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ABSTRACT 
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Beyhan ADANUR 
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Supervisor: Assist. Prof. Dr. Burcu BAKIR-GÜNGÖR   

Co-Supervisor: Assist. Prof. Dr. Ahmet SORAN     

June 2020 

 

Recently, panomics studies attempt to identify new and actionable biomarkers by 

combining -omics data with other data types. In this context, there is a need to develop 

secure platforms that take into account ethical aspects and solve privacy and ownership 

issues as well as data sharing for an accurate analysis of -omics data. These days, 

blockchain technology has picked up significant attention in genomics, since it offers a 

new solution to these problems from a different perspective. In this thesis, we proposed 

a hybrid platform called GenShare, which is based on blockchain, homomorphic 

encryption and intel software guard extension (SGX) to provide efficient genomic data 

sharing, to perform statistical analysis and other similar processes on genomic data. 

While the proposed model solves security-privacy issues using homomorphic 

encryption and SGX, it solves other issues by using a combination of Hyperledger 

Fabric and Ethereum networks. In this study, Hyperledger Fabric network, which is the 

first phase of the GenShare model, setup is made and the performance of the network is 

tested with a different number of workloads. At the end of our performance evaluations, 

we concluded that the GenShare model has a potential to speed up the process of 

collecting and sharing data and it offers an efficient platform for the participants. 

 

Keywords: Genomic Data Sharing, Hybrid Blockchain, Homomorphic Encryption, Intel 

Software Guard Extensions (SGX) 
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ÖZET 

BİYOİNFORMATİK ALANI İÇİN BLOKZİNCİR TABANLI 

VERİ PAYLAŞIM PLATFORMU 

 

Beyhan ADANUR 

Elektrik ve Bilgisayar Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Dr. Öğr. Üyesi Burcu BAKIR-GÜNGÖR 

Eş Danışman: Dr. Öğr. Üyesi Ahmet SORAN 

Haziran 2020 

 

Son zamanlarda, panomik çalışmalar -omik verileri ile diğer veri türlerini birleştirerek, 

yeni ve uygulanabilir biyobelirteçleri belirlemeye çalışmaktadır. Bu bağlamda omik 

verilerinin doğru analizi için veri paylaşımının yanı sıra veri gizliliği ve sahipliği 

sorunlarını çözen, etik yönleri dikkate alan güvenli platformların geliştirilmesine ihtiyaç 

vardır. Bugünlerde blokzincir teknolojisi, farklı bir perspektiften bu sorunlara yönelik 

yeni bir çözüm sunduğu için genomik alanında büyük ilgi görmektedir. Bu tezde, 

verimli genomik veri paylaşımını sağlamak, genomik veriler üzerinde istatistiksel analiz 

ve benzeri işlemleri yapmak için blokzinciri, homomorfik şifreleme ve intel yazılım 

koruması uzantısına (SGX) dayanan, GenShare adlı hibrit bir platform önermekteyiz. 

Önerilen model, homomorfik şifreleme ve SGX kullanarak güvenlik gizliliği sorunlarını 

çözerken, diğer sorunları Hyperledger Fabric ve Ethereum ağlarının bir 

kombinasyonunu kullanarak çözmektedir. Bu çalışmada, GenShare modelinin ilk 

aşaması olan Hyperledger Fabric ağ kurulumu yapılmış ve farklı sayıda iş yükü ile ağın 

performansı test edilmiştir. Performans değerlendirmelerimizin sonucunda, GenShare 

modelinin veri toplama ve paylaşma sürecini hızlandıracağı, ve kullanıcalar için verimli 

bir platform olacağı sonucuna varılmıştır. 

