

R
ahim

e Şeym
a

B
EK

Lİ

PARALLEL MACHINE
SCHEDULING IN THE FACE OF

PROCESSING TIME UNCERTAINTY

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING & SCIENCEOF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Rahime Şeyma BEKLİ

August 2017

PA
R

A
LLEL M

A
C

H
IN

E SC
H

ED
U

LIN
G

 IN
 TH

E FA
C

E O
F

PR
O

C
ESSIN

G
 TIM

E U
N

C
ER

TA
IN

TY

A
G

U

2017

i

PARALLEL MACHINE SCHEDULING IN
THE FACE OF PROCESSING TIME

UNCERTAINTY

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THEGRADUATE SCHOOL OF ENGINEERING & SCIENCEOF ABDULLAH

GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Rahime Şeyma BEKLİ

August 2017

ii

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules

and conduct, I have fully cited and referenced all materials and results that are not

original to this work.

Rahime Şeyma BEKLİ

iii

REGULATORY COMPLIANCE

M.Sc. thesis titled “PARALLEL MACHINE SCHEDULING IN THE FACE OF

PROCESSING TIME UNCERTAINTY” has been prepared in accordance with the

Thesis Writing Guidelines of the Abdullah Gül University, Graduate School of

Engineering & Science.

Prepared By Advisor

Rahime Şeyma BEKLİ Assist. Prof. Dr. Selçuk GÖREN

Head of the Industrial Engineering Graduate Program

Assoc. Prof. Dr. İbrahim AKGÜN

iv

ACCEPTANCE AND APPROVAL

M.Sc.thesis titled “PARALLEL MACHINE SCHEDULING IN THE FACE OF

PROCESSING TIME UNCERTAINTY” and prepared by Rahime Şeyma BEKLİ has

been accepted by the jury in the Industrial Engineering Graduate Program at Abdullah

Gül University, Graduate School of Engineering & Science.

21 /08 / 2017

JURY:

Assoc. Prof. Dr. İbrahim AKGÜN :…………………………….

 Assist. Prof. Dr. Selçuk GÖREN :…………………………….

Assist. Prof. Dr. Pınar ZARİF TAPKAN :…………………………….

APPROVAL:

The acceptance of this M.Sc. thesis has been approved by the decision of the Abdullah

Gül University, Graduate School of Engineering & Science, Executive Board dated …..

/….. / ……….. and numbered .…………..……. .

….. /….. / ……….. Graduate
School Dean

Prof. Dr. İrfan ALAN

v

ABSTRACT

PARALLEL MACHINE SCHEDULING IN THE FACE OF
PROCESSING TIME UNCERTAINTY

Rahime Şeyma BEKLİ

MSc. in Industrial Engineering
Supervisor: Assist. Prof. Dr. Selçuk GÖREN

August 2017

Competition in today’s business and production world leads the companies to generate

schedules that increase productivity and decrease manufacturing cost. However, most of

the schedules cannot be executed exactly because of the unexpected disruptions such as

machine breakdowns, order cancellations and so forth. In order to develop disruption

resistant schedules, robust scheduling subject has gained interest among researchers.

In this study, we consider a parallel machine environment with processing time

uncertainty. The performance measure is taken as the completion time of the last job.

The uncertainty is modeled by discrete set of scenarios. An integer programming model

that can handle small problems is proposed. We observe that this model cannot manage

large problems. To alleviate this difficulty, we propose to decrease number of scenarios

selected for model. Next, we apply dual decomposition method in order to solve many

smaller problems rather than a large problem. Large problems cannot be handled by this

method either. This is why; we alter dual decomposition method by relaxing and

develop a new heuristic. Also we propose a hybrid tabu search algorithm to solve the

large problems.

The results show that, the proposed heuristics; selecting scenario approach and tabu

search algorithm perform well for the parallel machine scheduling problems.

Keywords: parallel machine scheduling, robust scheduling, makespan, Dual

Decomposition, tabu search algorithm

vi

ÖZET

BELİRSİZ İŞLEM SÜRESİNE TABİ PARALEL MAKİNE
ÇİZELGELEMELERİ

Rahime Şeyma BEKLİ

Endüstri Mühendisliği Bölümü Yüksek Lisans
Tez Yöneticisi: Yard. Doç. Dr. Selçuk GÖREN

Ağustos-2017

Günümüz dünyasında iş ve üretim rekabeti, firmaların verimlilik artıran ve imalat

maliyetini düşüren çizelgeler üretmesine yol açmıştır. Ancak, üretilen çizelgeler

beklenmedik aksaklıklar yüzünden, genellikle amaçlandığı şekilde

uygulanamamaktadır. Bu aksaklıklar makine arızalanması, sipariş iptali gibi

örneklendirilebilir. Aksaklıklara duyarsız çizelge olan gürbüz çizelgeleme, son yıllarda

araştırmacılar arasında önem kazanmıştır.

Bu çalışmada, belirsiz işlem süresine tabi paralel makine ortamı ele alınmıştır.

Performans ölçütü son işin bitiş süresi olarak alınmıştır. Belirsizlik, ayrık senaryolar

olarak modellenmiş ve küçük boyuttaki problemleri çözebilen bir tam sayılı

programlama oluşturulmuştur. Bu model büyük problemleri çözmede sıkıntılıdır. Bu

sebeple senaryo sayısını azaltma yaklaşımı denenmiştir. Daha sonra eşiz ayrıştırma

yöntemi ile büyük problemlerin çözümü amaçlanmıştır. Bu yöntemi kullanmadaki amaç

büyük bir problem çözmek yerine, küçük ama çok sayıda problem çözerek sonuca

ulaşmaktır. Ancak bu yöntem de büyük problemlerde istenilen sonuçları vermemiştir.

Bu sebeple senaryo sayısı azaltılarak eşiz ayrıştırma yöntemi kullanılmış ve yeni bir

sezgisel önerilmiştir. Aynı zamanda bir tabu arama algoritması oluşturulmuştur.

Sonuçlar, önerilen sezgisel algoritmalardan senaryo azaltılması ve tabu arama

algoritmalarının paralel makine ortamında iyi sonuçlar verdiğini göstermektedir.

Anahtar kelimeler: paralel makinelerde çizelgeleme, gürbüz çizelgeleme, eşiz ayrışma,

tabu arama algoritması

vii

Acknowledgements
Firstly, I would like to express my sincere gratitude to my advisor Prof. Selçuk

GÖREN for the continuous support of my MSc. study, for his patience and,

encouragement. He helped me with his broad knowledge throughout all the stages of

this research. His valuable guidance on technical and editorial aspects enabled this

thesis to be completed. I want to point out that not just only in this subject of my thesis,

Professor GÖREN inspired me to continue my academic studies on probabilistic and

stochastic topics of Industrial Engineering.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

İbrahim AKGÜN and Prof. Pınar Zarif TAPKAN for their insightful comments and

support.

Lastly, I would like to thank my family for their unceasing support, my husband

for his love and understanding and my son for bringing joy in my life.

I acknowledge that this thesis is supported by TUBİTAK, The Scientific and

Technological Research Council of Turkey with project number113M490.

viii

Table of Content

1. INTRODUCTION……………………………………………………………………………………1

2. LITERATURE REVIEW……………………………………………………………………………5
2.1 PROACTIVE SCHEDULING .. 5
2.2 PARALLEL MACHINE SCHEDULING WITH UNCERTAINTIES .. 7
2.3 CONTRIBUTIONS ... 9

3. PROBLEM FORMULATION……………………………………………………………………. 10
3.1. MATHEMATICAL MODEL ... 10
3.2. TEST PROBLEMS .. 13
3.3 VALUE OF STOCHASTIC SOLUTION .. 14
3.4 ALTERNATIVE ALGORITHMS AND COMPUTATIONS ... 16

4. STOCHASTIC DUAL DECOMPOSITION……………………………………………………... 20
4.1. STOCHASTIC DUAL DECOMPOSITION IN GENERAL FOR BINARY FIRST STAGE VARIABLES 21
4.2. STOCHASTIC DUAL DECOMPOSITION FOR ROBUST PARALLEL MACHINE SCHEDULING PROBLEM
WITH MINIMIZING MAKESPAN .. 26
4.3. COMPUTATIONAL RESULTS OF STOCHASTIC DUAL DECOMPOSITION METHOD 30
4.4. A NEW HEURISTIC WITH DUAL DECOMPOSITION METHOD .. 31

5. HANDLING LARGE PROBLEMS………………………………………………………………. 34
5.1. TABU SEARCH ALGORITHM .. 34
5.2. TSA FOR STOCHASTIC PARALLEL MACHINE SCHEDULING PROBLEM WITH MINIMIZING MAKESPAN
 ... 36

6. CONCLUDING REMARKS AND FUTURE DIRECTIONS…………………………………... 43

7. BIBLIOGRAPHY…………………………………………………………………………………...45

ix

List of Figures

Figure 1. 1 Predictive and Realized Schedule for P2||Cmax Problem 3

Figure 5.1. 1 Illustration of tabu moves in TSA………………………………………. 35

Figure 5.2. 1 The scheduling layout example for before (up) and after (down) swapping

…………...……………………………………………………………………………. 36

x

List of Tables

Table 3.2. 1 Problem set generation ... 14

Table 3.3. 1 Average objective function value of direct model and 1-scenario with mean
values …………………………………………………………………………………...15
Table 3.4. 1 Objective function values of direct model, LEPT and LEPT2 rules……...16

Table 3.4. 2 Average CPU times of direct model, RSA and ESA 18

Table 3.4. 3 Objective Function Values of Direct Model and RSA & ESA 18

Table 3.4. 4 Schedule comparisons of direct model, RSA and ESA 19

Table 4.3. 1 Gaps for the large problems by dual decomposition and direct model …...31

Table 4.4. 1 Average objective function values of dual decomposition heuristic method
and direct model ………………………………………………………………………..32
Table 4.4. 2 Average CPU times of dual decomposition heuristic method and direct

model .. 33
Table 5.2. 1 Comparison of different starting approached in terms of average objective
function values …………………………………………………………………………39
Table 5.2. 1 Average objective function values for different tabu list size and allowed

iteration numbers ... 40
Table 5.2. 3 Average CPU times of TSA algorithm with different tabu tenure size and

allowed number of iterations .. 41

 1

Chapter 1

INTRODUCTION
Scheduling can be defined as a planning activity that assigns resources to

particular tasks, and provides answers to questions such as when and how to process. It

deals with utilization of the resources to meet the customers’ demands in terms of time

and quality. The aim is simply to optimize one or more objectives.

For more than fifty years, scheduling has been extensively studied by many

researchers [1]. Most of these studies address the deterministic scheduling problems

where all the relevant data (processing time, release date, due date and so forth) are

known in advance without any uncertainty. However, in real life, productions are

subject to many disruptions such as order cancellations, changes in due dates, process

time variations, and rush orders, therefore, most of the schedules cannot be executed as

they are planned.

The schedule that is yet to be sent to shop floor is called predictive schedule.

Predictive schedules are exposed to alterations because of the nature of production

environments. At the end of the day, a performed schedule is formed by the changes on

predictive schedule. This performed schedule is called the realized schedule. It is not

desirable to have significant deviations between the predictive and the realized

schedules.

If the disturbances of production environments are not taken into consideration

when planning, the generated schedules may perform poorly in practice. To handle the

uncertainty in shop floor, different approaches have been proposed by researchers. One

of the prominent approaches is called stochastic scheduling approach. Stochastic

scheduling is concerned with problems in which at least one parameter is modeled as

random variables. If the same scheduling problem has to be solved many times

repetitively, the stochastic approach is reasonable as it takes expected realized

performance minimization into account. On the other hand, if the schedule is to be

solved only once, dealing with the expectation of a performance measure is a risky

 2

approach. Moreover, in real life applications, it is hard to associate probability

distributions to the underlying parameters which create additional burden for the

stochastic approach. While expected system performance is typically the main concern

for stochastic programming approach, the other approach which is called robust

scheduling targets to find an acceptable performance [2]. A schedule which is

insensitive to disruptions is called a robust schedule. The performance of the realized

schedule in terms of the objective(s) is the main concern in robust scheduling [3].

Robust scheduling is studied from reactive and proactive standpoints [4]. In reactive

scheduling, one takes actions when an unexpected event occurs which means the

revision in schedule is made after the incident. However, in proactive scheduling, the

uncertainty is taken into account beforehand. That is why in proactive scheduling, it is

important to consider all the probable disruptions in the planning phase of the predictive

schedule.

