AGU Graduate School of Engineering and Science Electrical and Computer Enginering Program

COURSE RECORD

COURSE RECORD	
Code	ECE 509
Name	Advanced Big Data Analytics
Hour per week	3+0 (Theory + Practice)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall, Spring
Type	Elective
Location	
Prerequisites	Calculus, Probability and Statistics, Linear Algebra, Data Mining
Special Conditions	
Coordinator(s)	Mustafa Coskun
Webpage	
Content	This course provides an introduction to big data analytics. It covers fundamental mathematical background of data mining and machine learning applications. The course also provides applications of graph mining tasks such as PageRank, etc. Methods will be implemented by a software and applied on various machine learning and data mining problems.
Objectives	O1. Gain an understanding of mathematical background of data mining O2. Learn the techniques used for solving problems involving very large datasets O3. Gain practice by completing programming assignments O4. Apply the concepts to a real problem by completing a course project
Learning Outcomes	LO1. Explain the mathematical and algorithmic principles of deep learning models
	LO2. Solve a machine learning/ data mining problem using efficient numerical algebra methods LO3. Implement a big data analytics models model using a software LO4. Apply big data analytic methods to a real problem
Requirements	A GPA higher than 3.0 or high letter grades from prerequisite courses.
Reading List	 Applied Numerical Algebra by J.W Demmel Numerical Optimization by Jorge Nocedal Iterative Methods by Yousef Saad 3rd edition
Ethical Rules and Course Policy	Cheating in assignments and exams is strictly prohibited.

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lectures (on-site)	14	30%
Lectures (online videos)	7	20%
Problem solving and assignments	12	30%
Project and Presentations	1	20%
	Total	100

ASSESSMENT

TIBOLOGI ILIVI	
Evaluation Criteria	Weight (%)
Quizzes	10%

AGU Graduate School of Engineering and Science Electrical and Computer Enginering Program

Homework Assignments	30%
Project Assignment and Presentation	20%
Midterm Exam	20%
Final Exam/Submission	20%
	Total 100%

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

COURSE LOAD

Activity	Duration	Quantity	Work Load
	(hour)		(hour)
Lectures	3	14	42
Research (web, library)	5	1	5
Required Readings	1	14	14
Online course videos	1	7	7
Assignments	7	12	84
Project	40	1	40
Pre-work for Presentation	4	1	4
Pre-work for Quizzes	1	5	5
Pre-work for Midterm	20	1	20
Pre-work for Final	30	1	30
		General Sum	251

ECTS: 7,5 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	PO1	P02	PO3	PO4	P05	P06
LO1	5	5	3	3	3	3
LO2	5	5	4	4	4	3
LO3	4	5	5	5	3	3
L04	4	5	5	5	5	4

^{*} Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Topic	Outcomes
1	Numerical linear algebra review, optimization problems, linear least	L01, L02
	squares	<u></u>
	Activity: Online video lectures, readings	
2	Tikhonov regularization / ridge regression, Lasso, pivoted QR	L01, L02, L03
	Activity: Online video lectures, readings, homework	_
3	Basics of iterative solvers and sparse linear least squares	L01, L02, L03
	Activity: Online video lectures, readings, quiz, homework	_
4	Latent factor models, linear dimensionality reduction, and matrix	L01, L02, L03
	factorization	<u></u>
	Activity: Online video lectures, readings, homework	
5	Basics of Krylov subspace methods, LSQR, LSMR	L01, L02, L03,
	Activity: Online video lectures, readings, homework	L04
6	Randomized numerical linear algebra	L01, L02, L03,
	Activity: Readings, quiz, homework	L04
7	Midterm Exam	L01, L02
		_
8	Semester break	
		_
9	Eigenvectors and decompositions, PageRank Random Walk With Restarts	L01, L02, L03,
	Activity: Online video lectures, readings, homework	L04
10	Basic network analysis, structure, heavy tails, random graph models	L01, L02, L03,
	Activity: Readings, quiz, homework	_ LO4
11	Learning on graphs: unsupervised network clustering and community	L01, L02, L03

AGU Graduate School of Engineering and Science Electrical and Computer Enginering Program

	detection	
	Activity: Readings, quiz, homework	
12	Graph-based semi-supervised learning	L01, L02, L03
	Activity: Readings, homework	
13	Node Representation Learning (Node Embedding)	L01, L02, L03
	Activity: Readings, homework	
14	Small patterns in networks (Graphlet)	L01, L02, L03,
	Activity: Readings, homework, quiz	L04
15	Ranking and network centrality, Recommendation Systems, Katz, HITs	L01, L02, L03,
	Activity: Online video lectures, readings, homework	L04
13	Final exam	L01, L02, L04
	Activity: Project presentations	

Prepared by Dr. Mustafa Coskun 1 July 2019