 

Keywords: Genomik Veri Paylaşımı, Hibrit Blokzincir, Homomorfik Şifreleme, Intel 

Yazılım Koruma Uzantıları (SGX) 
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Chapter 1  

Introduction 

After the scientific inventions over several centuries, our world has improved at a great 

pace. The study of DNA, which is the building block of all living creatures, continues 

unabated for the diagnosis and treatment of human complex diseases with the help of 

genetics. To illuminate our genome and to uncover the hidden mysteries, new analysis 

techniques and strategies are proposed every day. Bioinformatics is an interdisciplinary 

field that tries to solve biological problems by designing algorithms that use primary 

features of the problem as input and attempt to predict the beneficial outcome [1]. 

Genomics is a subtopic for research in bioinformatics, and it is a genetic field that 

relates to the sequencing and analysis of the genome of an organism [2]. As shortly, 

genomics outputs provide inputs to bioinformatics. Genomics related applications of 

bioinformatics are taking an important place for the development of life sciences. Many 

methods are currently being developed in genomics for the discovery and interpretation 

of confidential information in the genome. These developments are playing a significant 

role in humans life because, thanks to these analyzes, a disease can be predicted and 

prevented before it gives a severe hazard or personalized medicine, therapy, and 

nutrition can be applied for the treatment process [3]. 

 

Today, genome sequencing is mostly performed by hospitals for disease research, while 

people mostly want to learn their gene map, and they apply to a lab for only this  
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process. So, the sharing of analyzed data is not common. With the permission of the 

gene owner, hospitals are able to give the genomic data for further analysis, or those 

who already have their genomic data not tend to share this information with researchers.  

Possible reasons for that are the limitations of the sharing of genomic data because of 

the privacy and security issues [4], analysis cost [5], ownership of data, data collection 

steps [6], and managing huge amount of data [7]. Although there is no proposed model 

available today developed to solve all of the mentioned problems, privacy-enhancing 

technologies, like secure multi-party computation (SMC) and homomorphic encryption 

[8] are widely used in many applications to solve data privacy and security problems. 

But, to increase the number of beneficial algorithms/works proposed by bioinformatics 

researchers, all problems should be solved, genomic data should be shared easily, and 

computations on them should become widespread. 

 

Blockchain technology has recently begun to attract attention in many areas [9], 

including genomics, due to the solutions it brings from a different perspective to some 

problems. In this thesis, a hybrid blockchain-based genomic data-sharing platform is 

designed which meets requirements of genomic data sharing from a different 

perspective and can perform count queries and statistical analysis on the data. The 

proposed hybrid GenShare platform includes researchers, data owners, and secure 

compute nodes for sharing of genomic data easily and performing computation on them, 

taking advantage of combinations’ Ethereum [10] ve Hyperledger Fabric [11]. The 

GenShare platform provides genomic data privacy and security with homomorphic 

encryption and intel software guard extensions [12], and solves other problems with 

blockchain. The organization of thesis is as follows: Chapter 2 explains Background of 

Genomics; Chapter 3 processes Background of Blockhain; Chapter 4 shows Blockchain 

Applications in Bioinformatics; Chapter 5 explains Why Blockchain is/is not Suitable 

for Bioinformatics; Chapter 6 presents Methods used in this study; Chapter 7 explains 

the Overview of  GenShare; Chapter 8 shows Implementation and Results; Chapter 9 

presents Evaluation of GenShare; finally Chapter 10 shows Conclusions and 

Discussion. 
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Chapter 2 

Background of Genomics 

2.1 Overview of the Genomics 

Understanding the secrets of life has always been a fundamental issue on which 

different disciplines have been working. In this section, bioinformatics and genomics 

that examine the secrets of life through biological data will be briefly reviewed. 