In Sabuncuoğlu and Gören’s literature review [4], robustness measure is viewed

in two categories. The first category is based on realized performances. The measures in

this category can be listed as minimizing the expected performance measure, the worst-

case performance (which is also called “absolute robustness” in [2]), the most probable

performance and the variance of the realized performance. The second category is based

on regret which is called robust deviation measure in [2]. Regret is the difference

between the realized objective and the decision maker’s predictive schedule’s objective.

In this category, the robustness measure is taken as minimizing the worst case regret,

worst case scenario’s regret and most probable scenario’s regret.

For a better understanding for robust scheduling approach, consider a parallel

machine environment with 5 jobs and 2 machines which are subject to random

breakdowns as illustrated in Figure 1. 1. The performance measure is taken as the

makespan which is the completion time of the last job.

 3

Figure 1. 1 Predictive and Realized Schedule for P2||Cmax Problem

In the predictive schedule, the first three jobs are to be processed in the first

machine and the last two jobs are to be processed in the second machine making the

makespan 12. In the realized schedule, we understand that a breakdown occurs between

time 7-9 at machine 1. The makespan of the realized schedule is 14. From the realized

performance perspective, the robustness measure is 14. On the other hand, from the

regret perspective, the robustness measure is 14− 12 = 2.

In this study, we focus on stochastic proactive scheduling of parallel machine

environment aiming to minimize makespan with processing time uncertainty.

Deterministic version of this problem has been extensively studied for over 50 years yet

efficient exact algorithm has not been found [5]. Thus, considering stochastic

parameters to the problem makes our study more challenging but closer to the industrial

applications. Hence, we seek optimal or near optimal solutions to the problem and target

our methodology to be used by the industry since parallel machine environments are

widely seen in real world manufacturing systems [1].

In parallel machine environment, the machines are identical and a number of jobs

are considered to be processed. It can be recognized as a generalized single machine

environment and also a special case of flexible job shop environment. This is why it is

an important environment to consider theoretical approaches. In parallel machine

problems, minimizing the completion time of the last job (makespan) is an important

objective, since minimizing makespan balances the workload in each machine. This

problem is denoted by 𝑃𝑃𝑃𝑃| | 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and proven to be NP-Hard. Even without uncertainty

or stochastic nature in the problem, it is impossible to find an optimal schedule in

polynomial time unless 𝑃𝑃 = 𝑁𝑁𝑁𝑁. With the consideration of uncertainty, it will be even

harder to find an optimal policy / schedule that gives a robust allocation for jobs to be

 4

processed. In this thesis, we provide different approaches to solve the 𝑃𝑃𝑃𝑃| | 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

problem with uncertain processing times.

The rest of this thesis is organized as follows. In Chapter 2 we review the relevant

literature. In Chapter 3, we propose the mathematical model and different heuristic

approaches to approximately solve the proposed model. In Chapter 4, we adopt

stochastic dual decomposition method proposed by Caroe and Shultz [6] to 𝑃𝑃𝑃𝑃| | 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

problem. We decompose the large problems into disjoint sub-problems, and then solve.

These sub-problems are much easier to solve due to less variable and constraint

numbers. At the end of this chapter, the results are compared with the model provided in

Chapter 3. We provide gaps for the objective function values by applying this method

with some alterations for large problems. Finally, we construct a new heuristic method

that is based on the dual decomposition method. In Chapter 5, another heuristic method

(tabu search algorithm) is proposed to handle even larger problems. The problems are

solved using the proposed heuristic and the results are compared with the model

provided in Chapter 3. In Chapter 6, we make some concluding remarks and point out

future research directions.

 5

Chapter 2

LITERATURE REVIEW
In this literature review, we focus on proactive scheduling studies with

uncertainties as we study parallel machine environment from the proactive standpoint.

To find broad information about stochastic and robust scheduling, we refer the readers

to literature review studies [2], [4], [7], [8].

In this chapter, we briefly examine the proactive scheduling in both stochastic and

robust studies. Next, we mention the studies in parallel machine scheduling with

uncertainties. Finally, we continue with the contribution of this thesis to the existing

literature.

2.1 Proactive Scheduling

In proactive scheduling, the decisions are made in the planning phase before the

disruptions. We mention here two proactive scheduling approaches that generate

solutions (relatively) resistant to changes.

The first approach is stochastic scheduling approach. In stochastic scheduling data

uncertainty is represented by probability distributions. Hence, this approach is practical

when the information about the data is available [9]. In stochastic scheduling, the aim is

mostly to minimize the expected performance measure. In some studies, the probability

of having the performance measure below some certain level is also studied and

maximized.

Simple priority rules often lead to optimal results in the stochastic problems with

exponentially distributed processing times even if the deterministic version is NP-Hard

[1]. For instance, for the single machine problems with exponential processing times,

weighted shortest expected processing time (WSEPT) rule minimizes the expected

weighted tardy jobs [1]. For exponential processing time rate 𝜆𝜆𝑗𝑗 of job j, the WSEPT

rule assigns jobs in the decreasing order of 𝑤𝑤𝑗𝑗𝜆𝜆𝑗𝑗 where 𝑤𝑤 represents the weights in the

 6

objective. For more rules that can be applied on stochastic scheduling problems, readers

may refer to [1], and [10].

Minority of the studies addressing the processing time uncertainty in stochastic

scheduling choose arbitrary distributions, whereas the majority choose practical

distributions such as normal distribution [11]. In one of the recent studies, Baker studies

single machine environment with jobs having normally distributed processing times.

The objective is to minimize cost of tardy and early jobs. With a dominance rule and

lower bounds, the author proposes a B&B algorithm to solve the problem. The proposed

algorithm can solve up to 20 jobs within an hour.

The second approach to deal with uncertainty is robust scheduling approach. In

robust scheduling, the objective functions can be expected performance measure, or

regret based. The uncertainty is represented by interval data or scenarios.

 In the interval data representation, any uncertain data can take a value within a

given continuous interval independently. It is clear that in this representation of

uncertainty, the upper bounds of the intervals result in worst case values which

constitute the worst case scenario. For a robust problem minimizing the worst case

scenario becomes the deterministic version of the problem. This is why in interval data

approaches, regret is tried to minimized [2].

In a recent study [12], single machine scheduling with processing time uncertainty

is studied to find the schedule that gives the robust (minimum of maximum deviation)

total flow time schedule. The authors assume that the processing times are within

specific intervals resulting in infinitely many possibilities and model the problem as a

shortest path problem in order to find the worst case scenario used in the deviation.

Since the model is NP Hard, the authors propose a simulated annealing heuristic

method. The results show that the heuristic algorithm can solve large-sized problems up

to 200 jobs.

In scenario based representation of uncertainty in robust scheduling, a scenario is

defined as a possible realization of uncertain parameters. Suppose that in a problem, a

random variable is denoted by 𝑥𝑥𝑗𝑗 where 0 < 𝑗𝑗 ≤ 𝑟𝑟 and the cardinality of the domain of

𝑥𝑥𝑗𝑗 is finite (i.e. �𝐷𝐷𝑗𝑗 � < ∞). Each element in the Cartesian product 𝐷𝐷1 × 𝐷𝐷2. .× 𝐷𝐷𝑛𝑛

 7

represents a scenario. There are totally ∏ �𝐷𝐷𝑗𝑗 �𝑛𝑛
𝑗𝑗=1 number of scenarios. This method

requires enumerating all the possible scenarios, and mostly constructing mixed integer

programs that is using the scenarios.

An example to such approach is done by Kasperski and his friends [13]. This

time, a permutation flow-shop environment is considered. The number of machines is

set to 2 and the uncertain job processing times are modeled via discrete scenario set.

The aim is to minimize the maximum regret of makespan. They have considered

bounded and unbounded scenario sets for the problem and showed that for the

unbounded case, 2-approximation algorithm can be found.

Up to now, we briefly examine the proactive scheduling studies. We continue the

literature review with the parallel machine environment which is the production

environment studied in this thesis.

2.2 Parallel Machine Scheduling with Uncertainties
There are a few studies addressing robust parallel machine scheduling. The first

one to mention here is the study done by Ranjbar et. al. [14]. In their study, the aim is to

find a robust schedule that maximizes the probability of having the makespan below a

certain level when the processing times are uncertain. The job processing times are

assumed to be normally distributed. This is the first study that takes stochastic

processing times in a parallel machine environment into account. The authors develop

two B&B algorithms along with six dominance rules to solve this problem. The

proposed algorithms solved up to 20 jobs for 3, 4, and 5 machines.

A very similar objective function is studied by Alimoradi, Hematian and Moslehi

[15] with maximizing the probability of having total flow time below a given level on

parallel machines. The processing times of jobs are assumed to be distributed normally.

A branch and bound algorithm is proposed along with a lower bound, three upper

bounds, and two dominance rules. The algorithm can solve up to 45 jobs for 3, 4, and 5

machines. The authors also apply these algorithms to single machine problems showing

that the study also outperforms the previous studies in literature.

In another study [16], parallel machine scheduling with uncertain job processing

with interval data is studied. The robustness is defined by the min-max criterion which

 8

gives the minimum maximal deviation of makespan from planned for possible

scenarios. In the study, the problem is formulated as a mixed integer programming

problem and solved via two exact algorithms by using general iterative relaxation

method. A local search and a simulated annealing algorithm are proposed to solve large

problems.

Hu, Ng and Qin [17] study a very similar problem with an addition of family set-

up times. Each job has a family. Two consecutively scheduled jobs incur a set-up time if

they come from different families. The study is done for plastic production, and the set-

up times refer to mold changing time for different job families. An artificial bee colony

algorithm is proposed as a heuristic approach along with an exact algorithm proposed

by Xu et. al. [16], the results are compared and it is concluded that the heuristic

algorithm performs well in terms of computational time and objective function.

Xu et. al. [18]. study the same problem with the same definition of uncertainties

and robustness measure but minimizing total flow time as the objective function. They

transform the problem formulation into a robust single-machine scheduling problem

with fewer constraints and variables. It is shown that 2-approximation algorithm gives

good results for large problems.

In the study of Kasperski et. al. [19], the uncertainty is modeled via discrete set of

scenarios. The first robustness measure is taken as ordered weighted averaging

aggregation (OWA). In OWA approaches, the aim is to find a schedule that gives the

minimum value of weighted sum of each scenario’s makespan. The second robustness

approach is Hurwicz criterion which is finding a schedule that minimizes the weighted

average of best and worst case scenarios’ makespan values. The authors show that, for

unbounded scenario sets, no polynomial approximation algorithm can be generated for

OWA. For bounded cases, a pseudo-polynomial approximation can be done.

 9

2.3 Contributions
The literature of parallel machine scheduling problem lacks of the following

subjects:

1. As stated in Chapter 2.2, the processing time uncertainty is mostly represented

by normal distribution or interval data. The only scenario based approach has

been done with the aim of minimizing the weighted makespan. The scenario

based approach on parallel machine scheduling with minimizing expected

makespan is an untouched area.

2. In the literature review study of Li and Ierapetritou [9], the authors emphasized

that computational cost is one of the main concerns in stochastic programming.

In our study, we model uncertainty on processing times via discrete set of

scenarios in a parallel machine environment. We propose to decompose the stochastic

program into several models in order to eliminate the computational cost. That is why

we apply “Dual Decomposition Method” proposed by [6]. To the best of our

knowledge, this is the first study that investigates impacts of “Dual Decomposition

Method” in stochastic parallel machine scheduling problems.

 10

Chapter 3

PROBLEM FORMULATION

In this study, we assume to have 𝑚𝑚 identical parallel machines and 𝑛𝑛 different

jobs. The aim is to find the schedule that gives the minimum makespan which is the

completion time of the job that is finished the last. The most important aspect of

schedules in parallel machine with minimizing makespan is that the job order in

machines does not affect the objective function value, this is why only the job allocation

to machines are significant.

In our study, it is assumed that the randomness of the problem comes from the

processing time uncertainty. The processing times are considered to have discrete

triangular distribution, i.e. there are 3 different possible processing times for each job

which we can call optimistic, pessimistic and neutral values. We also assume that

preemption is not allowed which means that all the running jobs must be continued

without interruptions.

