and 4.3.1.2.2 show the results of

combining support vector machine and deep CNF on validation and test sets of seven

fold cross-validation experiment on CB513, respectively. The overall accuracy is

obtained as 83.5% on validation sets and 83.0% on test sets.

Fold Number

1 84.0 87.0 75.2 86.6

2 83.0 85.3 70.8 84.3

3 83.0 85.3 77.6 87.0

4 84.0 85.5 79.8 85.5

5 84.0 87.5 80.3 84.0

6 83.0 85.4 73.2 85.0

39

7 83.0 83.8 77.5 85.6

Overall Accuracy: 83.5 85.7 76.3 85.4

Table 4.3.1.2.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines SVM and deep CNF with optimum number of hidden layers on validation

sets of CB513.

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 82.5 86.0 73.2 85.5 90.0 84.5 76.1

2 82.4 85.4 76.8 83.5 86.0 84.4 79.0

3 83.3 85.0 76.0 86.0 88.9 85.5 78.2

4 82.6 85.7 76.5 83.3 86.8 81.8 79.8

5 82.2 84.6 78.0 82.4 88.4 78.4 79.6

6 82.9 85.4 77.2 83.9 88.7 79.8 80.3

7 84.9 87.5 77.8 85.6 91.1 84.1 79.6

Overall

Accuracy:
83.0 85.7 76.5 84.3 88.7 82.6 79.0

Table 4.3.1.2.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and deep CNF with optimum number of hidden layers on

test sets of 7-fold cross-validation on CB513.

4.3.1.3 Support Vector Machines and Deep CNF with Three Hidden Layers

 The third ensemble combines support vector machine and deep convolutional

neural field with three hidden layers. Tables 4.3.1.3.1 and 4.3.1.3.2 show the results of

combining support vector machine and deep CNF on validation and test sets of seven

fold cross-validation experiment on CB513, respectively. The overall accuracy is

obtained as 83.4% on validation sets and 83.0% on test sets. These are similar to the

results obtained when the deep CNF with optimum number of hidden layers is used.

Fold Number

1 84.0 87.0 75.7 86.0

40

2 83.0 85.0 70.8 84.3

3 83.0 85.7 77.0 86.8

4 83.0 84.6 79.8 85.5

5 84.0 87.5 80.3 84.0

6 83.0 85.3 71.7 85.6

7 83.0 84.0 77.5 85.7

Overall Accuracy: 83.4 85.6 76.0 85.4

Table 4.3.1.3.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines SVM and deep CNF with three hidden layers on validation sets of CB513.

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 82.3 86.1 73.3 84.8 89.5 84.0 76.3

2 82.3 85.6 77.0 83.2 85.7 84.4 79.0

3 83.3 85.0 76.0 86.0 88.9 85.5 78.2

4 82.9 85.6 76.5 84.2 87.9 81.9 79.8

5 82.3 84.9 78.3 82.3 88.7 78.2 79.6

6 82.9 85.3 77.8 83.5 88.8 79.1 80.4

7 84.9 87.6 77.8 85.6 91.1 84.1 79.6

Overall

Accuracy:
83.0 85.8 76.6 84.2 88.8 82.4 79.1

Table 4.3.1.3.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and deep CNF with three hidden layers on test sets of 7-

fold cross-validation on CB513.

4.3.1.4 Support Vector Machines and Deep CNF with Four Hidden Layers

 The fourth ensemble combines support vector machine and deep convolutional

neural fields with four hidden layers. Tables 4.3.1.4.1 and 4.3.1.4.2 show the results of

combining support vector machine and deep CNF on validation and test sets of seven

fold cross-validation experiment on CB513, respectively. The overall accuracy is

obtained as 83.3% on validation sets and 83.0% on test sets. These are similar to the

41

results obtained when the deep CNF with three or optimum number of hidden layers is

used.

Fold Number

1 84.0 87.0 75.2 86.6

2 83.0 84.5 69.4 85.3

3 83.0 85.3 77.6 87.0

4 83.0 85.5 79.8 85.5

5 84.0 87.0 80.7 84.0

6 83.0 85.0 73.0 85.0

7 83.0 83.7 77.7 85.7

Overall Accuracy: 83.3 85.4 76.2 85.6

Table 4.3.1.4.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines SVM and deep CNF with four hidden layers on validation sets of CB513.

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 82.3 85.4 73.0 85.5 89.8 84.5 75.9

2 82.4 85.4 76.8 83.5 86.0 84.4 79.0

3 83.2 85.1 76.2 85.4 88.5 85.4 78.3

4 82.9 85.3 76.2 84.4 87.7 82.4 79.6

5 82.2 84.5 77.8 82.7 88.4 78.9 79.3

6 82.9 85.0 77.4 84.0 89.0 79.8 80.0

7 85.1 88.0 78.4 85.4 91.1 84.4 79.9

Overall

Accuracy:
83.0 85.6 76.5 84.4 88.8 82.8 78.9

Table 4.3.1.4.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and deep CNF with four hidden layers on test sets of 7-fold

cross-validation on CB513.