Fundamentally, cells with the same structures and functions come together and form 

tissues, and different tissues form organs. The organs that perform certain tasks come 

together to create the systems. The organism is formed as a result of the interconnection 

of all systems. As shown in Figure 2.1.1, every cell in organism contains hereditary 

material known as DNA and a long piece of DNA is called a gene. The DNA comes in 

packages called chromosomes. In line with recent technological advances, the number 

of biological data waiting to be interpreted has increased tremendously. Bioinformatics 

is an interdisciplinary field that obtains, stores, examines and interprets to biological 

data with designed algorithms [1]. Comprehensive analysis of biological systems is 

expressed in terms of -omics. New -omics technologies and bioinformatics tools have 

great importance in researching complex relationships. In recent years, a wide variety of 

-omics subdisciplines have been formed, and each has its own set of techniques, tools 

and softwares.  
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Genomics is a subfield of -omics. A genome can be thought of as a complete DNA 

sequence, which is the code for hereditary material that has passed from generation to 

generation. The DNA sequence contains all the genes. Therefore genomics involves the 

analysis and sequencing of all components of DNA. Generally, the type of data 

processed by bioinformatics is an output of genomics. Genomics allows that; 

identification of all genes in an organism, researching the interaction of genes with each 

other and the environment, examining the production and activation of genes. The most 

important feature of genomics that distinguishes it from other genetic sub branches is 

that it evaluates genes collectively instead of dealing with them one by one [2].  

 
 

Figure 2.1.1 Structure of a cell [13] 

 

Thanks to next generation sequencing technologies (NGS) sequencing of an organism’s 

entire genome takes a matter of hours [14]. Next Generation Sequencing operates by 

splitting a strand of DNA into many pieces and decoding all the fragments massively. 

Many of these fragments' sequences are grouped by length. In order to reach consensus 

sequences for the genome, several fragments of the same size and sequence values are 

used. A “puzzle” resolution process patches together the sequence for the whole strand 

by finding overlaps between fragments [15]. By scanning the entire genome of large 

samples of individuals with or without a disease, variations can be found that may be 

associated with a disease or condition. This process is called Genome Wide Association 

Study (GWAS) [16]. Intensive bioinformatics studies are needed to establish the link 

between diseases in an organism and the responsible gene or responsible mutations. By 

applying bioinformatics analysis to -omics or GWAS data, scientists can perform 

susceptible disease tests, disease predictions, and evolutionary developments of disease.  
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As a result, a disease can be prevented, and its effects can be reduced before it poses a 

serious hazard by developing personalized medication, treatment and nutrition [3]. 

Personalized treatments and preventions are being developed uniquely for each 

individual based on genetic, environmental and lifestyle factors [17]. Especially in 

cancer, this method is more preferred treatment. The only thing necessary to take 

advantage of all these useful methods is the sharing of genomic data easily. Obtaining 

more efficient studies is directly proportional to the number of collected and used 

genomic data, but genomics has some problems that need to be solved for this aim. 

 

2.2 Challenges in the Genomics 

The cost of analyzing the first human genome was approximately $3 billion and it took 

13 years to complete. Although owing to the developments in sequencing technologies 

cost of analysis was reduced as $1,000, high price of analysis is still complicates 

participation in a specific sequencing project [5-18]. Because in traditional business 

model personal genomics companies as shown in Figure 2.2.1, the transactions are 

carried out with the help of a middleman company vice versa, a direct relation between 

the data owner and researcher. At the same time, this model prevents the data owner can 

control its data access permissions and make money as a result of the data sharing [19].  

 

Another problem in genomics is data management, which tackles the four key issues: (i) 

collection, (ii) integration, (iii) sharing, and (iv) storage. Scientists are spending so 

much time to data collection and integration. For this aim, there is no perfect solution, 

but four essential considerations are exist. These considerations include the use of 

suitable methods, attention to detail, authorization, and recording. Desired data should 

be checked using correct techniques, eliminating unnecessary ones then integrated. 