3.1. Mathematical Model

The mathematical model without uncertainty which is called Deterministic

Parallel Machines Scheduling Problem (DPMSP) is given below:

Mathematical Model of DPMSP:

Indices and Sets:

𝑖𝑖 represents machines (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚)

𝑗𝑗 represents jobs (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛)

Data:

𝑝𝑝𝑗𝑗 is the processing time of job 𝑗𝑗

Decision Variables:

 11

 𝑥𝑥𝑖𝑖𝑖𝑖 : �
1 if job 𝑗𝑗 is processed in machine 𝑖𝑖
0 otherwise

�
 𝑧𝑧 : completion time of the last job (makespan)

Deterministic Model Formulation:

min𝑧𝑧 (3.1)
𝑠𝑠. 𝑡𝑡.

𝑧𝑧 ≥ �𝑝𝑝𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

∀𝑖𝑖

(3.2)

�𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 1

∀𝑗𝑗

(3.3)

 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖, 𝑗𝑗 (3.4)

In the model, (3.1) is to minimize makespan. Constraint (3.2) guarantees that 𝑧𝑧 is

the completion time of the last job. Constraint (3.3) ensures that each job is processed

on only one machine and constraint (3.4) is for binary variables.

DPMSP is an Integer Programming model with 𝑛𝑛𝑛𝑛 + 1 variables and 𝑚𝑚 + 𝑛𝑛 +

𝑚𝑚𝑚𝑚 constraints. This problem can be denoted as 𝑃𝑃𝑃𝑃||𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. The 𝑃𝑃2||𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

(minimizing makespan with two identical parallel machine problem) is known to be

NP-Hard [1]. As 𝑃𝑃2||𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is NP-Hard, 𝑃𝑃𝑃𝑃||𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is also NP-Hard.

For the mathematical model of stochastic parallel machine scheduling problem

(SPMSP), scenario based approach for stochastic programming models is adopted. A

scenario is defined as a possible realization of each job’s processing times. Suppose that

𝑝𝑝𝑗𝑗 in the deterministic model is a random variable and the cardinality of the domain of

𝑝𝑝𝑗𝑗 is finite and equal to 3. (i.e. �𝐷𝐷𝑗𝑗 � = 3 for ∀𝑗𝑗). The Cartesian product 𝐷𝐷1 × 𝐷𝐷2. .× 𝐷𝐷𝑛𝑛

represents the scenario set, and each element represents a scenario. Since each job can

have 3 different processing times, there are totally ∏ �𝐷𝐷𝑗𝑗 �𝑛𝑛
𝑗𝑗=1 = 3n scenarios. The

robustness measure of problem is taken as the expected performance measure (i.e.

expected makespan) over the scenarios.

In order to deeply understand the mathematical model of SPMSP and scenario

based approach; we first introduce generic stochastic programs with fixed recourse. In

general, stochastic programs with recourse have 2 types of decision variables which are

first and second stage variables. The first stage variables are the variables whose values

should be determined before the uncertain event occurs. They are also called here-and-

 12

now decisions. On the other hand, the second stage variables’ values are determined

after the uncertain event to make corrective actions [20]. Below, a generic form of

stochastic program can be found where 𝑥𝑥 denotes the first and 𝑦𝑦 denotes the second

stage variables.

General Stochastic Programs with Fixed Recourse:

min 𝑧𝑧 = {𝑐𝑐𝑐𝑐 + 𝔼𝔼𝞯𝞯 [min𝑞𝑞𝑗𝑗 𝑦𝑦𝑗𝑗] ∶ �𝑥𝑥,𝑦𝑦𝑗𝑗 � ∈ 𝑆𝑆𝑗𝑗 } (3.5)

where 𝑆𝑆𝑗𝑗 = {�𝑥𝑥, 𝑦𝑦𝑗𝑗 � = 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏, 𝑥𝑥 ∈ 𝑋𝑋,

 𝑇𝑇𝑗𝑗𝑥𝑥 + 𝑊𝑊𝑦𝑦𝑗𝑗 ≤ ℎ𝑗𝑗 , 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌}

Here, c ∈ ℝn1 , b ∈ ℝm1 , A ∈ ℝm1 x n1 and W ∈ ℝm2 x n2 are known. For each

random outcome j; 𝑇𝑇𝑗𝑗 ∈ ℝm2 x n1 , 𝑞𝑞𝑗𝑗 ∈ ℝn2 ,ℎ𝑗𝑗 ∈ ℝm2 get values accordingly. The

expected value in the objective function (3.5) can be written as the summation of

probability of each random outcome multiplied by 𝑞𝑞𝑗𝑗𝑦𝑦𝑗𝑗 values when the outcomes can

be written in discrete events. (i.e. scenarios).

So, the objective function can be replaced by:

min 𝑧𝑧 ∶ {𝑐𝑐𝑐𝑐 + �𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗𝑦𝑦𝑗𝑗

𝑁𝑁

𝑗𝑗=1

∶ �𝑥𝑥,𝑦𝑦𝑗𝑗 � ∈ 𝑆𝑆𝑗𝑗 }
 (3.6)

where 𝑝𝑝𝑗𝑗 denotes the probability of occurrence of each scenario 𝑗𝑗. This notation is

also called “Deterministic Equivalent” formulation.

For our problem SPMSP; we have adopted the same approach. The deterministic

equivalent of SPMSP can be found below:

Deterministic Equivalent of SPMSP :

Indices and Sets:

𝑖𝑖 represents machines (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚)

𝑗𝑗 represents jobs (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛)

𝑠𝑠 represents scenarios (1 ≤ 𝑠𝑠 ≤ 3𝑛𝑛)

 13

Data:

𝑝𝑝𝑗𝑗𝑗𝑗 is the processing time of job 𝑗𝑗 under scenario 𝑠𝑠

 𝛼𝛼𝑠𝑠 is the occurrence probability of scenario 𝑠𝑠

Decision Variables:

 𝑥𝑥𝑖𝑖𝑖𝑖 : �
1 if job 𝑗𝑗 is processed on machine 𝑖𝑖
0 otherwise

�
 𝑧𝑧𝑠𝑠 : completion time of the last job (makespan) at scenario 𝑠𝑠

Deterministic Equivalent Formulation:

 min �𝑧𝑧𝑠𝑠

3𝑛𝑛

𝑠𝑠=1

𝛼𝛼𝑠𝑠

(3.7)

𝑠𝑠. 𝑡𝑡.
 𝑧𝑧𝑠𝑠 ≥ �𝑝𝑝𝑗𝑗𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

∀𝑖𝑖, 𝑠𝑠

(3.8)

�𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 1

∀𝑗𝑗

(3.9)

 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖, 𝑗𝑗 (3.10)

In this formulation, the first stage decision variables are 𝑥𝑥𝑖𝑖𝑖𝑖 and the second stage

variables are 𝑧𝑧𝑠𝑠 . The objective function (3.7) is the expected value of makespan over the

scenarios. Constraint (3.8) is to calculate makespan values of each scenario, and (3.9)

and (3.10) are the same constraints with (3.3) and (3.4) respectively.

A special case of this problem is where 𝛼𝛼1 = 1 and 𝛼𝛼𝑠𝑠 = 0 for 𝑠𝑠 ≠ 1. We know

that this problem is the deterministic version of parallel machine scheduling with

minimizing makespan which is NP-Hard. Hence the deterministic equivalent of

stochastic parallel machine scheduling is also NP-Hard. Besides, the deterministic

model has totally 3𝑛𝑛 + 𝑛𝑛𝑛𝑛 decision variables and 3𝑛𝑛 𝑚𝑚 + 𝑛𝑛 + 𝑚𝑚𝑚𝑚 constraints making

the model hard to solve.

3.2. Test Problems
In order to see the performance of the deterministic equivalent of SPMSP, we set

up different problems. The problems are generated using the scheme proposed in [21].

 14

First of all, the identical parallel machine number (𝑚𝑚) is taken as 2, 3 and 5. The job

number (𝑛𝑛) is taken as 6,8,10 and 12. The expected values of the each job’s processing

times are sampled from a discrete uniform distribution with 𝑈𝑈(1,100). The expected

values denote the neutral processing time for each job. To find the pessimistic and

optimistic values, 3 different variation calculations are done. The first one is called “low

variation”, the pessimistic and optimistic values are found by multiplying the probable

processing time with 0.8 and 1.2 respectively. Similarly, for the medium level variation,

the probable processing time is multiplied with 0.5 and 1.5, and for the high level

variation, 0.2 and 1.8 are the multipliers. Here, the aim is to see whether the increase in

variation effects the solution time or not. The probabilities of the optimistic, neutral and

pessimistic values are taken as .25, .5 and .25 respectively. The probability of a scenario

can be easily found by multiplication of each job’s respective probability in the

scenario. Table 3.2. 1 summarizes the problems:

Expected Processing Time (EPT) U[1,100]

Processing Time Variation Low: {EPT * 0.8 ,EPT, EPT *1.2}
Medium : {EPT * 0.5 ,EPT, EPT *1.5}
High : {EPT * 0.2 ,EPT, EPT *1.8}

Total number of jobs (n) 6,8,10,12

Machine number (m) 2,3,5

Table 3.2. 1 Problem set generation

For each problem type, 3 problems are generated. To give an example, for a

problem type with 2 machines, 6 jobs and low variance of processing times, 3 different

problems are created. Therefore, the problem set has totally 108 different problems.

3.3 Value of Stochastic Solution

In real life, processing time uncertainties are frequently disregarded for practical

purposes. In such cases, the processing times are taken as the mean values. To

understand if such approach can find the optimal job allocation or not, we fix each job’s

processing times to the neutral values. We solve the problems with these processing

times as in deterministic version of the model. The solution (i.e. job allocation to the

machines) is used to find the expected makespan of the deterministic problem. Table

 15

3.3. 1 give the average objective function values of deterministic equivalent model of

the problem (direct model) and expected makespan values of deterministic model.

 Direct Model Deterministic Model

n m Low Var. Medium
Var.

High Var. Low Var. Medium Var. High Var.

6 2 176.36 188.09 200.31 176.36 188.09 200.31
6 3 122.92 137.35 152.38 123.39 137.61 152.59
6 5 90.38 101.62 115.75 91.42 104.56 119.58
8 2 222.79 236.40 250.03 222.79 236.40 250.03
8 3 153.68 170.26 186.87 153.71 170.36 187.05
8 5 102.03 117.64 134.55 102.33 117.91 134.82
10 2 264.02 278.80 293.57 264.02 278.80 293.57

Table 3.3. 1 Average objective function value of direct model and deterministic model

Please note that each cell in the table is the average value of 3 problems that are

with the same variation type, machine and job number. All the tables are prepared

within the same form. The problems are solved with maximum 4 threads, and 10 hours

of time limitation at a computer with 64 GB RAM, AMD Opteron 6276 2.30 GHz

Processor. All the calculations of this thesis are done on the same computer.

When we examine Table 3.3. 1, we can see that, the machine number plays an

important role for the mean value algorithm. For 2-machine problems, mean value

algorithm can find the optimal values whereas for 3 and 5 machine problem types, the

average deviation from the optimal solution is up to 3.3% (= 100 (𝑧𝑧− 𝑧𝑧∗)
𝑧𝑧∗

 where 𝑧𝑧 is the

average objective function value of mean value algorithm and 𝑧𝑧∗ is the optimal average

objective function values for the problems).

The difference between the direct model and mean value algorithm is called value

of stochastic solution (VSS) in stochastic programming. VSS is at most 9.053 for the

third problem of type 6 jobs, 5 machine and high variation where the objective function

value is 120.875 and the deviation is 7.5%. Also, the processing times used in the

models are symmetrical. In the problems with nonsymmetrical processing times this

range is expected to be higher. We can conclude from here that stochastic formulation

of the problem becomes significant.

 16

3.4 Alternative Algorithms and Computations

As stated before, the deterministic equivalent model has totally 3𝑛𝑛 + 𝑛𝑛𝑛𝑛

decision variables and 3𝑛𝑛 𝑚𝑚 + 𝑛𝑛 + 𝑚𝑚𝑚𝑚 constraints. Especially an increase in job

number results in exponential increase in both decision variables and constraint

numbers which make the computations harder.

It is known that, for a problem with two machines and jobs with exponentially

distributed processing times or jobs whose processing times are distributed according to

a mixture of two exponential distributions; Longest Expected Processing Time (LEPT)

rule minimizes the expected makespan [1]. In our problem, we rather have discrete

triangular distribution, however we still examine the rule whether it performs well for

our problem or not. In LEPT rule, the jobs are ordered decreasingly according to their

expected processing time values (i.e. neutral values). The first 𝑚𝑚 jobs are placed into 𝑚𝑚

machines. Whenever a machine frees, the next job is assigned.