42

4.3.1.5 Support Vector Machines and Deep CNF with 5 Hidden Layer

 The fifth ensemble combines support vector machine and deep convolutional

neural field with five hidden layers. Tables 4.3.1.5.1 and 4.3.1.5.2 show the results of

combining support vector machine and deep CNF on validation and test sets of seven

fold cross-validation experiment on CB513, respectively. The overall accuracy is

obtained as 83.3% on validation sets and 83.0% on test sets. These are similar to the

results obtained when the deep CNF with three, four or optimum number of hidden

layers is used.

Fold Number

1 84.0 87.0 75.3 85.8

2 83.0 84.5 69.8 85.3

3 83.0 85.4 78.0 87.0

4 83.0 85.2 79.8 85.0

5 84.0 88.0 80.3 83.5

6 83.0 85.5 73.2 85.0

7 83.0 83.8 77.5 85.6

Overall Accuracy: 83.3 85.6 76.3 85.3

Table 4.3.1.5.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines SVM and deep CNF with five hidden layers on validation sets of CB513.

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 82.5 85.9 73.2 85.5 90.0 84.5 76.1

2 82.4 85.8 77.2 83.0 85.7 84.0 79.4

3 83.4 85.3 76.3 85.7 88.7 85.6 78.5

4 82.6 85.7 76.5 83.3 86.8 81.8 79.8

5 82.2 84.7 78.0 82.4 88.4 78.4 79.6

43

6 83.0 85.4 77.2 83.9 88.7 79.8 80.3

7 84.8 87.8 78.1 85.0 90.7 84.4 79.6

Overall

Accuracy:
83.0 85.9 76.6 84.1 88.5 82.6 79.1

Table 4.3.1.5.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines SVM and deep CNF with five hidden layers on test sets of 7-fold

cross-validation on CB513.

4.3.1.6 Random Forest and Deep Convolutional Neural Field

 The sixth ensemble combines random forest and deep convolutional neural field

with optimum number of hidden layers. Tables 4.3.1.6.1 and 4.3.1.6.2 show the results

of combining random forest and deep CNF on validation and test sets of seven fold

cross-validation experiment on CB513, respectively. The overall accuracy is

obtained as 83.1% on validation sets and 82.8% on test sets. These are close to the

results obtained for the other ensembles.

Fold Number

1 84.0 86.0 73.0 87.0

2 83.0 85.7 69.5 84.4

3 83.0 84.7 75.6 87.8

4 83.0 84.7 78.2 86.0

5 83.0 86.5 78.8 84.4

6 83.0 84.0 71.5 85.3

7 83.0 83.7 76.0 83.0

Overall Accuracy: 83.1 85.0 74.6 85.8

Table 4.3.1.6.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines random forest and deep CNF with optimum number of hidden layers on

validation sets of CB513.

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 82.2 85.3 72.5 85.6 90.2 84.4 75.6

44

2 82.2 84.4 76.3 84.0 86.8 83.7 78.4

3 83.0 84.5 75.1 86.1 89.2 84.9 77.7

4 82.4 85.5 75.4 83.6 87.0 81.6 79.4

5 81.9 84.1 77.4 82.6 88.1 78.7 79.1

6 82.8 84.9 75.8 84.6 89.4 79.6 79.7

7 84.5 87.4 75.8 85.8 91.1 84.2 78.9

Overall

Accuracy:
82.8 85.2 75.5 84.6 88.9 82.4 78.5

Table 4.3.1.6.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines random forest and deep CNF with optimum number of hidden

layers on test sets of 7-fold cross-validation on CB513.

4.3.1.7 Random Forest and Deep CNF with Three Hidden Layers

 The seventh ensemble combines random forest and deep convolutional neural field

with three hidden layers. Tables 4.3.1.7.1 and 4.3.1.7.2 show the results of combining

random forest and deep CNF on validation and test sets of seven fold cross-validation

experiment on CB513, respectively. The overall accuracy is obtained as 82.1% on

validation sets and 82.7% on test sets.

Fold Number

1 82.0 86.3 73.0 86.0

2 82.0 85.7 69.5 84.0

3 82.0 85.0 75.5 87.6

4 82.0 84.0 78.2 86.0

5 82.0 86.5 78.8 84.4

6 82.0 83.6 70.0 85.7

7 83.0 84.0 76.0 85.4

Overall Accuracy: 82.1 85.0 74.4 85.6

45

Table 4.3.1.7.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines random forest and deep CNF with three hidden layers on validation sets of

CB513.