Particular attention should be paid to details; results should be accurately recorded, 

interpreted, and stated in order to conduct quality research. Before data collection, an 

individual or an organization responsible for research study must be authorized, take 

permissions and fulfil the requirements [6]. 
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Figure 2.2.1 Traditional business model of personal genomics companies  

The sharing of genomic data heading covers data privacy and security [4]. The privacy 

of data relates to anonymity [20]. On the other hand, data security is about protecting 

the data from unauthorized access. Due to the fact that genomic data contains private 

information about an individual's history, present and future, the sharing of genomic 

data is a very sensitive topic. The use of synthesized genomic data in crimes could be 

one potential misuse of genomic data. Also, the development of harmful medicines 

could be another potential misuse of genomic data. For all these reasons, individuals 

want to share their data anonymously and ensure that their personal data is kept at high-

level protection. Most privacy-enhancing tools are used to fix data privacy-security 

issues [21-22].  

 

Secure multi-party computing (SMC) and homomorphic encryption (HE) are the most 

widely used technologies for privacy enhancing [8]. Secure multi-party computation 

allows two or more parties to jointly perform some computation and get the result 

without seeing any party's input. Despite its many benefits, SMC is still not a practical 

method for use in a majority of applications where (near) real-time performance is 

required [23-24-25]. Homomorphic encryption makes it possible to perform 

computations on encrypted data without decryption. Three HE schemes are depending 

on its processing capacity, and each scheme has its own specific advantages and 

disadvantages [26-27-28].   

 

Usually, governments store genomic data in databases. Public type of databases shows 

only summary of data or frequency information. It is estimated that the amount of  
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genomic data will exceed the amount of video and web data in the next decade [7], as 

sequencing a single human genome would yield around 200 gigabytes of data (may vary 

depending on the type of sequencing), and approximately 2 billion human genomes will 

be sequenced by 2025, according to estimations in Table 2.2.1. Investigating massive 

genomic data requires plenty of disk space for storage, high transfer speed for data 

sharing, and quick processing power because analysis takes trillions of CPU hours. In 

summary, although exchanging genomic data provides the unique opportunity to expand 

our expertise by obtaining new information from the re-analysis of the same datasets 

and shared datasets, it presents several challenges of ethical, legal, and technical nature 

[29]. 

 

 
Genomics 

Acquisiton 1 zetta-bases/year 

Storage 2–40 EB/year 

Analysis 

Heterogeneous data and analysis 

Variant calling, ~2 trillion central processing unit (CPU) hours 

All-pairs genome alignments, ~10,000 trillion CPU hours 

Distribution Many small (10 MB/s) and fewer massive (10 TB/s) data movement 

 

Table 2.2.1 Four domains of Genomic Big Data in 2025. In each of the four domains, the projected 

annual storage and computing needs are presented across the data lifecycle [7]. 
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Chapter 3 

Background of Blockchain 

3.1 Introduction 

While the world is changing and developing at a dizzying pace, the contribution of 

technology to this progress is undeniable. Today, technology plays an active role in 

every aspect of our lives. Regardless of the field of business, people's work habits are 

constantly changing with the development of information and communication 

technologies. Each change is made for a purpose and offers innovation to people. 

Keeping up with these innovations and incorporating the advantages it brings into 

business processes is also an extremely important issue. In these days, blockchain 

technology has picked up significant attention in diverse fields [9] including genomics 

[30-31-32]. It offers a new solution for problems from a different perspective so the 

breakdown in traditional business process models has occurred. The basic idea of 

blockchain is revealed in the late 1980s and early 1990s. However, the first 

cryptocurrency, Bitcoin, appeared in 2008 with its white paper, which is proposed by 

unidentified person Satoshi Nakamoto [33]. In today's Internet world, data transfer is 

performed in many areas (multimedia, communication, web interface, etc.). Blockchain  

 



 

9 

 

 

 

 

is the new technology that allows us to transfer also assets that we attribute value [34]. 

It is ledger of transactions that is based on chain model. This distributed system cannot 

be destroyed and is managed in a way that allows all participants to make a joint 

decision without a central manager. Each block contains the cryptographic hash 

function of the previous block, a timestamp, and process data. The system must approve 

processes in order to be written to the blocks. The validation mechanism includes 

system users, and some consensus algorithms provide it. Despite all innovations, 

blockchain has some technical difficulties and limitations for adapting to the future as in 

any technology. 

