

Code	ECE 654
Name	Power System Operations and Controls
Hour per week	3 (3 + 0)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall-Spring
Туре	Elective
Location	In Class
Prerequisites	ECE 652
Special Conditions	
Coordinator(s)	Assoc. Prof. Dr. Ahmet Onen
Webpage	
Content	Introduction to power system stability,
	Synchronous Machine Modelling,
	Excitation System Modeling,
	Turbine governor modelling,
	Transient Stability Analysis,
	Small angle stability analysis,
	Voltage Stability Analysis,
	Frequency Stability Analysis.
Objectives	To teach the student fundamentals power system stability, transient stability
	analysis, voltage and frequency stability and usage of a programming language
	during the course of these analysis.
Learning	LO-1. learn the principles of power system stability
Outcomes	LO-2. learn the Synchronous machine modelling
	LO-3. learn the how to model excitation system
	LO-4. learn how to design turbine governor
	LO-5. learn to calculation of small angle stability analysis
	LO-6. learn how to apply control in power system
	LO-7. learn how to design controller for voltage stability
D 1 1	LO-8. learn how to design controller for frequency stability
Requirements	Expected requirements of the course.
Reading List	Recommended readings, text books, etc.
Ethical Rules and	Will be announced during the class.
Course Policy	

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lecture	3	25%
Group Works	8	25%
Presentations	7	25%
Site Visits	1	25%
	Total	100

ASSESSMENT

Evaluation Criteria	Weight (%)
Quizzes	15%
Weekly Assignments	20%
Group Project Assignments & Presentations	10%
Attendance/Participation	05%
Final Exam/Submission	50%

 Total
 100%

 For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

 COURSE LOAD Please, use this one as a reference for your course

Activity	Duration (hour)	Quantity	Work Load (hour)
In class activities	2	14	28
Lab	1	7	7
Group work	2	12	24
Research (web, library)	2	12	24
Required Readings	2	10	20
Pre-work for Presentation	2	7	14
Lab reports	1	7	7
		General Sum	124

ECTS: 7,5 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	P01	P02	P03	P04	P05	P06
L01	1	3	4	5	4	3
L02	5	5	4	5	4	3
L03	3	4	2	2	4	1
L04	1	3	4	5	4	3
L05	5	5	4	5	4	3
L06	3	4	2	2	4	1
L07	5	5	4	5	4	3
L08	3	4	2	2	4	1

* Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Торіс	Outcomes
1	Power system overview: Review of basic power equations	L01, L02
	Power generation characteristic Steam generation units, and	
	gas turbine	
2	Economic dispatch of thermal units: Economic calculation and	L01, L02, L03
	lamda iteration method	_
	Economic dispatch of thermal units first and second order	
	gradient method and economic calculations	
3	Tranmission Losses: Load flow calculation on transmission	L01, L03
	lines	_
	Tranmission Losses: Loss calculation by using B matrix and	
	penalty factor	
4	MIDTERM EXAM-1	_
_	Restructure of electric system: ISO, RTO and power exchange	
5	Restructure of electric system: LMP calculation and Fixed	L01, L02, L03
	transmission Right	_
	Power system overview: Review of basic power equations	
6	Power generation characteristic Steam generation units, and	LO4, LO5
	gas turbine	
	Economic dispatch of thermal units: Economic calculation and	-
	lamda iteration method	

7	Economic dispatch of thermal units first and second order	L05, L06
	gradient method and economic calculations	_
	Tranmission Losses: Load flow calculation on transmission	
	lines	
8	Tranmission Losses: Loss calculation by using B matrix and	LO4, LO5
	penalty factor	_
	MIDTERM EXAM-1	
9	Restructure of electric system: ISO, RTO and power exchange	L06, L07
	Restructure of electric system: LMP calculation and Fixed	
	transmission Right	
10	Unit Commintment: calculation of optimum order for thermal	L07, L08
	units	
	Load Forecasting: Load Calculation for different weather	
	condition	
11	MIDTERM EXAM-2 or presentation of review	
	Optimum Load Flow: Optimum load flow calculation with	
	existing of constraints	
12	State Estimation and Bad Data Analysis: Voltage and phase	L04, L05
	angle calculation when measurements are not avaliable	_
13	Automatic Generation Control: Generator model, tie-line and	L01, L02
	load model and control of all.	_
	Unit Commintment: calculation of optimum order for thermal	
	units	
14	Load Forecasting: Load Calculation for different weather	L01, L02
	condition	_
	MIDTERM EXAM-2 or presentation of review	
15	Optimum Load Flow: Optimum load flow calculation with	L01, L02
	existing of constraints	_
	State Estimation and Bad Data Analysis: Voltage and phase	
	angle calculation when measurements are not avaliable	

Prepared by Assoc. Prof. Ahmet ONEN Date 09.04.2018