

COURSE RECORD	
Code	ECE 646
Name	Artificial Intelligence
Hour per week	3+0 (Theory + Practice)
Credit	3
ECTS	7,5
Level/Year	Undergraduate/Graduate
Semester	Spring
Туре	Elective
Location	
Prerequisites	Art of Computing, Object Oriented Programming, Calculus, Probability and Statistics, Linear Algebra,
Special Conditions	
Coordinator(s)	Mustafa Coşkun
Webpage	
Content	This course provides an introduction to Artificial Intelligence. In this course, we will learn the concepts that underlie intelligent systems. Topics we will cover include problem solving with search, constraint satisfaction, knowledge representation and reasoning using some probabilistic learnings and first order logics, reasoning under uncertainty, introduction to machine learning, and introduction to reinforcement learning.
Objectives	 O1. Gain an understanding of artificial intelligence methodologies O2. Learn the techniques used for developing artificial intelligence models O3. Gain practice by coding programming assignments O4. Apply the concepts to a real problem by completing a course project
Learning Outcomes	LO1. Explain the mathematical and algorithmic principles of artificial intelligence models LO2. Solve a machine learning problem using artificial intelligence methods LO3. Implement a reinforcement learning model using a software LO4. Apply a deep learning method to a real problem
Requirements	A GPA higher than 3.0 or high letter grades from prerequisite courses.
Reading List	1. AI: A Modern Approach, 3ed, by Stuart Russell and Peter Norvig 2. An Introduction to Reinforcement Learning, Sutton and Barto, 1998
Ethical Rules and Course Policy	Cheating in assignments and exams is strictly prohibited.

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lectures (on-site)	14	30%
Lectures (online videos)	7	20%
Problem solving and assignments	12	30%
Project and Presentations	1	20%
	Tota	ıl 100

ASSESSMENTEvaluation CriteriaWeight (%)Quizzes10%

AGU Graduate School of Engineering and Science Electrical and Computer Enginering Program

Homework Assignments	30%
Project Assignment and Presentation	20%
Midterm Exam	20%
Final Exam/Submission	20%
	Total 100%

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

COURSE LOAD

Activity	Duration	Quantity	Work Load
	(hour)		(hour)
Lectures	3	14	42
Research (web, library)	5	1	5
Required Readings	1	14	14
Online course videos	1	7	7
Assignments	7	12	84
Project	40	1	40
Pre-work for Presentation	4	1	4
Pre-work for Quizzes	1	5	5
Pre-work for Midterm	20	1	20
Pre-work for Final	30	1	30
		General Sum	251

ECTS: 10 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	P01	P02	P03	P04	P05	P06
L01	5	5	3	3	3	3
L02	5	5	4	4	4	3
L03	4	5	5	5	3	3
L04	4	5	5	5	5	4

* Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Торіс	Outcomes
1	Introduction and Intelligent Agents	L01, L02
	Activity: Online video lectures, readings	
2	Uninformed Search and Informed Search	L01, L02, L03
	Activity: Online video lectures, readings, homework	
3	Search for Optimization	L01, L02, L03
	Activity: Online video lectures, readings, quiz, homework	
4	Search for Optimization, Adversarial Search	L01, L02, L03
	Activity: Online video lectures, readings, homework	
5	Adversarial Search, Review of Search	L01, L02, L03,
	Activity: Online video lectures, readings, homework	LO4
6	Propositional Logic and	L01, L02, L03,
	Inference in Propositional Logic, First Order Logic	L04
	Activity: Readings, quiz, homework	
7	Midterm Exam	L01, L02
8	Semester break	
9	Probabilistic Inference, Bayesian Networks	L01, L02, L03,
	Activity: Online video lectures, readings, homework	LO4
10	Machine Learning, Probabilistic Classification	L01, L02, L03,
	Activity: Readings, quiz, homework	L04
11	Artificial Neural Networks, Evaluating Learning Algorithms	L01, L02, L03
	Activity: Readings, quiz, homework	

AGU Graduate School of Engineering and Science Electrical and Computer Enginering Program

12	Sequential Decision Making	L01, L02, L03
	Activity: Readings, homework	
13	Reinforcement Learning -1	L01, L02, L03
_	Activity: Readings, homework	
14	Reinforcement Learning-2	L01, L02, L03,
	Activity: Readings, homework, quiz	LO4
15	Deep Reinforcement Learning	L01, L02, L03,
_	Activity: Online video lectures, readings, homework	LO4
13	Final exam	L01, L02, L04
	Activity: Project presentations	

Prepared by Dr. Mustafa Coşkun 6 November 2018