Fold Number PrecisionH PrecisionE PrecisionL

1 82.0 85.5 72.8 84.7 89.6 83.3 75.8

2 82.2 84.8 76.3 83.6 86.4 83.7 78.6

3 83.0 84.5 75.1 86.1 89.2 84.9 77.7

4 82.6 85.0 75.8 84.2 87.7 81.5 79.4

5 82.0 84.1 77.6 82.7 88.8 78.4 79.0

6 82.7 84.5 76.9 84.1 89.2 79.2 79.8

7 84.5 87.4 75.8 85.8 91.1 84.2 78.9

Overall

Accuracy:
82.7 85.2 75.8 84.4 89.0 82.1 78.5

Table 4.3.1.7.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines random forest and deep CNF with three hidden layers on test

sets of 7-fold cross-validation on CB513.

4.3.1.8 Random Forest and Deep CNF with Four Hidden Layers

 The eighth ensemble combines random forest and deep convolutional neural field

with four hidden layers. Tables 4.3.1.8.1 and 4.3.1.8.2 show the results of combining

random forest and deep CNF on validation and test sets of seven fold cross-validation

experiment on CB513, respectively. The overall accuracy is obtained as 82.1% on

validation sets and 82.8% on test sets.

Fold Number

1 82.0 86.0 73.0 87.0

2 82.0 84.4 67.7 85.2

3 82.0 84.7 75.6 87.8

4 82.0 84.7 78.2 86.0

5 82.0 86.2 79.3 84.4

46

6 82.0 83.8 72.0 85.2

7 83.0 83.7 76.0 85.8

Overall Accuracy: 82.1 84.8 74.5 86.0

Table 4.3.1.8.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines random forest and deep CNF with four hidden layers on validation sets of

CB513.

Fold Number PrecisionH PrecisionE PrecisionL

1 82.1 84.8 72.4 86.0 90.6 84.2 75.4

2 82.2 84.4 76.3 84.0 86.8 83.7 78.4

3 82.9 84.5 75.3 85.7 88.5 85.4 77.8

4 82.6 85.1 75.4 84.3 87.9 81.7 79.2

5 81.9 83.8 77.3 82.7 88.2 79.2 78.7

6 82.8 84.3 76.5 84.8 89.4 80.1 79.6

7 84.6 87.8 76.4 85.4 90.9 84.4 79.1

Overall

Accuracy:
82.8 85.1 75.7 84.7 89.0 82.6 78.4

Table 4.3.1.8.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines random forest and deep CNF with four hidden layers on test sets

of 7-fold cross-validation on CB513.

4.3.1.9 Random Forest and Deep CNF with 5 Hidden Layers

 The ninth ensemble method combines random forest and deep convolutional neural

field with five hidden layers classifiers. Tables 4.3.1.9.1 and 4.3.1.9.2 show the results

of combining random forest and deep CNF on validation and test sets of seven fold

cross-validation experiment on CB513, respectively. The overall accuracy is

obtained as 82.5% on validation sets and 82.7% on test sets.

Fold Number

47

1 82.2 86.0 74.0 86.3

2 82.3 84.2 68.0 85.3

3 82.2 84.8 76.2 87.7

4 82.2 84.8 77.5 85.0

5 82.3 87.0 79.2 84.2

6 82.3 84.0 71.5 85.3

7 83.3 83.7 760 85.8

Overall Accuracy: 82.5 85.0 74.6 85.6

Table 4.3.1.9.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines random forest and deep CNF with five hidden layers on validation sets of

CB513.

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 82.2 85.3 72.5 85.6 90.2 84.4 75.6

2 82.1 85.3 76.2 83.2 86.0 83.4 78.8

3 83.0 84.7 75.1 86.0 89.0 85.2 77.8

4 82.4 85.5 75.4 83.6 87.0 81.6 79.4

5 81.9 84.1 77.4 82.5 88.1 78.7 79.1

6 82.8 84.9 75.8 84.6 89.4 79.6 79.7

7 84.3 87.5 76.1 85.1 90.6 83.9 78.8

Overall

Accuracy:
82.7 85.4 75.5 84.3 88.7 82.4 78.5

Table 4.3.1.9.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines random forest and deep CNF with five hidden layers on test sets

of 7-fold cross-validation on CB513.

4.3.1.10 Support Vector Machines, Random Forest and Deep CNF

 The tenth ensemble combines support vector machines, random forest and deep

CNF with optimum number of hidden layers. Tables 4.3.1.10.1 and 4.3.1.10.2 show the

results of combining SVM, random forest and deep CNF on validation and test sets of

48

seven fold cross-validation experiment on CB513, respectively. The overall accuracy

is obtained as 82.6% on validation sets and 83.0% on test sets.

Fold Number

1 82.0 86.3 74.2 87.0

2 82.0 85.0 69.7 85.4

3 83.0 85.2 76.6 87.7

4 83.0 84.6 78.2 86.0

5 82.0 86.8 79.3 84.6

6 83.0 84.2 72.2 85.5

7 83.0 83.7 77.0 86.2

Overall Accuracy: 82.6 85.1 75.3 86.0

Table 4.3.1.10.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines SVM, random forest and deep CNF with optimum number of hidden

layers on validation sets of CB513.