Besides LEPT rule, we also examine another algorithm (LEPT2) which takes the

same ordering, but places 𝑗𝑗th job to ith machine where 𝑖𝑖 = 𝑗𝑗 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚).

Table 3.4. 1 gives information about the average objective function values of

direct model, LEPT and LEPT2 rules.

 Direct Model LEPT LEPT2

n m Low
Var.

Medium
Var.

High
Var.

Low Var. Medium
Var.

High
Var.

Low Var. Medium
Var.

High Var.

6 2 176,4 188,1 200,3 176,4 188,1 200,3 189 195 204,9
6 3 122,9 137,4 152,4 122,9 137,4 152,4 133,4 143,9 157,3
6 5 90,4 101,6 115,8 90,4 101,6 115,8 109,1 114,7 126,4
8 2 222,8 236,4 250 223,7 236,8 250,3 230,6 240,1 252,4
8 3 153,7 170,3 186,9 156,5 171,7 187,9 175,5 184,4 197,4
8 5 102 117,6 134,5 102,0 117,6 134,5 124,8 135,6 149,6
10 2 264 278,8 293,6 266,0 279,6 294,1 275,6 284,5 297,3
10 3 NA NA NA 182,8 200,2 218,2 199,6 209,3 224,4
10 5 NA NA NA 118,5 135,9 154,5 130,6 145,1 162,4
12 2 NA NA NA 302,5 317,8 333,4 312,1 322,7 336,6
12 3 NA NA NA 207,7 226,6 245,8 225,5 236,2 252,3
12 5 NA NA NA 134,0 152,6 172,4 161,3 170,4 185,7

Table 3.4. 1 Objective function values of direct model, LEPT and LEPT2 rules

 17

After carefully examining the data, we can make the following observations. The

deviation from the optimal objective function values is up to 3.5% for LEPT (for second

problem of 8 jobs, 3 machines and low variation problem type) and 22% for LEPT2

rules. It can be inferred from the table that LEPT rule performs better than LEPT2

although LEPT2 performs well in high variation problems. LEPT rule can find 29

optimal objective function values out of 63 exactly solved problems whereas LEPT2

rule cannot find any. LEPT rule performs almost excellent in 6 jobs problems, however

for 8 jobs problems with 2 and 3 machines optimal solutions cannot be found.

Since the results of the LEPT and LEPT2 show that these rules cannot find

optimal values in most of the problems, we propose two different heuristic algorithms

and compare the results with the direct model. The first algorithm which is called

random sampling algorithm (RSA) is randomly selecting 10% of the scenarios (totally

�3𝑛𝑛

10
�) and solving the deterministic equivalent model (3.7-3.10) with these selected

scenarios. The main purpose of this algorithm is to decrease the scenario number to

make the model analytically tractable. Secondly, we apply another approach which we

call expected scenario algorithm (ESA). We consider each job’s effect on the scenario

set individually. We assume that, at each scenario, only one job can has a random value,

and the rest of the jobs have the most probable values. Hence we decrease the number

of scenarios to 3𝑛𝑛 since the distribution is symmetrical, we assume these scenarios can

represent the original scenario set well.

Table 3.4. 2 gives information about the CPU times of the direct model, RSA and

ESA. The problem set is solved with 10 hours duration and maximum 4 threat limits.

CPU
Time

 Direct Model RSA ESA

n m Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

6 2 3,1 3,3 2,7 0,2 0,2 0,2 0,3 0,4 0,3

6 3 5,4 6,9 7,1 0,3 0,4 0,3 0,3 0,5 0,6

6 5 3,4 7,7 8 0,8 0,8 0,6 0,5 0,4 0,6

8 2 134,3 121,4 152,4 3,3 3,6 4,5 0,3 0,5 0,4

8 3 243 235,4 237 9,6 7,7 11,9 0,9 0,9 1

8 5 607 785,7 382,1 18,8 21,7 18,9 1,4 1,9 1,7

10 2 21600,9 30169,3 28716,1 231,2 232,2 276,3 0,7 0,6 0,6

10 3 NA NA NA 697,2 692,9 791,5 1,1 1,2 1,1

 18

10 5 NA NA NA 1273,6 2030,7 1676,5 1,4 1,7 1,8

12 2 NA NA NA 1554,2 1599,9 1814,9 0,9 1,1 1,2

12 3 NA NA NA 7652,8 6612,9 9831 1,6 2,1 2,4

12 5 NA NA NA 14788,1 18708 23416 2,3 2,7 2,4

Table 3.4. 2 Average CPU times of direct model, RSA and ESA

The values in each cell indicate the average CPU times of the problems with same

𝑛𝑛,𝑚𝑚 values and variation type. The CPU times of direct model increase exponentially as

expected. After the problem type 10 jobs – 3 machines, it is not possible to solve in ten

hours duration limit. Since the 10% of the scenario numbers also increases

exponentially, the CPU time reaches to 6.5 hours in RSA. The increase in job and

machine numbers do not affect the CPU times of algorithm 2 as they affect direct model

and RSA since the scenario numbers in ESA increases in polynomially.

The average objective function values for each problem type are given below in

Table 3.4. 3.

 Direct Model RSA ESA

n m Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High Var.

6 2 176,36 188,09 200,31 177,04 188,58 201,00 176,36 188,09 200,31

6 3 122,92 137,35 152,38 123,43 137,84 153,23 122,92 137,35 152,38

6 5 90,38 101,62 115,75 90,38 101,62 115,75 90,38 101,73 115,75

8 2 222,79 236,40 250,03 222,81 236,69 250,89 222,79 236,40 250,03

8 3 153,68 170,26 186,87 153,90 170,68 187,39 153,71 170,36 187,05

8 5 102,03 117,64 134,55 102,03 117,67 134,88 102,03 117,64 134,55

10 2 264,02 278,80 293,57 264,06 278,86 293,61 264,02 278,80 293,57

10 3 NA NA NA 181,93 199,83 217,97 181,91 199,82 217,87

10 5 NA NA NA 118,54 135,99 154,47 118,53 136,00 154,61

12 2 NA NA NA 301,95 317,63 333,35 301,95 317,62 333,29

12 3 NA NA NA 207,18 226,47 245,64 207,17 226,37 245,59

12 5 NA NA NA 131,62 151,18 171,48 131,67 151,34 171,38

Table 3.4. 3 Objective Function Values of Direct Model and RSA & ESA

Table 3.4. 3 illustrates that for the exactly solved problems (up to problems with

10 jobs and 3 machines) ESA finds mostly the same average objective function values

with the direct model. The gap between ESA and direct model lies between 0 and

1.06%. The same for RSA is between 0 and 1.27%. When the results of the 45 unsolved

 19

problems for RSA and ESA are compared, they have the same objective function value

in 18 problems; ESA performs better than RSA in 19 problems and vice versa in 8

problems.

Although we can surely say that direct model gives superior solutions, we cannot

distinguish algorithms in terms of objective function values. The solutions generated

from RSA and ESA are very close to each other.

 Direct Model RSA ESA

n m Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High Var.

6 2 3 3 3 2 1 1 3 3 3
6 3 3 3 3 1 1 1 2 2 2
6 5 3 3 3 0 1 2 0 1 2
8 2 3 3 3 2 1 0 3 3 3
8 3 3 3 3 1 0 0 2 1 0
8 5 3 3 3 2 2 1 2 3 3
10 2 3 3 3 2 0 0 3 3 3

Table 3.4. 4 Number of optimal solution found in direct model, RSA and ESA

When we compare the solutions derived from the direct model and algorithms, we

can claim that, ESA finds optimal solutions for 75% of the time (47 out of 63 solved

problems). It is 33.3% for RSA, which makes ESA better in terms of finding the exact

solution.

Even though, ESA has promising solutions in the problem types with 6 and 8 jobs,

we are not able to compare the results of the problems sets with 10 and 12 jobs since the

exact solutions of these problems cannot be generated. In order to compute results for

problem types with 10 or more jobs, we propose to use “Dual Decomposition Method

for Stochastic Programs” which is explained in the next chapter.

 20

Chapter 4

STOCHASTIC DUAL

DECOMPOSITION

In optimization, one of the main concerns is the time amount needed to solve

large scale problems. Generally the increase in the number of the variables and

constraints results in significant amount of time. Hence, the problem may become

intractable. Over the last six decades, researchers try to decompose the analytically

unsolvable problems to alleviate this difficulty.

The first decomposition method to mention here is Bender’s decomposition

method initially proposed by Benders [22]. In this method, the problem is separated into

two problems which are called master and sub-problem. The master problem consists of

complicating variables that makes the problem difficult to solve. Without the

complicating variables, the problem becomes significantly easier. The sub-problem

contains the rest of the variables. First the variables are fixed in the master problem and

solved for the sub-problem. At each iteration, a feasibility cut and/or an optimality cut is

added to the master problem. Optimal solution is found by solving these two problems

iteratively until the objective function values match.

Benders decomposition method is commonly used in stochastic programming

problems with recourse which have two variable types, first and second stage. In

stochastic programming, Benders decomposition is often called as L-Shaped method as

proposed in [23]. In this method, the first stage variables are considered as complicating

variables. Therefore, the master problem contains the first stage variables whereas the

sub-problem contains the second stage variables.

Integer L-Shaped method for integer stochastic programming problems is

proposed by Laporte and Louveaux [24]. In this method, the main difference from the

Bender’s decomposition is that the first stage variables must be binary. In the method, a

 21

new optimality cut is defined using these binary variables. Again like in the Bender’s

decomposition method, via the upper and lower bound generation, the exact solution

can be found in finite number of iterations.

The other decomposition method to mention here is Dual Decomposition method

proposed by Caroe and Shultz [6]. In this method, the original problem is aimed to be

separated into sub-problems. Since the number of sub-problems is equal to the scenario

number, we employ this method in order to find the exact solution of stochastic parallel

machine scheduling problem. In Chapter 4.1, we give brief information and

formulations of this method with binary first stage variables.

4.1. Stochastic Dual Decomposition in General for
Binary First Stage Variables

Recall the deterministic equivalent of a general stochastic program given in

Chapter 3.1.

Generic Deterministic Equivalent of Stochastic Programming Models

𝑧𝑧 = max� 𝑐𝑐𝑐𝑐 + �𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗 𝑦𝑦𝑗𝑗

𝑟𝑟

𝑗𝑗=1

∶ �𝑥𝑥, 𝑦𝑦𝑗𝑗 � ∈ 𝑆𝑆𝑗𝑗 for 𝑗𝑗 = 1. . 𝑟𝑟�

 (4.1.1)

where 𝑆𝑆𝑗𝑗 = {�𝑥𝑥, 𝑦𝑦𝑗𝑗 � = 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏, 𝑥𝑥 ∈ 𝑋𝑋,

 𝑇𝑇𝑗𝑗𝑥𝑥 + 𝑊𝑊𝑦𝑦𝑗𝑗 ≤ ℎ𝑗𝑗 , 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌}

In order to decompose the model into sub-problems, the copies of the first stage

variables (𝑥𝑥) are introduced. As the first stage variables do not depend on scenarios, the

values of variable 𝑥𝑥 must be equal to each other in each scenario. This is called

“nonanticipativity” in stochastic programming.

Not to violate the nonanticipativity, a new constraint set (4.1.3) is added to the

model:

 22

max 𝑧𝑧 = �𝑝𝑝𝑗𝑗

𝑟𝑟

𝑗𝑗=1

(𝑐𝑐𝑥𝑥𝑗𝑗 + 𝑞𝑞𝑗𝑗𝑦𝑦𝑗𝑗) ∶ �𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � ∈ 𝑆𝑆𝑗𝑗

for 𝑗𝑗 = 1. . 𝑟𝑟}

(4.1.2)

𝑥𝑥1 = 𝑥𝑥2 = ⋯ = 𝑥𝑥𝑟𝑟
 (4.1.3)

where 𝑆𝑆𝑗𝑗 = {�𝑥𝑥, 𝑦𝑦𝑗𝑗 � = 𝐴𝐴𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏, 𝑥𝑥𝑗𝑗 ∈ 𝑋𝑋,

 𝑇𝑇𝑗𝑗𝑥𝑥 + 𝑊𝑊𝑦𝑦𝑗𝑗 ≤ ℎ𝑗𝑗 , 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌}

Here, since we have nonanticipativity conditions (4.1.3) and the summation of

scenario probabilities is equal to 1, we can show that = ∑ 𝑝𝑝𝑗𝑗𝑟𝑟
𝑗𝑗=1 𝑐𝑐𝑥𝑥𝑗𝑗 . Hence, the

objective functions do not change. Constraint (4.1.3) has 𝑟𝑟 − 1 different equations. If

the model have only binary first stage variables (i.e. 𝑥𝑥) , the nonanticipativity condition

can also be satisfied using the following constraint:

��𝑎𝑎𝑗𝑗

𝑟𝑟

𝑗𝑗=2

�𝑥𝑥1 = 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑟𝑟𝑥𝑥𝑟𝑟 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑗𝑗 ∈ ℝ+ ∀𝑗𝑗

(4.1.4)

Here in (4.1.4), since 𝑥𝑥1 is a binary variable, it can only take values of 0 or 1.