 

3.2 Components 

3.2.1 Double-Spending and Single Point of Failure Problems 

Fundamental challenges of crypto techonologies are double-spending and single-point-

of-failure. The original motivation of the blockchain technology is to work on 

preventing electronic coins from being spent twice without having a central 

intermediary. The double-spending problem is illustrated in the Part A of Figure 3.2.1.1. 

Accordingly, suppose Alice has 10 coins and then sends all 10 coins to Charlie. Charlie 

and other people using the coin should understand that Alice has not sent the same 10 

coins to Bob before, without having a bank to verify transactions. The central 

intermediary is not used problem-solving because it might cause single-point-of-failure,  

as shown in Part B (a) of Figure 3.2.1.1. Each computing node in the blockchain 

network must not only store each transaction in order to enable the distributed 

verification of the operations but also adopt a distributed timestamp protocol, which is 

the actual time of a computer-recording case, in order to determine which transactions 

should be accepted and which should be rejected [35]. 
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Figure 3.2.1.1 Part (A) double-spending (invalid) transaction, part (B) single-point-failure problem 
 

3.2.2 Chain Model and Components 

Blockchain may sound complex; however, it may be simplified by individually 

analyzing each part. It makes use of well-known processes in computer science and 

basic cryptography. Main components of blockchain can be listed as follows: 

cryptographic hash functions, digital signatures, transactions, asymmetric-key 

cryptography, ledgers, blocks, and how blocks are clustered. Blockchain technology 

consists of two basic concepts: the blocks and transactions. Any content information 

that occurs within the blockchain network is called transaction. This information can be 

values such as money transfer, fixture input, customer records according to the design. 

For virtual currencies, these records are money transfer information. The records are 

combined and processed at certain intervals and written into the blocks. Miners who  
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discover new blocks are rewarded with block rewards for their efforts. The winning 

miner receives a reward for a block by adding it to the chain as a first transaction. By 

connecting each newly found block with the previous block, the chain structure forming 

the name of the technology is obtained as in Figure 3.2.2.1, so the blockchain 

technology is defined as immutable ledger of transactions. Generally, cryptographic 

hash algorithms and digital signatures are used during the creation of a block. Instead of 

the original data, transactions are processed on blocks with their hash values [36]. 

 

 
 

Figure 3.2.2.1 Structure of blocks [37] 

 

The hash function is a process that creates a unique value of a fixed length with 

mathematical functions of various lengths of data. It is a one-way function, and when 

viewed, no relationship is established between the original text and the summary value. 

Also, the original data cannot be obtained from the summary value (Its power against 

the quantum computing is discussed [38]). In the summarization process, if a change is 

made in the original data, the summary value also changes. For this reason, hash 

functions are generally used for data validation and comparison mechanism. Summary 

functions include MD family, SHA family, RIPEMD etc. algorithms [39]. In addition to 

these measures, the presence of users’ digital signatures in a transaction proves that the 

relevant transaction has been done by them. Digital signatures vary according to the 

content of the document. In other words, it changes uniquely according to the signed 

message because digital signatures consist of a combination of private keys and hashes 

of the message. Digital signatures are based on asymmetric cryptography. Asymmetric 

cryptography is an encryption system using two different keys for encryption and  
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decryption processes. It is used in two ways: i) Encryption with public key and 

decryption with private key, ii) Signing with private key and verification with public 

key. The public key is known to everyone on the network, but the private key is known 

only by the person itself. Unlike asymmetric cryptography, symmetric cryptography 

uses a single key, which is called secret key, for both encryption and decryption 

operations. While some algorithms used for asymmetric cryptology are Diffie-Hellman, 

RSA, ECC, ElGamal and DSA, algorithms for symmetric cryptology are AES, 

Blowfish, ChaCha, DES, Serpent and Twofish [40]. 