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 82.4 85.5 72.5 86.1 90.4 84.8 75.8

2 82.5 85.0 76.6 84.1 86.8 84.4 78.8

3 83.1 84.5 75.1 86.4 89.3 85.4 77.8

4 82.7 85.1 76.0 84.4 87.5 82.3 79.5

5 82.0 84.0 77.7 82.5 88.6 78.2 79.0

6 83.0 85.0 76.7 84.5 89.3 79.9 79.9

7 84.8 87.4 77.0 86.1 91.3 84.8 79.2

Overall

Accuracy:
83.0 85.3 76.0 84.8 89.1 82.7 78.6

49

Table 4.3.1.10.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines SVM, random forest and deep CNF with optimum number of

hidden layers on test sets of 7-fold cross-validation on CB513.

4.3.1.11 Support Vector Machines, Random Forest and Deep CNF with Three

Hidden Layers

 The eleventh ensemble combines support vector machine, random forest and deep

convolutional neural field with three hidden layers. Tables 4.3.1.11.1 and 4.3.1.11.2

show the results of combining SVM, random forest and deep CNF on validation and test

sets of seven fold cross-validation experiment on CB513, respectively. The overall

accuracy is obtained as 82.4% on validation sets and 83.0% on test sets.

Fold Number

1 82.0 86.3 74.0 86.6

2 82.0 85.0 69.7 85.4

3 83.0 85.2 76.4 87.4

4 83.0 84.3 78.3 86.0

5 82.0 86.8 79.3 84.6

6 82.0 84.6 71.2 86.2

7 83.0 84.0 77.0 86.2

Overall Accuracy: 82.4 85.2 75.1 86.0

Table 4.3.1.11.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines SVM, random forest and deep CNF with three hidden layers on validation

sets of CB513.

Fold Number PrecisionH PrecisionE PrecisionL

1 82.2 85.5 72.7 85.6 90.1 84.3 75.7

2 82.4 85.1 76.5 84.0 86.6 84.2 78.8

3 83.1 84.5 75.1 86.4 89.3 85.4 77.8

50

4 82.8 85.0 75.6 84.8 88.1 82.4 79.2

5 82.1 84.0 77.8 83.0 89.0 78.4 79.1

6 82.9 85.0 77.1 84.3 89.2 79.6 80.1

7 84.8 87.4 77.0 86.1 91.3 84.8 79.2

Overall

Accuracy:
83.0 85.3 76.0 84.8 89.2 82.7 78.6

Table 4.3.1.11.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines SVM, random forest and deep CNF with three hidden layers on

test sets of 7-fold cross-validation on CB513.

4.3.1.12 Support Vector Machines, Random Forest and Deep CNF with Four

Hidden Layers

 The twelfth ensemble combines support vector machine, random forest and deep

convolutional neural field with four hidden layers. Tables 4.3.1.12.1 and 4.3.1.12.2

show the results of combining SVM, random forest and deep CNF on validation and test

sets of seven fold cross-validation experiment on CB513, respectively. The overall

accuracy is obtained as 82.6% on validation sets and 83.0% on test sets.

Fold Number

1 82.0 86.3 74.2 87.0

2 82.0 84.4 68.7 85.7

3 83.0 85.2 76.6 87.7

4 83.0 84.6 78.2 86.0

5 82.0 86.7 79.7 84.6

6 83.0 84.5 72.4 85.6

7 83.0 83.7 77.3 86.0

Overall

Accuracy:
82.6 85.0 75.3 86.0

Table 4.3.1.12.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines SVM, random forest and deep CNF with four hidden layers on validation

sets of CB513.

51

Fold

Number
 PrecisionH PrecisionE PrecisionL

1 82.3 85.0 72.6 86.2 90.5 84.7 75.7

2 82.5 85.0 76.6 84.1 86.8 84.4 78.8

3 83.1 84.5 75.7 86.0 88.9 85.5 77.9

4 82.8 85.0 75.5 85.0 88.0 82.6 79.2

5 82.1 83.7 78.0 83.0 88.6 79.0 79.1

6 83.0 84.6 76.7 84.8 89.5 80.4 79.7

7 84.8 87.7 77.4 85.6 91.1 84.5 79.4

Overall

Accuracy:
83.0 85.2 76.0 85.0 89.2 82.9 78.6

Table 4.3.1.12.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines SVM, random forest and deep CNF with four hidden layers on

test sets of 7-fold cross-validation on CB513.

4.3.1.13 Support Vector Machines, Random Forest and Deep CNF with Five

Hidden Layers

 The thirteenth ensemble combines support vector machine, random forest and deep

convolutional neural field with five hidden layers classifiers. Tables 4.3.1.13.1 and

4.3.1.13.2 show the results of combining SVM, random forest and deep CNF on

validation and test sets of seven fold cross-validation experiment on CB513,

respectively. The overall accuracy is obtained as 82.6% on validation sets and 83.0%

on test sets.