Let’s assume that 𝑥𝑥1=0; then in order to have the right hand side of the equation as zero,

all 𝑥𝑥𝑗𝑗 ’s take value of zero. It is similar when 𝑥𝑥1=1. With only one constraint, the

nonanticipativity can hold.

With this notation, the model obviously has more constraints and variables than

the original stochastic program, even though they represent the same problem. Yet,

when the nonanticipativity constraint is dualized, Lagrangian relaxation can become a

separable problem:

Lagrange Relaxation of Stochastic Program with Binary First Stage

Variables:

 23

𝐷𝐷(λ) = max��𝑝𝑝𝑗𝑗

𝑟𝑟

𝑗𝑗=1

(𝑐𝑐𝑥𝑥𝑗𝑗 + 𝑞𝑞𝑗𝑗 𝑦𝑦𝑗𝑗)

+ λ��𝑎𝑎𝑗𝑗 �𝑥𝑥1 − 𝑥𝑥𝑗𝑗�
𝑟𝑟

𝑗𝑗=2

��

(4.1.5)

𝑠𝑠. 𝑡𝑡. 𝐴𝐴𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏 ∀𝑗𝑗 (4.1.6)

𝑇𝑇𝑗𝑗 𝑥𝑥𝑗𝑗 + 𝑊𝑊𝑦𝑦𝑗𝑗 ≤ ℎ𝑗𝑗 ∀𝑗𝑗 (4.1.7)

 𝑥𝑥𝑗𝑗 ∈ {0,1}, 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌 ∀𝑗𝑗

where λ is unbounded.

As Lagrange relaxation models give an upper bound for maximization and lower

bound for minimization problems, the model above gives an upper bound to the original

model. This model can be separated into independent sub-models. By solving each

model and summing the objective function values up, the solution can be found for a

given λ.

Below we provide the sub-model for j=1.

z1 = max��𝑝𝑝1(𝑐𝑐𝑥𝑥1 + 𝑞𝑞1𝑦𝑦1)
𝑟𝑟

𝑗𝑗=1

+ λ��𝑎𝑎𝑗𝑗𝑥𝑥1

𝑟𝑟

𝑗𝑗=2

��

(4.1.8)

 𝑠𝑠. 𝑡𝑡. 𝐴𝐴𝑥𝑥1 ≤ 𝑏𝑏 (4.1.9)

𝑇𝑇1𝑥𝑥1 + 𝑊𝑊𝑦𝑦1 ≤ ℎ1 (4.1.10)

 𝑥𝑥1 ∈ {0,1}, 𝑦𝑦1 ∈ 𝑌𝑌

And the sub-models for 𝟏𝟏 < 𝑗𝑗 ≤ 𝑟𝑟:

zj = max��𝑝𝑝𝑗𝑗 (𝑐𝑐𝑥𝑥𝑗𝑗 + 𝑞𝑞𝑗𝑗 𝑦𝑦𝑗𝑗)
𝑟𝑟

𝑗𝑗=1

− 𝜆𝜆𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗�

(4.1.11)

𝑠𝑠. 𝑡𝑡. 𝐴𝐴𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏 (4.1.12)

 24

𝑇𝑇𝑗𝑗 𝑥𝑥𝑗𝑗 + 𝑊𝑊𝑦𝑦𝑗𝑗 ≤ ℎ𝑗𝑗 (4.1.13)

 𝑥𝑥𝑗𝑗 ∈ {0,1}, 𝑦𝑦𝑗𝑗 ∈ 𝑌𝑌

 D(λ) can be found by D(λ) = ∑ zj
r
j=1 .

Since D(λ) is an upper bound for the original maximization problem, we seek for

the lowest upper bound to make the bound tighter. This is called the Lagrangian Dual

Problem and it can be represented as:

 𝑧𝑧𝐿𝐿𝐿𝐿 = minλ 𝐷𝐷(λ) (4.1.14)

The λ value that gives zLD can be found via a subgradient algorithm. The

subgradient algorithm [25] is adapted for the decomposition method and can be found

below:

Subgradient Algorithm for Dual Decomposition Method:

Initialization : λ = λ0

Iteration k : λ ← λ𝑘𝑘

Decompose and solve D(λ𝑘𝑘) with solution 𝑥𝑥(λ𝑘𝑘) and 𝑧𝑧(λ𝑘𝑘).

 λ𝑘𝑘+1 = max{ (λ𝑘𝑘 − µk . �∑ 𝑎𝑎𝑗𝑗 (𝑥𝑥1 − 𝑥𝑥𝑗𝑗)𝑟𝑟
𝑗𝑗=2 � , 0}

 𝑘𝑘 ← 𝑘𝑘 + 1

In this method, it is clear that �∑ 𝑎𝑎𝑗𝑗 (𝑥𝑥1 − 𝑥𝑥𝑗𝑗)𝑟𝑟
𝑗𝑗=2 � is gradient of the objective

function. At each iteration, λ is changed by a step value µk in the opposite direction of

gradient. There are different methods to calculate µk value. In this study, we use

µk = 𝜖𝜖𝑘𝑘 [D(λ𝑘𝑘) − D�]/���𝑎𝑎𝑗𝑗 (𝑥𝑥1 − 𝑥𝑥𝑗𝑗)
𝑟𝑟

𝑗𝑗=2

��

2

Where 𝜖𝜖𝑘𝑘 ∈ (0,2) and D� is an upper bound for 𝑧𝑧𝐿𝐿𝐿𝐿 . By this method, the

algorithm finds the optimal value in finite number of iterations [25].

 25

Although zLD provides a good bound, it doesn’t give the exact solution in general.

To find the exact solution, a branch-bound algorithm is implemented and can be found

below:

Branch and Bound Algorithm For Stochastic Dual Decomposition Method:

Step 1. Set solution of the stochastic problem 𝑧𝑧 = 0 and denote ℘ as the node set

in the search tree.

Step 2. Terminate if there is no node in the node set ℘. The incumbent solution 𝑥𝑥�

that yields the objective value 𝑧𝑧 is optimal.

Step 3. Select a node P from ℘, solve the 𝑧𝑧𝐿𝐿𝐿𝐿 of P (𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃)) and delete it from the

node set. Go to Step 2 when P is infeasible.

Step 4. If 𝑧𝑧 ≥ 𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃) , go to Step 2. Else,

i. If the nonanticipativity holds (i.e. solution is feasible), update 𝑧𝑧 by

𝑧𝑧 = 𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃) and delete all the problems 𝑃𝑃′ with 𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃′) ≤ 𝑧𝑧 ,

return back to Step 2.

ii. If the nonanticipativity does not hold, compute average 𝑥̅𝑥, if

0 ≤ 𝑥̅𝑥 ≤ 0.5, set 𝑥̅𝑥 as 0, and 1 otherwise. Check the feasibility. If

feasible, then compute 𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃′′) and update 𝑧𝑧 by 𝑧𝑧 =

max{𝑧𝑧 , 𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃′′)} and delete all the problems with lower lagrangian

dual values than 𝑧𝑧 , Continue with Step 5.

 Step 5. To branch, compute the average 𝑥̅𝑥 of vector 𝑥𝑥 and select a dimension 𝑥𝑥𝑖𝑖 of

vector 𝑥𝑥. Add two new problems with new constraints 𝑥𝑥𝑖𝑖 ≤ ⌊𝑥𝑥𝑖𝑖� ⌋ and 𝑥𝑥𝑖𝑖 ≥ ⌊𝑥𝑥𝑖𝑖� ⌋ +1.

Continue with Step 2.

In this branch and bound procedure, the aim is to close the gap via finding better

lower bounds by feasible integer solutions and upper bounds by the Lagrangian dual

values iteratively.

 26

4.2. Stochastic Dual Decomposition for Robust Parallel
Machine Scheduling Problem with Minimizing
Makespan

Recall the deterministic equivalent of SPMSP :

Deterministic Equivalence Formulation of SPMSP

Indices and Sets:

𝑖𝑖 represents machines (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚)

𝑗𝑗 represents jobs (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛)

𝑠𝑠 represents scenarios (1 ≤ 𝑠𝑠 ≤ 3𝑛𝑛)

Data:

𝑝𝑝𝑗𝑗𝑗𝑗 is the processing time of job 𝑗𝑗 under scenario 𝑠𝑠

 𝛼𝛼𝑠𝑠 is the occurrence probability of scenario 𝑠𝑠

Decision Variables:

 𝑥𝑥𝑖𝑖𝑖𝑖 : �
1 if job 𝑗𝑗 is done in machine 𝑖𝑖
0 otherwise

�
 𝑧𝑧𝑠𝑠 : completion time of the last job (makespan) at scenario 𝑠𝑠

Deterministic Equivalent Model Formulation:

min�𝑧𝑧𝑠𝑠

3𝑛𝑛

𝑠𝑠=1

𝑎𝑎𝑠𝑠

(4.2.1)

 𝑠𝑠. 𝑡𝑡. 𝑧𝑧𝑠𝑠 ≥ �𝑝𝑝𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

 ∀𝑖𝑖, 𝑠𝑠 (4.2.2)

�𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 1 ∀𝑗𝑗 (4.2.3)

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖, 𝑗𝑗 (4.2.4)

To use the dual decomposition method, first stage variables 𝑥𝑥𝑖𝑖𝑖𝑖 are copied and

changed to 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 . The following model is equivalent of the previous one. Note that we

only change variable 𝑥𝑥𝑖𝑖𝑖𝑖 , the rest of the data and variables remain the same.

 27

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 : �1 if job 𝑗𝑗 is done in machine 𝑖𝑖 at scenario 𝑠𝑠
0 otherwise

�

Model with copied first stage variables:

min�𝑧𝑧𝑠𝑠

3𝑛𝑛

𝑠𝑠=1

𝑎𝑎𝑠𝑠

(4.2.5)

 𝑠𝑠. 𝑡𝑡. 𝑧𝑧𝑠𝑠 ≥ �𝑝𝑝𝑗𝑗𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

 ∀𝑖𝑖, 𝑠𝑠 (4.2.6)

�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 1 ∀𝑗𝑗, 𝑠𝑠 (4.2.7)

 ��𝑎𝑎𝑠𝑠

3𝑛𝑛

𝑠𝑠=2

�𝑥𝑥𝑖𝑖𝑖𝑖1 = �𝑎𝑎𝑠𝑠𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

3𝑛𝑛

𝑠𝑠=2

 ∀𝑖𝑖, 𝑗𝑗 (4.2.8)

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖, 𝑗𝑗,s (4.2.9)

By dualizing the nonanticipativity constraint (4.2.8) with a Lagrange multiplier 𝜆𝜆,

a Lagrange relaxation (LR) model is obtained. The objective function of this LR is

given below; the constraints are the same constraints with (4.2.6), (4.2.7) and (4.2.9)

ZLR = min�𝑧𝑧𝑠𝑠

3𝑛𝑛

𝑠𝑠=1

𝑎𝑎𝑠𝑠

+ ��λ𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑛𝑛

𝑗𝑗=1

��𝑎𝑎𝑠𝑠

3𝑛𝑛

𝑠𝑠=2

�𝑥𝑥𝑖𝑖𝑖𝑖1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ��

(4.2.10)

Since LR is separable into independent 3𝑛𝑛 sub-problems, we decompose it. There

are two types of sub-problems for 𝑠𝑠 = 1 and 𝑠𝑠 ≠ 1 which can be found below:

Sub Problem with 𝑠𝑠 = 1:

𝑍𝑍𝐿𝐿𝐿𝐿1 = min 𝑎𝑎1𝑧𝑧1 + ��λ𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑛𝑛

