

COURSE RECORD	
Code	ECE 504
Name	Autonomous Mobile Robots
Hour per week	3 (3 + 0)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall-Spring
Туре	Elective
Location	In class
Prerequisites	None
Special Conditions	
Coordinator(s)	Dr. Samet Güler
Webpage	
Content	The course will cover the theoretical and practical essentials of ground and aerial autonomous mobile robots. Topics include mobile robot motion modeling, kinematics and dynamics; navigation, perception, and execution algorithms for mobile robots; estimation frameworks such as Bayesian filtering methods (Kalman, EKF, particle, etc.) and their applications; localization; mapping; and path planning. The course will start with a quick review of linear algebra and probability. Special emphasis will be given to implementation of the algorithms on mobile robots in realistic simulation environments.
	 Demonstrating work mechanisms of various ground and aerial autonomous mobile robots; Providing fundamental background on mobile robot estimation, planning, and control algorithms; Presenting applications on simulation environments for mobile robots such as Robot Operating System (ROS).
Learning Outcomes	 Upon the completion of the course, the student will be able to: (LO1) Analyze several path planning, control, and estimation techniques designed for autonomous mobile robots in unknown environments; (LO2) Formulate a real-world problem for a mobile robot in terms of control, estimation, and navigation sub-tasks; (LO3) Evaluate quantitatively the performance of estimation, control, and planning algorithm designs for mobile robots; (LO4) Design and implement integrated navigation and perception algorithms on a set of mobile robots in realistic simulation environments such as Gazebo.
Requirements	Basic coding skills in Python/C++.
Reading List	 - R. Siegwart, I. R. Nourbakhsh & D. Scaramuzza, "Introduction to autonomous mobile robots", MIT Press, Cambridge, MA, 2011. - S. Thrun, W. Burgard, & D. Fox, "Probabilistic Robotics", MIT Press, Cambridge, MA, 2005. - H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, & S. Thrun, "Principles of robot motion: Theory, algorithms, and implementations", MIT Press, Cambridge, MA, 2005.
Ethical Rules and	Students must adhere to AGU's ethical rules and policies.

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lectures	14	70%
Online materials	14	30%
	Total	100

ASSESSMENT	
Evaluation Criteria	Weight (%)
Homework Assignments	30%
Group Project Assignments & Presentations	25%
Attendance/Participation	05%
Final Exam	40%
	Total 100%

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

COURSE LOAD

Activity	Duration	Quantity	Work Load
	(hour)		(hour)
In class activities	3	14	42
Group work	4	12	48
Research (web, library)	5	12	60
Required Readings	2	10	20
Assignments	5	5	25
		General Sum	195

ECTS: 7,5 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

			-			
	P01	P02	P03	P04	P05	P06
L01	4	2	2	2	5	2
L02	3	5	2	5	1	4
L03	3	5	2	4	2	4
L04	3	5	5	5	2	4
17 1	0.7	0.14.1				

* Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Topic	Outcomes
1	Introduction, Linear systems review	L01, L02
	Activity: In-class	
2	Probability review, coordinate transforms	L01, L02
	Activity: In-class	
3	Motion modeling	L01, L02
	Activity: In-class	
4	Introduction to ROS-Gazebo	L01, L02, L04
	Activity: In-class, computer simulations	
5	Measurement models, sensors	L01, L02
	Activity: In-class	
6	Bayes filter, Kalman filter	L01, L02
	Activity: In-class	
7	Extended Kalman filter, Particle filter	L01, L02
	Activity: In-class	
8	Localization	L01, L02
	Activity: In-class	
9	Mapping, EKF SLAM	L01, L02
	Activity: In-class	
10	Control algorithms	L01, L02
	Activity: In-class	
11	Path planning	L01, L02
_	Activity: In-class	

AGU Graduate School of Engineering and Science Electrical and Computer Engineering Program

12	Path planning, Application examples	L01, L02, L03,
	Activity: In-class, computer simulations	LO4
13	Multi-robot systems, Review	L01, L02, L03,
	Activity: In-class, computer simulations	LO4
14	Project demonstrations	L03, L04
	Activity: Exam	

Prepared by Dr. Samet Güler Date 10.06.2020