Fold Number

1 82.0 86.4 74.0 86.8

2 82.0 84.2 69.0 85.6

3 83.0 85.0 76.8 87.7

4 83.0 84.7 78.2 86.0

5 82.0 87.1 79.8 84.6

52

6 83.0 84.2 72.1 85.5

7 83.0 83.7 76.9 86.2

Overall

Accuracy:
82.6 85.0 75.3 86.0

Table 4.3.1.13.1 Recall measures for each class type and overall accuracy of model averaging

ensemble that combines SVM, random forest and deep CNF with five hidden layers on validation

sets of CB513.

Fold Number PrecisionH PrecisionE PrecisionL

1 82.4 85.5 72.5 86.1 90.4 84.8 75.8

2 82.5 85.5 76.8 83.8 86.5 84.3 79.1

3 83.3 84.8 75.6 86.3 89.3 85.6 78.1

4 82.7 85.1 76.0 84.4 87.5 82.3 79.5

5 81.9 84.0 77.7 82.5 88.6 78.2 79.0

6 83.0 85.0 76.7 84.5 89.3 79.9 79.9

7 84.7 87.6 77.2 85.6 90.9 84.7 79.2

Overall

Accuracy:
83.0 85.4 76.0 84.7 89.0 82.7 78.7

Table 4.3.1.13.2 Recall and precision measures for each class type and overall accuracy of model

averaging ensemble that combines SVM, random forest and deep CNF with five hidden layers on

test sets of 7-fold cross-validation on CB513.

4.4 Comparison of Results

Tables 4.4.1 and 4.4.2 show the recall measures for all methods implemented in

this thesis on validation and test sets of CB513, respectively. Based on these results the

best accuracy is obtained when the SVM and deep CNF methods are combined. The

accuracy of the ensemble that combines SVM, deep CNF and random forest is also

comparable.

53

Method

SVM 83.4 85.2 75.7 85.8

RF 82.0 83.0 72.0 86.0

89.8 92.3 87.5 89.3

90.0 91.9 87.7 89.6

90.1 92.1 88.2 89.1

90.2 91.8 87.7 89.3

SVM+RF 83.2 84.6 74.5 86.5

SVM+

83.5 85.7 76.3 85.4

SVM+

82.9 85.0 74.4 85.6

SVM+

83.5 85.4 76.2 85.6

SVM+

83.4 85.6 76.3 85.3

RF+

83.0 85.0 74.6 85.8

RF+

82.9 85.0 74.4 85.6

RF+

83.0 84.8 74.5 86.0

RF+

82.9 85.0 74.6 85.6

SVM+RF+

83.4 85.0 75.3 86.0

SVM+RF+

83.3 85.2 75.0 86.0

SVM+RF+

83.3 85.0 75.3 86.0

SVM+RF+

83.3 85.0 75.3 86.0

Table 4.4.1 Recall measures for each class type and overall accuracy of all models on validation sets

of CB513.

Method PrecisionH PrecisionE PrecisionL

SVM 82.8 85.1 76.1 84.5 88.9 82.6 78.5

RF 81.8 83.2 73.7 85.0 89.2 81.9 76.7

82.6 86.0 76.5 83.0 88.0 81.4 79.1

54

82.6 85.8 76.5 83.3 88.0 82.0 78.9

82.6 86.5 76.3 82.9 87.6 81.7 79.2

82.6 86.1 76.2 83.3 87.9 81.8 79.0

SVM+RF 82.8 84.5 75.4 85.2 89.3 83.0 78.1

SVM+

83.0 85.7 76.5 84.3 88.7 82.6 79.0

SVM+

83.0 85.8 76.6 84.2 88.8 82.4 79.1

SVM+

83.0 85.6 76.5 84.4 88.8 82.8 78.9

SVM+

83.0 85.9 76.6 84.1 88.5 82.6 79.1

RF+

82.8 85.2 75.5 84.6 88.9 82.4 78.5

RF+

82.7 85.2 75.8 84.4 89.0 82.1 78.5

RF+

82.8 85.1 75.7 84.7 89.0 82.6 78.4

RF+

82.7 85.4 75.5 84.3 88.7 82.4 78.5

SVM+RF+

83.0 85.3 76.0 84.8 89.1 82.7 78.6

SVM+RF+

83.0 85.3 76.0 84.8 89.2 82.7 78.6

SVM+RF+

83.0 85.2 76.0 85.0 89.2 82.9 78.6

SVM+RF+

83.0 85.4 76.0 84.7 89.0 82.7 78.7

Table 4.4.2 Recall and precision measures for each class type and overall accuracy of all models on

test sets of 7-fold cross-validation on CB513.

55

CHAPTER 5

CONCLUSION

In this thesis, we optimized a support vector machine, a deep CNF and a random

forest classifier for protein secondary structure prediction. These are employed at the

second stage of a hybrid method. We also analyzed the performance of an ensemble

method that combines the predictions of the classifiers. When the individual classifiers

are compared, the most accurate method is the support vector machine, followed by

deep CNF and random forest. The ensemble methods achieve better accuracy rates

although the improvement is small. Nonetheless the ensemble approach has the

potential to improve the accuracy of secondary structure prediction. We are planning to

implement and compare other ensemble techniques such as stacking as a future work.