𝑗𝑗=1

(1 − 𝑎𝑎1)𝑥𝑥𝑖𝑖𝑖𝑖1

(4.2.11)

 𝑠𝑠. 𝑡𝑡. 𝑧𝑧1 ≥ �𝑝𝑝𝑗𝑗1𝑥𝑥𝑖𝑖𝑖𝑖1

𝑛𝑛

𝑗𝑗=1

∀𝑖𝑖 (4.2.12)

 28

�𝑥𝑥𝑖𝑖𝑖𝑖1

𝑚𝑚

𝑖𝑖=1

= 1
∀𝑗𝑗 (4.2.13)

𝑥𝑥𝑖𝑖𝑖𝑖1 ∈ {0,1} ∀𝑖𝑖, 𝑗𝑗 (4.2.14)

Sub Problem with fixed 𝑠𝑠 ≠ 1:

𝑍𝑍𝐿𝐿𝐿𝐿𝑠𝑠min 𝑎𝑎𝑠𝑠𝑧𝑧𝑠𝑠 − ��λ𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑛𝑛

𝑗𝑗=1

 𝑎𝑎𝑠𝑠𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(4.2.15)

 𝑠𝑠. 𝑡𝑡. 𝑧𝑧𝑠𝑠 ≥ �𝑝𝑝𝑗𝑗𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

∀𝑖𝑖 (4.2.16)

�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 1
∀𝑗𝑗 (4.2.17)

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖, 𝑗𝑗 (4.2.18)

The solution to the LR can be found by the following equation:

𝑍𝑍𝐿𝐿𝐿𝐿(𝜆𝜆) = �𝑍𝑍𝐿𝐿𝐿𝐿𝑠𝑠

3𝑛𝑛

𝑠𝑠=1

 (4.2.19)

As discussed in Chapter 4.1, finding 𝑍𝑍𝐿𝐿𝐿𝐿(𝜆𝜆) for a fixed 𝜆𝜆 value can only give a

lower bound for the deterministic equivalent of SPMSP problem. Since we are looking

for Lagrangian dual 𝑧𝑧𝐿𝐿𝐿𝐿 = minλ 𝑍𝑍𝐿𝐿𝐿𝐿(𝜆𝜆) the following sub-gradient algorithm is

employed:

Pseudo Code for Subgradient Algorithm of Dual Decomposition Method (A):

Initialization : 𝜆𝜆𝑖𝑖𝑖𝑖 = λij
0

Iteration k : 𝜆𝜆𝑖𝑖𝑖𝑖 ← 𝜆𝜆𝑖𝑖𝑖𝑖
𝑘𝑘

Decompose and solve 𝑍𝑍𝐿𝐿𝐿𝐿�𝜆𝜆𝑖𝑖𝑖𝑖
𝑘𝑘� with solution 𝑥𝑥�𝜆𝜆𝑖𝑖𝑖𝑖

𝑘𝑘� and 𝑧𝑧(𝜆𝜆𝑖𝑖𝑖𝑖
𝑘𝑘).

 𝜆𝜆𝑖𝑖𝑖𝑖
𝑘𝑘+1 = max{ (𝜆𝜆𝑖𝑖𝑖𝑖

𝑘𝑘 − µk . �∑ 𝑎𝑎𝑠𝑠(𝑥𝑥𝑖𝑖𝑖𝑖1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖)3𝑛𝑛
𝑠𝑠=2 � , 0}

 𝑘𝑘 ← 𝑘𝑘 + 1

 29

where µk = [D� − 𝑍𝑍𝐿𝐿𝐿𝐿�𝜆𝜆𝑖𝑖𝑖𝑖
𝑘𝑘�]/��∑ 𝑎𝑎𝑠𝑠(𝑥𝑥𝑖𝑖𝑖𝑖1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖)3𝑛𝑛

𝑠𝑠=2 ��
2

and the upper bound is taken as D� = ∑ 𝑝𝑝𝑗𝑗3𝑛𝑛
𝑛𝑛
𝑗𝑗=1 which denotes that all the jobs

have the pessimistic values and operated on the same machine. Via this algorithm, a

better lower bound can be generated. This lower bound can be used in the branch and

bound generated for the dual stochastic decomposition method given below . Via the

branch and bound algorithm, the exact solution of the deterministic equivalent of

SPMSP can be found.

Dual Decomposition B&B Algorithm Pseudo Code (B):

 Step 1. Set solution of the stochastic problem 𝑧𝑧 = +∞ and denote ℘ as the node

set in the search tree

Step 2. Terminate if there is no node in the node set ℘. The incumbent solution 𝑥𝑥�

that yields objective value 𝑧𝑧 is optimal.

Step 3. Select a node P from ℘, solve the 𝑧𝑧𝐿𝐿𝐿𝐿 of P (𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃)) by (A) and delete it

from the problem set. Go to Step 2 when P is infeasible.

Step 4. If 𝑧𝑧 ≤ 𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃) , go to Step 2. Else,

i. If the nonanticipativity holds (i.e. solution is feasible), update 𝑧𝑧 by

𝑧𝑧 = 𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃) and delete all the problems 𝑃𝑃′ with 𝑧𝑧𝐿𝐿𝐿𝐿(𝑃𝑃′) ≥ 𝑧𝑧 ,

return back to Step 2.

ii. If the nonanticipativity does not hold, compute average 𝑥𝑥𝑖𝑖� , if

0 ≤ 𝑥𝑥𝑖𝑖� ≤ 0.5, set 𝑥𝑥𝑖𝑖 as 0, and 1 otherwise. Check feasibility. If

feasible, then compute objective function 𝑧𝑧 of this new problem

and update 𝑧𝑧 by 𝑧𝑧 = min{𝑧𝑧 , 𝑧𝑧} and delete all the problems with

higher Lagrangian dual values than 𝑧𝑧 , Continue with Step 5.

 Step 5. To branch, compute the average 𝑥𝑥𝑖𝑖� values, select the most non-integer 𝑥𝑥𝑖𝑖�

(the closest one to 0.5) and add two new problems with new constraints 𝑥𝑥𝑖𝑖 = 0 and

𝑥𝑥𝑖𝑖 = 1. Continue with Step 2.

 30

4.3. Computational Results of Stochastic Dual
Decomposition Method

We apply the dual decomposition method for the unsolved problems with 10 jobs.

Since we are constructing sub-models according to the number of scenarios and using a

slow convergence method –subgradient algorithm, finding solution for the dual

decomposition is time consuming. We try solving small problems via the dual

decomposition method. Although it can generate the exact solutions, the CPU time

needed to solve is much more than the original solution. For instance, the CPU time for

the first problem of 6 jobs – 2 machine and low variance problem is 698 sec whereas it

is 2,76 sec for the direct model. When we try solving large and unsolved problems via

the dual decomposition method, we cannot find exact solutions. This is why we limit

the subgradient algorithm to two iterations (rather than finding the Lagrangian Dual)

and only solve the first node at the B&B tree. For the same time limit, we compare gaps

of the direct model and dual decomposition model in order to see which one gets closer

to the optimal value. Gaps are calculated from the formulation

Gap =
Upper Bound− Lower Bound

Lower Bound

 Both direct model and the dual decomposition method are coded in C++ using

Cplex 12.6. The time limitation is 10 hour CPU time. 1 thread is used. In Table 4.3. 1

the gaps and CPU times for the dual decomposition and direct model are provided.

These experiments are only done for the problems with 10 jobs and 3 and 5 machines.

For larger problems, it is not practical to find gap values.

 31

 Direct Model Dual Decomposition

n m Variation Time GAP Incumbent
Solution

Time GAP Incumbent
Solution

Lower
Bound

10 3 Medium 3600 5% 216,67 34308 14% 216,461 186

10 3 Medium 3600 15% 213,64 33763 14% 207,652 177,7

10 3 Medium 3600 8% 175,74 32779 15% 175,303 149,4

10 3 High 3600 5% 236,28 34314 21% 235,561 186,7

10 3 High 3600 75% 528,36 34109 21% 226,603 178,6

10 3 High 3600 25% 198,09 32600 21% 191,65 150,5

10 5 Low 3600 79% 552,36 40836 10% 133,314 119,7

10 5 Low 3600 6% 122,92 41405 6% 122,092 114,5

10 5 Low 3600 79% 445,36 40822 7% 102,948 96,01

10 5 Medium 3600 93% 552,36 43279 19% 148,529 120,4

10 5 Medium 3600 5% 141,18 41739 15% 140,765 120,2

10 5 Medium 3600 47% 187,49 41026 17% 119,074 99,33

10 5 High 3600 75% 552,36 42891 25% 170,767 127,8

10 5 High 3600 35% 220,30 41762 17% 160,734 133,3

10 5 High 3600 75% 445,36 40051 18% 135,897 111

Table 4.3. 1 Gaps for the large problems by dual decomposition and direct model

The results show that, 11 problems out of 15 are resulted in better gaps by using

dual decomposition method than direct model. For the same type problems, dual

decomposition method almost yields similar gaps. On the other hand, gaps for the direct

model fluctuate a lot for the same problem types. See for instance problem type 10 jobs

5 machine and low variation. The gaps yielded from direct model are 79%, 6% and

79%.

From here we can conclude that, for 10 jobs problems, dual decomposition

method performs better generally in terms of generating solutions that are closer to the

optimal solutions.

4.4. A New Heuristic with Dual Decomposition Method

In Chapter 4.3, it is observed that the computations of the dual decomposition

method take more time than the direct model in small problems. In this chapter, we

combine this method with the random selection method as applied in Chapter 3 for the

RSA to create a new heuristic procedure that can give approximate solutions. In order to

do this, 5% of the scenarios (�(3𝑛𝑛)
20
�) are randomly selected and the dual decomposition

 32

method is applied with these selected scenarios. Table 4.4. 1 gives the summary of the

objective function values of the new heuristic method and the direct model of the

problems.

 Dual Decomposition Heuristic Method
(incumbent solution)

Direct Model

n m Low Var. Medium Var. High Var. Low Var. Medium Var. High Var.

6 2 176,83 208,09 201,26 176,36 188,09 200,31
6 3 123,88 142,83 158,82 122,92 137,35 152,38
6 5 90,51 101,62 121,43 90,38 101,62 115,75
8 2 234,52 190,31 202,89 222,79 190,14 201,28
8 3 124,92 138,40 152,34 123,54 137,18 150,84
8 5 83,87 99,86 NA 80,16 93,80 134,55
10 2 265,16 285,06 294,15 264,02 278,80 293,57
10 3 NA NA 217,61 NA NA NA
10 5 NA 143,43 200,28 NA NA NA
12 2 309,64 323,06 354,23 NA NA NA
12 3 NA NA NA NA NA NA
12 5 NA NA 220,41 NA NA NA

Table 4.4. 1 Average objective function values of dual decomposition heuristic method and direct
model

The gap between the direct model and dual decomposition heuristic lies between

0% and 6.47% for the solved problems. This interval is in fact larger than the interval

observed from the RSA - random selection method in Chapter 3. The reason for a larger

interval is that in this method, 5% of the scenarios are selected because of

computational reasons, where in RSA, it is 10%. The more the scenarios selected, the

closer the gap is generated to the exact solution.

The CPU times of the dual decomposition heuristic method are given in Table 4.4.

2. Up to 8 jobs, only for problems with 8 jobs, 5 machines and low variation, the

heuristic method can find solution faster than the direct model with 4.5% gap. For the

problems having more than 8 jobs, the heuristic method performs better in terms of

CPU times. It can be concluded that, this method can be applied for the problem types

10 job – 2 machine and 12 job – 2 machine. When the problem size is large, the method

cannot generate solutions in 3 and 5 machine problems.

 33

 Dual Decomposition Heuristic Method Direct Model

n m Low Var. Medium Var. High Var. Low Var. Medium Var. High Var.

6 2 53,79 254,61 5797,65 3,13 3,34 2,69
6 3 4318,04 678,81 155,11 5,35 6,86 7,05
6 5 5,21 14,03 13,42 3,40 7,69 7,99
8 2 31235,97 1734,49 29467,5 134,30 121,36 152,42
8 3 6001,51 6461,06 1489,18 243,01 235,40 237,03
8 5 525,9 570,45 NA 606,96 785,67 382,06
10 2 8339,92 8488,94 7970,58 21600,93 30169,3 28716,11
10 3 NA NA 7705,39 NA NA NA
10 5 NA 7736,39 8747,97 NA NA NA
12 2 23213,93 20515,6 21450,87 NA NA NA
12 3 NA NA NA NA NA NA
12 5 NA NA NA NA NA NA

Table 4.4. 2 Average CPU times of dual decomposition heuristic method and direct model

Via this heuristic method, we are able to generate solutions for small problems;

however the CPU time needed is higher than the direct model. For the large problems

we are not able to generate solutions. In order to find better objective function values

with lower CPU times, we have tried a new heuristic approach in Chapter 5.