In constructing structural profile matrices we used distant templates by setting

the percentage of sequence identity threshold to 20% (i.e. removing templates having

greater similarity than this threshold to query). Therefore our results are obtained in the

most difficult setting. In previous studies that are conducted at similar difficulty levels

approximately 80% - 83% accuracy has been obtained. In this study, we achieve nearly

83% accuracy by the ensemble method, which is comparable to state-of-the art. As a

future work we are planning to repeat the optimization experiments for other difficulty

levels and for dihedral angle class and solvent accessibility class predictions.

56

BIBLIOGRAPHY

[1] D. T. Jones, “Protein structure prediction in genomics,” Briefings in Bioinformatics,

vol. 2, no. 2, pp. 111–125, 2001.

[2] J. Zeng, S. Zhu, H. Yan, “Towards accurate human promoter recognition: a review

of currently used sequence features and classification methods,” Briefings in

Bioinformatics, vol. 10, no. 5, pp. 498–508, 2009.

[3] G. Bologna, and R. D. Appel, “A comparison study on protein fold recognition,”

Neural Information Processing, 2002. ICONIP'02. Proceedings of the 9th

International Conference on, vol. 5, pp. 2492-2496, IEEE, Nov. 2002.

[4] A. Chinnasamy, W. K. Sung, and A. Mittal, “Protein structure and fold prediction

using tree-augmented naive Bayesian classifier,” Journal of Bioinformatics and

Computational Biology, vol. 3, no. 04, pp. 803-819, 2005.

[5] C. H. Ding, and I. Dubchak, “Multi-class protein fold recognition using support

vector machines and neural networks,” Bioinformatics, vol. 17, no. 4, pp. 349-358,

2001.

[6] A. Bhola, S. K. Yadav, and A. K. Tiwari, “Machine Learning based Approach for

Protein function prediction using sequence derived properties,” International

journal of computer applications, vol. 105, no. 12, 2014.

[7] B. E. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d‟Alche–Buc,

“Gene networks inference using dynamic Bayesian networks,” Bioinformatics, vol.

19, no. 2, pp. ii138-ii148, 2003.

[8] J. M. Dale, L. Popescu, and P. D. Karp, “Machine learning methods for metabolic

pathway prediction,” BMC bioinformatics, vol. 11, no. 1, pp. 15, 2010.

[9] Protein structure prediction:

https://en.wikipedia.org/wiki/Protein_structure_prediction

[10] W. Kabsch, and C. Sander, “Dictionary of protein secondary structure: pattern

recognition of hydrogen‐bonded and geometrical features,” Biopolymers, vol. 22,

no. 12, pp. 2577-2637, 1983.

57

[11] F.C Bernstein, et al. “The protein data bank,” The FEBS Journal, vol. 80, no. 2, pp.

319:324, 1977.

[12] J. J. Ward, L. J. McGuffin, B. F. Buxton, and D. T. Jones, “Secondary structure

prediction with support vector machines,” Bioinformatics, vol. 19, no. 13, pp. 1650-

1655, 2003.

[13] S. Hua, and Z. Sun, “A novel method of protein secondary structure prediction with

high segment overlap measure: support vector machine approach,” J. Mol. Biol.,

vol. 308, pp. 397–407, 2001.

[14] B. Rost, and C. Sander, J. Mol. Biol. , vol. 232, pp. 584–599, 1993.

[15] J. A. Cuff, and G. J. Barton, Proteins: Struct. Funct. Genet. , vol. 34, pp. 508–

519,1999.

[16] H. Kim, H. Park, “Protein secondary structure prediction based on an improved

support vector machines approach,” Protein Engineering, vol. 16, no. 8, pp. 553-

560, 2003.

[17] J. Gubbi, D. T. Lai, M. Palaniswami and M. Parker, “Protein secondary structure

prediction using support vector machines and a new feature representation,”

International Journal of Computational Intelligence and Applications, vol. 6, no. 4,

pp. 551-567, 2006.

[18] K. E. Chen, L. A. Kurgan, and J. Ruan, “Prediction of protein structural class using

novel evolutionary collocation‐based sequence representation,” Journal of

computational chemistry, vol. 29, no. 10, pp. 1596-1604, 2008.

[19] T. G. Dietterich, “Ensemble methods in machine learning,” International workshop

on multiple classifier systems, Springer Berlin Heidelberg, vol. 1857, pp. 1–15, June

2000.

[20] R. King, M. Ouali, A. Strong, A. Aly, A. Elmaghraby, M. Kantardzic, and D. Page,

“Is it better to combine predictions?,” Protein Engineering, vol. 13, pp. 15-19, 2000.

[21] P. Kountouris, M. Agathocleous, V. J. Promponas, G. Christodoulou, S.

Hadjicostas, V. Vassiliades, and C. Christodoulou, “A comparative study on

filtering protein secondary structure prediction,” IEEE/ACM Transactions on

Computational Biology and Bioinformatics (TCBB), vol. 9, no. 3, pp. 731-739,

2012.

[22] M. Alirezaee, A. Dehzangi, and E. Mansoori, “Ensemble of neural networks to

solve class imbalance problem of protein secondary structure

58

prediction,” International Journal of Artificial Intelligence & Applications, vol. 3,

no. 6, pp. 9, 2012.

[23] G. Pollastri, P. Baldi, P. Fariselli, and R. Casadio, “Prediction of coordination

number and relative solvent accessibility in proteins,” Proteins: Structure, Function,

and Bioinformatics, vol. 47, no. 2, pp. 142-153, 2002.

[24] W. Li, Y. Chen, and Y. Zhao, “Multi-layer ensemble classifiers on protein

secondary structure prediction,” In International Conference on Intelligent

Computing, Springer Berlin Heidelberg, pp. 79-85, Sep. 2008.

[25] C. N. Magnan, and P. Baldi, “SSpro/ACCpro 5: almost perfect prediction of

protein secondary structure and relative solvent accessibility using profiles, machine

learning and structural similarity,” Bioinformatics, vol. 30, no. 18, pp. 2592-2597,

2014.

[26] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, “Improving the prediction of

protein secondary structure in three and eight classes using recurrent neural

networks and profiles,” Proteins: Structure, Function, and Bioinformatics, vol. 47,

no. 2, pp. 228-235, 2002.

[27] H. Bouziane, B. Messabih, and A. Chouarfia, “Effect of simple ensemble methods

on protein secondary structure prediction,” Soft Computing, vol. 19, no 6, pp. 1663-

1678, 2015.

[28] A. Dehzangi, K. Paliwal, A. Sharma, O. Dehzangi, and A. Sattar, “A combination

of feature extraction methods with an ensemble of different classifiers for protein

structural class prediction problem,” IEEE/ACM transactions on computational

biology and bioinformatics, vol. 10, no. 30, pp. 564-575, 2013.

[29] J. A. Cuff, G. J. Barton, “Evaluation and improvement of multiple sequence

methods for protein secondary structure prediction,” Proteins: Structure, Function,

and Bioinformatics, vol. 34, no. 4, pp. 508-519, 1999.

[30] X. Q. Yao, H. Zhu, and Z. S. She, “A dynamic Bayesian network approach to

protein secondary structure prediction,” BMC bioinformatics, vol. 9, no. 1, pp. 49,

2008.

[31] Z. Aydin, A. Singh, J. Bilmes and W. S. Noble, (2011). “Learning sparse models

for a dynamic Bayesian network classifier of protein secondary structure,” BMC

bioinformatics, vol. 12, no. 1, pp. 154, 2011.

[32] J. Peng, L. Bo, and J. Xu, “Conditional neural fields,” In Advances in neural

information processing systems, pp. 1419-1427, 2009.

59

[33] S. Wang, J. Peng, J. Ma, and J. Xu, “Protein secondary structure prediction using

deep convolutional neural fields,” Scientific reports 6, 2016.

[34] Protein: https://en.wikipedia.org/wiki/Protein

[35] Protein yapısı: http://tr.wikipedia.org/wiki/Protein_yapısı

[36] Protein structure: https://en.wikipedia.org/wiki/Protein_structure

[37] F. M. Richards, and C. E. Kundrot, “Identification of structural motifs from protein

coordinate data: secondary structure and first‐level supersecondary structure,”

Proteins: Structure, Function, and Bioinformatics, vol. 3, no. 2, pp. 71-84, 1988.

[38] D. Frishman, and P. Argos, “Knowledge‐based protein secondary structure

assignment,” Proteins: Structure, Function, and Bioinformatics, vol. 23, no. 4, pp.

566-579, 1995.

[39] A. Zemla, C. Venclovas, K. Fidelis, and B. Rost, “A modified definition of Sov, a

segment‐based measure for protein secondary structure prediction

assessment,” Proteins: Structure, Function, and Bioinformatics, vol. 34, no. 2, pp.

220-223, 1999.

[40] B. W. Matthews, “Comparison of the predicted and observed secondary structure

of T4 phage lysozyme,” Biochim. Biophys. Acta, vol. 405, pp. 442-451, 1975.

[41] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J.

Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs,” Nucleic Acids Res., vol. 25, no. 17, pp. 3389-402, 1997.

[42] M. Remmert, A. Biegert, A. Hauser, J. Söding, “HHblits: lightning-fast iterative

protein sequence searching by HMM-HMM alignment,” Nat. Methods., vol. 9, no.

2, pp. 173-175, 2011.

[43] O. Abdel-Hamid, A. R. Mohamed, H. Jiang, and G. Penn, “Applying convolutional

neural networks concepts to hybrid NN-HMM model for speech recognition,” In

Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International

Conference on, pp. 4277-4280, IEEE, March 2012.