 34

Chapter 5

HANDLING LARGE PROBLEMS

Heuristic algorithms can be applied to computationally expensive problems when

the approximate solutions are acceptable. They are faster than the exact solution

generating algorithms such as branch-bound or branch-cut. However; a heuristic

algorithm cannot guarantee to find the exact solution of a problem. A local optimal

solution is generated, it may be the global solution or not. The aim in finding such

approximate solutions is to find with small deviations to the global optimal solution.

5.1. Tabu Search Algorithm

In our problem, we observe that finding the exact solution is expensive in terms of

computational time as it is in NP-Hard problems. We develop a tabu search algorithm

(TSA) to find an approximate solution for large problems. TSA has firstly presented in

the study of Glover [26]. The algorithm aims to avoid trapping into the local optimal

solutions by punishing or restricting some certain moves and allowing the non-

improving ones.

There are some basic elements of TSA. The first one to mention is neighborhood

structure. A neighbor set of a feasible solution is all the solutions that can be reached

within a move. In this algorithm, the most important step is defining moves and

neighbor sets. For instance, a move can be swapping the orders of cities to be visited in

traveling salesman problem. By using this move, a neighbor set can be described as

solutions that have only switched two cities’ positions.

A second basic element of a TSA is tabu moves. A tabu move prevents the

algorithm from cycling by not allowing going back to the local optimal solution.

According to the problem type, a move or the reverse of it is banned in the algorithm

 35

even though it can produce better results. For a better understanding of tabu moves,

Figure 5.1. 1 is given below.

Figure 5.1. 1 Illustration of tabu moves in TSA

In this illustrative example, a move is generated from solution A to solution B as

it provides the best solution among the neighbors. At the local optimum solution B,

even though staying at B provides the best solution among the neighbors of B, a move

must be done among the neighbors and C is selected as the better resulting solution. At

solution C, B is clearly in the neighbor set and has a better solution than all the other

solutions in the neighbor set of C. However, going back to B is defined as a tabu move

and forbidden. This way, the algorithm prevents cycles to the local optimal solutions.

From solution C, it is continued with solution D and eventually global optimum can be

reached.

The tabus are listed in a tabu list, and after a certain number of iterations, the last

tabu is deleted from the tabu list to allow the move. This number is called tabu tenure.

Another basic element of TSA is aspiration criteria. In some cases, even though

there is no risk of cycling back to the local optimal solution, a better move is banned

because of the tabu list. In these situations, an aspiration criteria is defined to enable the

algorithm to go to the better solutions. A well known aspiration criteria is to make the

move when the new solution is better than the current best solution even though it is a

tabu move.

TSA can be terminated when a specific number of iterations is reached, or when

there is no significant improvement for a number of iterations.

 36

A basic TSA for a minimization problem can be found below:

Step 0. Set current best solution 𝑧𝑧 = + ∞..

Step 1. Set 𝑘𝑘 = 1, Find an initial solution 𝑧𝑧1. Update z=min{z, 𝑧𝑧1}

Step 2. Find the neighbors 𝑁𝑁(𝑧𝑧𝑘𝑘). Select best one of the neighbors and the

aspiration criteria. Update tabu list and 𝑧𝑧 and 𝑘𝑘 ← 𝑘𝑘 + 1.

Step 3. If the termination criterion is met, stop. If not, go to Step 2.

5.2. TSA for Stochastic Parallel Machine Scheduling
Problem with Minimizing Makespan

To apply TSA to our problem, we first define moves. There are two candidate

moves that could be used in TSA algorithm. The first one is swapping. By swapping,

the assignment of two jobs on two different machines will be reversed. For instance,

suppose that 𝑥𝑥𝑖𝑖1𝑗𝑗1 = 1 and 𝑥𝑥𝑖𝑖2𝑗𝑗2 = 1; before the swapping, job 𝑗𝑗1 and 𝑗𝑗2 are scheduled

on machines 𝑖𝑖1 and 𝑖𝑖2 respectively. After the swap operation, job 𝑗𝑗1 and 𝑗𝑗2 are scheduled

on machines 𝑖𝑖2 and 𝑖𝑖1 respectively. However, by swapping, the layout of the schedule

will not be effected and changed. In Figure 5.2. 1, an illustrative example is given. In

the upper figure, jobs 1,2, and 3 are processed at machine 1, jobs 4 and 5 are processed

at machine 2 and job 6 is processed at machine 3. A swapping operation is done for job

3 and 5. The lower figure gives the schema of the after swapping schedule. Note that

after swapping operations, there are 3 jobs in the first, 2 jobs in the second and 1 job in

the last machine.

Figure 5.2. 1 The scheduling layout example for before (up) and after (down) swapping

 37

Another candidate move operation is inserting. By inserting, a job is removed

from its scheduled machine and put into another one. For a job j and machine i, if

𝑥𝑥𝑖𝑖𝑖𝑖 = 1, after the move, it will be 𝑥𝑥𝑖𝑖𝑖𝑖 = 0, and 𝑥𝑥𝑖𝑖𝑖𝑖 = 1, where 𝑗𝑗 ≠ 𝑘𝑘. In our study, we

have selected inserting as the first move. At each solution, first the neighbors are found

via inserting. The best neighbor is checked if it is a tabu or not. If it is not a tabu move,

this solution is locally improved swap moves if it is possible. If the move is a tabu, it is

also compared with the current best solution. It is selected if tabu solution is better than

the current best solution, then the swapping operations is controlled.

The pseudo code of the algorithm can be found below:

Step 0. Set current best solution 𝑧𝑧 = + ∞..

Step 1. Set 𝑘𝑘 = 1 and = 0 , Find an initial solution 𝑧𝑧1. Update z=min{z, 𝑧𝑧1}

Step 2. Find the neighbors 𝑁𝑁(𝑧𝑧𝑘𝑘) by inserting move.

Step 3. Select the best neighbor

i. If it is not a tabu move, move and check the swap operations. If there

is any improvement in swapping, move and update 𝑧𝑧. Go to Step 4.

ii. If it is a tabu move, compare with the current best solution. If tabu is

better than the current best solution, move and update 𝑧𝑧, check the

swap operations. If there is any improvement in swapping, move and

update 𝑧𝑧 and go to Step 4. If tabu move is not better than the current

best solution, delete the move from the neighbor list, and go back to

Step 3.

 Step 4. Add the inserting move to the tabu list as the first element, and delete the

last element of the tabu list. 𝑘𝑘 ← 𝑘𝑘 + 1.

 Step 5. If z is not improved, set 𝑡𝑡 ← 𝑡𝑡 + 1. If z is improved, set 𝑡𝑡 ← 0.

 Step 6. If 𝑡𝑡 ≥ 𝑇𝑇, terminate. If not, go to Step 2.

where 𝑇𝑇 indicates the maximum allowed iteration number without improvement. The

initial solutions are generated by firstly scheduling all the jobs to the first machine and a

solution is found. Secondly, all the jobs are randomly allocated to the machines.

 38

Thirdly, LEPT2 rule is assigned. Finally, since ESA algorithm performs well in less

than 3 seconds, as the initial solution, jobs are allocated according to the solution

generated from ESA.

In the algorithm, two alterations can be done, the first is deciding the tabu list size

(tabu tenure) and the second is allowed iteration number to the next improving solution.

To find if there is a dominant starting approach, we solve all the problems with

tabu tenure and allowed iteration number equal to 3 and 15 respectively. Table 5.2. 1

gives the average objective function values of different starting approaches. When we

examine the table, it can be inferred that ESA outperforms the other starting approaches

generally. Out of 36, only in 5 average objective function values ESA could not find a

better solution than the other methods. The bald cells are the ones where ESA performs

equal or better than the other starting approaches. When we compare the CPU times of

the different start approaches, there is no significant dominance relation. This is why we

continue our TSA algorithms with different tabu tenure and allowed iteration numbers

for ESA start approach.

For the tabu tenure, we examine the solutions with 3, 4 and 5. Since in the

inserting moves, the neighbor set has (𝑚𝑚 − 1)𝑛𝑛 elements, the minimum neighbor set

has 6 elements in the 6 jobs- 2 machine problems. This is why we limited the maximum

tabu tenure size to 5. The allowed iteration number is taken as 15 and 20.

39

All Jobs in Same

Machine
Random Assignment LEPT2 Rule Start ESA Start Exact

n m Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

6 2 176,36 188,09 200,31 176,36 188,09 200,31 176,36 188,09 200,31 176,36 188,09 200,31 176,36 188,09 200,31
6 3 122,92 137,35 152,38 122,92 137,35 152,43 122,92 137,35 152,38 122,92 137,35 152,38 122,92 137,35 152,38
6 5 90,38 101,62 115,75 90,38 101,62 115,75 90,38 101,62 115,75 90,38 101,62 115,75 90,38 101,62 115,75
8 2 223,02 236,49 250,09 222,88 236,44 250,05 222,85 236,42 250,04 222,79 236,40 250,03 222,79 236,40 250,03
8 3 153,71 170,26 186,87 153,71 170,28 186,89 153,68 170,26 186,87 153,71 170,28 186,89 153,68 170,26 186,87
8 5 102,03 117,64 134,55 102,81 117,99 134,82 102,03 117,64 134,55 102,03 117,64 134,55 102,03 117,64 134,55
10 2 264,02 278,80 293,57 264,02 278,80 293,57 264,02 278,80 293,57 264,02 278,80 293,57 264,02 278,80 293,57
10 3 182,06 199,88 217,90 182,05 199,96 217,93 181,94 199,89 217,89 181,91 199,82 217,87 NA NA NA
10 5 118,53 135,99 154,50 118,53 135,88 154,48 118,53 135,88 154,48 118,53 135,88 154,48 NA NA NA
12 2 301,95 317,62 333,29 301,95 317,62 333,29 301,95 317,62 333,29 301,95 317,62 333,29 NA NA NA
12 3 207,18 226,34 245,53 207,18 226,37 245,56 207,18 226,36 245,57 207,17 226,35 245,57 NA NA NA
12 5 131,92 151,47 171,61 132,07 151,29 171,69 131,85 151,43 171,56 131,62 151,27 171,32 NA NA NA

Table 5.2. 1 Comparison of different starting approached in terms of average objective function values

40

Table 5.2. 1 gives the information about the average objective function values of

different tabu tenure and allowed iteration numbers. From the table, we see that only for

2 problem types (8 jobs, 3 machines with medium and high variations) TSA algorithms

of tabu tenure with 4 and 5 outperforms TSA of tabu tenure with 3.

 15-3 & 20-3 15-4 , 15-5, 20-4 & 20,5

n m Low Var. Medium Var. High Var. Low Var. Medium Var. High Var.

6 2 176,36 188,09 200,31 176,36 188,09 200,31
6 3 122,92 137,35 152,38 122,92 137,35 152,38
6 5 90,38 101,62 115,75 90,38 101,62 115,75
8 2 222,79 236,40 250,03 222,79 236,40 250,03
8 3 153,71 170,28 186,89 153,71 170,26 186,87
8 5 102,03 117,64 134,55 102,03 117,64 134,55
10 2 264,02 278,80 293,57 264,02 278,80 293,57
10 3 181,91 199,82 217,87 181,91 199,82 217,87
10 5 118,53 135,88 154,48 118,53 135,88 154,48
12 2 301,95 317,62 333,29 301,95 317,62 333,29
12 3 207,17 226,35 245,57 207,17 226,35 245,57
12 5 131,62 151,27 171,32 131,62 151,26 171,32

Table 5.2. 2 Average objective function values for different tabu list size and allowed iteration
numbers

When we compare the CPU times of the TSA algorithms with different tabu

tenure size and allowed iteration numbers in Table 5.2. 3, it is clear that there is a

significant rise in TSA’s with allowed iteration number 20. Since the objective function

values are the same for the TSA’s 15-4, 15-5, 20-4, 20-5 we restrict ourselves with the

choices 15-4 and 15-5. When we compare the CPU times of these TSA’s, we can say

that, for high variation problems, 15-5 can find the same solution faster than 15-4. For

medium variation it is vice-versa.

Since for the large problems, 15-5 performs better generally in terms of CPU

times, we select 15-5 as the best TSA algorithm for stochastic parallel machine

scheduling problem.

41

 TSA with 15-3 TSA with 15-4 TSA with 15-5 TSA with 20-3 TSA with 20-4 TSA with 20-5

n m Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

6 2 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,2 0,2 0,1 0,1 0,1 0,2 0,2 0,2 0,1 0,2 0,2
6 3 0,2 0,2 0,2 0,3 0,2 0,2 0,3 0,3 0,3 0,2 0,2 0,2 0,4 0,4 0,4 0,4 0,4 0,4
6 5 0,3 0,3 0,4 0,3 0,4 0,5 0,4 0,4 0,5 0,3 0,3 0,3 0,6 0,6 0,6 0,6 0,6 0,6
8 2 1,1 1,1 1,1 1,5 1,1 1,3 1,7 1,1 1,1 2,6 2,6 2,6 2,6 2,6 2,6 2,5 2,6 2,6
8 3 1,8 1,9 2,0 2,4 3,2 2,9 1,8 2,4 2,4 4,3 4,5 4,8 3,7 4,3 5,5 2,4 3,0 3,0
8 5 4,2 4,7 4,4 4,1 5,3 5,3 3,0 3,0 3,1 3,8 4,2 4,8 5,8 3,9 6,2 3,8 6,2 3,9
10 2 38 38 41 38 32 36 28 38 36 43 33 42 56 34 34 35 30 36
10 3 57 41 42 50 43 44 64 40 42 66 63 78 62 63 62 66 69 55
10 5 87 121 118 85 82 92 93 99 80 125 95 90 116 96 141 112 123 142
12 2 398 559 560 352 458 732 385 426 485 549 668 466 522 613 1042 579 656 626
12 3 966 829 882 935 944 1019 895 1030 722 1179 1294 1065 1220 966 1003 1327 866 1051
12 5 1672 1794 1989 1321 1281 1409 1285 1389 1172 1802 2320 2511 1977 2372 2572 1874 2368 2589

Table 5.2. 3 Average CPU times of TSA algorithm with different tabu tenure size and allowed number of iterations

42

Up to this part of the thesis, TSA with tenure size 5 and allowed number of

iteration 15 with ESA start performed well. Also, the performance of ESA is

remarkable. We check and compare the objective function values and CPU times of

these two algorithms in order to find out the best solution method. Table 5.2. 4 gives the

average objective function values of these two algorithms with direct model.

 Direct Model TSA with 15-5 and ESA start ESA

n m
Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

Low
Var.

Medium
Var.

High
Var.

6 2 176,36 188,09 200,31 176,36 188,09 200,31 176,36 188,09 200,31
6 3 122,92 137,35 152,38 122,92 137,35 152,38 122,92 137,35 152,38
6 5 90,38 101,62 115,75 90,38 101,62 115,75 90,38 101,73 115,75
8 2 222,79 236,40 250,03 222,79 236,40 250,03 222,79 236,40 250,03
8 3 153,68 170,26 186,87 153,71 170,26 186,87 153,71 170,36 187,05
8 5 102,03 117,64 134,55 102,03 117,64 134,55 102,03 117,64 134,55

10 2 264,02 278,80 293,57 264,02 278,80 293,57 264,02 278,80 293,57
10 3 NA NA NA 181,91 199,82 217,87 181,91 199,82 217,87
10 5 NA NA NA 118,53 135,88 154,48 118,53 136,00 154,61
12 2 NA NA NA 301,95 317,62 333,29 301,95 317,62 333,29
12 3 NA NA NA 207,17 226,35 245,57 207,17 226,37 245,59
12 5 NA NA NA 131,62 151,26 171,32 131,67 151,34 171,38

Table 5.2. 4 Average Objective Function Values of TSA and ESA

We can see that, for most of the problems, TSA and ESA find the same objective

function value. For the unequal objective function values, TSA slightly outperforms

ESA1. The deviation (100 ∗ ESA −TSA 1
TSA 1

) is at most 0.11%. (The underlined cells indicate

that TSA performs better than ESA. The other cells have the same values for TSA and

ESA)The CPU times of ESA is at most 3 seconds whereas it reaches 1389 seconds in

the large problems in TSA. Here we can conclude that, ESA performs the best in terms

of CPU times and it can generate superior schedules for most of the problems.

43

Chapter 6

CONCLUDING REMARKS AND

FUTURE DIRECTIONS

Parallel machine scheduling problem is widely studied by the researchers.

However, most of the studies deal with deterministic problems ignoring the disruptions

such as processing time variability. In fact these disruptions and uncertainties

deteriorate performance of the schedule and must be taken into consideration before the

planning phase.

In this thesis, we study parallel machine environment with processing time

uncertainty. We assume that the processing time of each job follows a discrete

triangular distribution. This problem can be modeled as the deterministic equivalence

by the scenario approach. The aim is to find the schedule that minimizes the expected

makespan over scenarios. Although it is straightforward to model the problem, the

number of scenarios increases exponentially and makes the problem difficult to solve.

This is why we have tried different alternative methods for the solution.

We construct different solution algorithms for the beginning. Firstly we have

scheduled the jobs according to their expected processing times. The job with the

longest processing time is allocated to the first machine; the job with the second longest

processing time is allocated to the second machine, and so forth. (This method is called

Longest Expected Processing Time) Secondly, we randomly select 10% of the

schedules and solved the problems to achieve a feasible solution. Lastly, we assume that

in each scenario only one job has an uncertain value and the rest of the jobs have the

most probable processing times. We compare the results and conclude that the last

algorithm yields better solutions with lower computational time than the others.

44

In order to find exact solutions of the large-sized problems, we have applied

“Dual Decomposition Method” for our study. In our study, for the large sized problem

sets we manage to have better gaps for the solution than the direct model. However,

even though the results are satisfying, the dual decomposition method is not efficient in

terms of time. We also introduce a new heuristic method based on the dual

decomposition. We randomly select 5% of the scenarios and applied dual

decomposition method with these scenarios. The results show that at most 6% gap to the

exact solution is reached via this algorithm.

Lastly, we propose a Tabu Search Algorithm for the study. The results show that,

this algorithm generally finds the global optimal solution. Even in the cases of when it

cannot find it, the deviation is negligible.

In conclusion, to the best of our knowledge this study is the first study that adopts

dual decomposition method for the robust parallel machine scheduling problem with

minimizing makespan. This study can be extended by the following research directions:

1. As the number of scenarios increase, it is harder to solve the problems. Can

we find a subset of scenario set which can still represents the whole scenario

set? Does this subset perform well when the processing time distribution is

nonsymmetrical?

2. How does the dual decomposition method perform on other scheduling

environments?

3. What will be the effect of the parallel coding on dual decomposition method

for parallel machine scheduling?

4. When other disruptions such as machine break down taken into consideration,

does the method performs well?

45

BIBLIOGRAPHY

[1] M. L. Pinedo, Scheduling Theory, Algorithms and, Systems, 4th ed. Springer,
2012.

[2] B. Tadayon and J. C. Smith, “Robust offline single-machine scheduling
problems,” in Wiley Encyclopedia of Operations Research and Management
Science, J. J. Cochran, Ed. John Wiley & Sons, 2015.

[3] S. Gören, “Generating robust and stable machine schedules from a proactive
standpoint,” Bilkent University, 2009.

[4] I. Sabuncuoglu and S. Goren, “Hedging production schedules against uncertainty
in manufacturing environment with a review of robustness and stability
research,” Int. J. Comput. Integr. Manuf., vol. 22, pp. 138–157, 2009.

[5] E. Mokotoff, “Parallel machine scheduling problems: A survey,” ÁsiaPacific J.
Oper. Res., vol. 18, pp. 193–242, 2001.

[6] C. C. Caroe and R. Schultz, “Dual decomposition in stochastic integer
programming,” vol. 24, pp. 37–45, 1999.

[7] M. Pinedo and L. Schrage, “Stochastic shop scheduling: A survey,” in
Deterministic and Stochastic Scheduling, Springer, 1982, pp. 181–196.

[8] T. Chaari, S. Chaabane, N. Aissani, and D. Trentesaux, “Scheduling under
uncertainty : survey and research directions,” in International Conference on
Advanced Logistics and Transport, 2014, pp. 229–234.

[9] Z. Li and M. Ierapetritou, “Process scheduling under uncertainty : Review and
challenges,” vol. 32, pp. 715–727, 2008.

[10] M. Uetz, “Algorithms for deterministic and stochastic scheduling,” Technischen
Universitat Berlin, 2001.

[11] K. R. Baker, “Minimizing earliness and tardiness costs in stochastic scheduling,”
Eur. J. Oper. Res., vol. 236, no. 2, pp. 445–452, 2014.

[12] C. Lu, S. Lin, and K. Ying, “Robust scheduling on a single machine to minimize
total flow time,” Comput. Oper. Res., vol. 39, pp. 1682–1691, 2012.

[13] A. Kasperski, A. Kurpisz, and P. Zielin, “Approximating a two-machine flow
shop scheduling under discrete scenario uncertainty,” Eur. J. Oper. Res., vol.
217, pp. 36–43, 2012.

46

[14] M. Ranjbar, M. Davari, and R. Leus, “Two branch-and-bound algorithms for the
robust parallel machine scheduling problem,” Comput. Oper. Res., vol. 39, no. 7,
pp. 1652–1660, 2012.

[15] S. Alimoradi, M. Hematian, and G. Moslehi, “Robust scheduling of parallel
machines considering total flow time,” Comput. Ind. Eng., vol. 93, pp. 152–161,
2016.

[16] X. Xu, W. Cui, J. Lin, and Y. Qian, “Robust makespan minimisation in identical
parallel machine scheduling problem with interval data,” Int. J. Prod. Res., vol.
51, pp. 3532–3548, 2013.

[17] H. Hu, K. K. H. Ng, and Y. Qin, “Robust Parallel Machine Scheduling Problem
with Uncertainties and Sequence-Dependent Setup Time,” Sci. Program., pp. 1–
13, 2016.

[18] X. Xu, J. Lin, and W. Cui, “Hedge against total flow time uncertainty of the
uniform parallel machine scheduling problem with interval data,” Int. J. Prod.
Res., vol. 52, pp. 5611–5625, 2014.

[19] A. Kasperski, A. Kurpisz, and P. Zielinski, “Parallel machine scheduling under
uncertainty,” in IPMU, 2014, no. August.

[20] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming. Springer,
2010.

[21] M. L. Fisher, “A dual algorithm for the one machine scheduling problem,” Math.
Program., vol. 11, no. 1, pp. 229–251, 1976.

[22] J. F. Benders, “Partitioning procedures for solving mixed-variables programming
problems,” Numer. Math., pp. 238–252, 1962.

[23] R. M. Van Slyke and R. Wets, “L-Shaped linear programs with applications to
optimal control and stochastic programming,” J. Appl. Math., no. 638–663, 1969.

[24] G. Laporte and V. F. Louveaux, “The integer L-shaped method for stochastic
integer programs with complete recourse,” Oper. Res. Lett., pp. 133–142, 1993.

[25] L. A. Wolsey, Integer Programming. John Wiley & Sons, 1998.

[26] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Comput. Oper. Res., pp. 533–549, 1986.

	INTRODUCTION
	LITERATURE REVIEW
	2.1 Proactive Scheduling
	2.2 Parallel Machine Scheduling with Uncertainties
	2.3 Contributions

	PROBLEM FORMULATION
	3.1. Mathematical Model
	3.2. Test Problems
	3.3 Value of Stochastic Solution
	3.4 Alternative Algorithms and Computations

	STOCHASTIC DUAL DECOMPOSITION
	4.1. Stochastic Dual Decomposition in General for Binary First Stage Variables
	4.2. Stochastic Dual Decomposition for Robust Parallel Machine Scheduling Problem with Minimizing Makespan
	4.3. Computational Results of Stochastic Dual Decomposition Method
	4.4. A New Heuristic with Dual Decomposition Method

	HANDLING LARGE PROBLEMS
	5.1. Tabu Search Algorithm
	5.2. TSA for Stochastic Parallel Machine Scheduling Problem with Minimizing Makespan

	CONCLUDING REMARKS AND FUTURE DIRECTIONS
	BIBLIOGRAPHY