[44] Z. Aydin, D. Baker, and W. S. Noble, “Constructing Structural Profiles for Protein

Torsion Angle Prediction,” In BIOINFORMATICS, pp. 26-35, 2015.

[45] Z. Aydin, J. Thompson, J. Bilmes, D. Baker, and W. S. Noble, “Protein torsion

angle class prediction by a hybrid architecture of Bayesian and neural networks,”

Proceedings of the International Conference on Bioinformatics & Computational

Biology (BIOCOMP). The Steering Committee of The World Congress in Computer

https://en.wikipedia.org/wiki/Protein
http://tr.wikipedia.org/wiki/Protein_yapısı

60

Science, Computer Engineering and Applied Computing (WorldComp), pp.473, Jan.

2012.

[46] Z. Aydin, D. Baker, and W. S. Noble, (2015, January). “Template Scoring Methods

for Protein Torsion Angle Prediction,” In International Joint Conference on

Biomedical Engineering Systems and Technologies, Springer, Cham., pp. 206-223,

Jan. 2015.

[47] S. M. Reynolds, L. Käll, M. E. Riffle, J. A. Bilmes, and W. S. Noble,

“Transmembrane topology and signal peptide prediction using dynamic bayesian

networks,” PLoS Comput Biol, vol. 4, no. 11, pp. e1000213, 2008.

[48] Graphical Models Toolkit (GMTK):

http://melodi.ee.washington.edu/~bilmes/gmtk/.

[49] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing multiple

parameters for support vector machines,” Machine learning, vol. 46, no. 1, pp. 131-

159, 2002.

[50] S. Busuttil, “Support vector machines,” In Proceedings of CSAW’03, pp. 34, Nov.

2003.

[51] Picture of non-linear SVM, Researchgate user atarina Moreira,

https://www.researchgate.net/figure/260283043_fig13_Figure-A15-The-non-linear-

SVM-classifier-with-the-kernel-trick

[52] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[53] H. M. Karakoyun, and M. Hacıbeoğlu, “Biyomedikal Veri Kümeleri Ġle Makine

Öğrenmesi Sınıflandırma Algoritmalarının Ġstatistiksel Olarak KarĢılaĢtırılması,”

DEÜ Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, vol. 16, pp. 30-41, 2014.

[54] G. Holmes, A. Donkin, and I. H. Witten, “Weka: A machine learning workbench.

In Intelligent Information Systems,” 1994. Proceedings of the 1994 Second

Australian and New Zealand Conference on. IEEE, pp. 357-361, Dec. 1994.

[55] A. Statnikov, L. Wang, and C. F. Aliferis, “A comprehensive comparison of

random forests and support vector machines for microarray-based cancer

classification,” BMC bioinformatics, vol. 9, no. 1, pp. 319, 2008.

[56] B. J. Lee, M. S. Shin, Y. J. Oh, H. S. Oh, and K. H. Ryu, “Identification of protein

functions using a machine-learning approach based on sequence-derived

properties,” Proteome science, vol. 7, no. 1, pp. 27, 2009.

[57] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

https://www.researchgate.net/figure/260283043_fig13_Figure-A15-The-non-linear-SVM-classifier-with-the-kernel-trick
https://www.researchgate.net/figure/260283043_fig13_Figure-A15-The-non-linear-SVM-classifier-with-the-kernel-trick

61

[58] Y. Qi, M. Oja, J. Weston, and W. S. Noble, “A unified multitask architecture for

predicting local protein properties,” PloS one, vol. 7, no. 3, pp. e32235, 2012.

[59] P. Di Lena, K. Nagata, and P. Baldi, “Deep architectures for protein contact map

prediction,” Bioinformatics, vol. 28, no. 19, pp. 2449-2457, 2012.

[60] R. Collobert, and J. Weston, “A unified architecture for natural language

processing: Deep neural networks with multitask learning,” In Proceedings of the

25th international conference on Machine learning, pp. 160-167, ACM, July 2008.

[61] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,

“Natural language processing (almost) from scratch,” Journal of Machine Learning

Research, pp. 2493-2537, 12 Aug. 2011.

[62] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and

new perspectives,” IEEE transactions on pattern analysis and machine intelligence,

vol. 35, no. 8, pp. 1798-1828, 2013.

[63] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep

belief nets,” Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.

[64] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436-444, 2015.

[65] Auc-maximized Deep Convolutional Neural Fields for Sequence Labeling -

Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/286263785_fig1_Figure-1-Illustration-of-a-DeepCNF-

Here-i-is-the-position-index-and-X-i-the-associated [accessed 17 May, 2017]

[66] C. C. Chang and C. J. Lin, “LIBSVM : a library for support vector machines,”

ACM Transactions on Intelligent Systems and Technology, vol. 2, no.3, pp. 27,

2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[67] S. Wang, Training Conditional Random Fields by Maximizing AUC, May 2015.

Software available at https://github.com/realbigws/DeepCNF_AUC.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://github.com/realbigws/DeepCNF_AUC