 

3.2.3 Blockchain Categorization 

E xcept traditional databases or distributed ledger technology, there are two types of 

blockchains as permissionless and permissioned [41]. In permissionless blockchains, 

also called public blockchains, anyone can participate network as users, miners, 

developers without needing permission from any authority and all transactions are fully 

transparent so anyone can publish blocks and examine the transaction details. They are 

developed to obtain a completely decentralized network. Eventually, all permissionless 

blockchains have a token associated with them, usually designed to encourage and 

reward network users. Unlike permissionless blockchains, in permissioned blockchain 

users must be authorized by some authority for publishing blocks. In this way, which 

users can perform which operations in the network can be regulated. Organization that 

manages the chain is an important check on the participants and governance structures. 

Also optionally, networks may be instantiated and maintained using open source or 

closed source software, but they are more centralized than public blockchains. They are 

preferred by the companies that want to collaborate and share data but do not want to 

see their sensitive business data on a public blockchain. Permissioned blockchains are 

divided into two subcategories as private and consortuim blockchains [42]. In fact, 

consortium blockchains are subcategory of private blockchains because they have some 

differences from private blockchains. While a single entity governs private blockchains, 

consortium blockchains are governed by a group. This collaborative model will be the 

most appropriate option for businesses that work together but also compete. 
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3.2.4 Consensus Algorithms 

Consensus algorithms are ones that enable a consensus on certain requests in distributed 

processes or systems in computer science. These systems or processes do not need to be 

reliable in these algorithms to compromise systems or processes. Therefore, consensus 

algorithms are used to provide the structure of the blockchain that does not require 

mutual trust. They play a crucial role in keeping blockchain secure and efficient. The 

most commonly used algorithms in the blockchain industry are given in Table 3.2.4.1 

[43].  

 

Consensus 

Algorithms 

 

Explanations 

PoW When a user initiates a transaction, miners attempt to solve a 

cryptographic problem to test that they have worked a lot 

PoS A user encouraged to spend more on building a block until he 

becomes a validator 

PoWeigth Similar to PoS but the difference is that it depends on several other 

variables known as weights 

PoB Based on the amount, users submit the coins back into their wallet that 

they cannot recover from will receive rewards 

PoC Using this protocol, you can use the user's hard drive functionality 

DPoS As with PoS, but users having more coins will be able to vote and 

nominate witnesses 

DBFT Focuses on a gamified way of block checking among the qualified 

node checks 

PBFT Byzantine made use of a specific sequence to keep the rouge users at 

bay 

 

Table 3.2.4.1 Different types of consensus algorithms 
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Choosing the right consensus algorithm related to a given problem is vital to improving 

the performance of the system, which might increase the number of blockchain-based 

applications. Proof of Work (PoW) is used in Bitcoin and Ethereum uses the hybrid 

version of PoW and Proof of Stake (PoS). PoW is based on an operational problem that 

is difficult to solve but easy to validate. In projects using PoW algorithms, miners need 

to solve the problem in order to add blocks on the chain. The person who solves the 

problem first gets the right to add the block to the chain. The most important detail in 

this algorithm is the processing power and the total power of miners. Proof of Stake 

proposes a new algorithm instead of puzzle solving. Ethereum, many projects use this 

infrastructure, plans to move to PoS completely. It is an algorithm in which the amount 

of token held by the miner is important. Miners' chances of adding blocks are directly 

proportional to the number of tokens they have [44]. 

Each algorithm has its own advantages and disadvantages, depending on the purpose 

and requirements of the systems but common goals of blockchain consensus models can 

be listed as follows: 

• To reach an agreement 

• To cooperate with the participants 

• To offer equal rights to each participant 

• To ensure that every member of the group is equally active 

 

3.2.5 Key Benefits and Open Issues 

Before mentioning the advantages and disadvantages of blockchain technology, it is 

worth to note that these returns may be more pronounced or less pronounced according 

to systems' implementation and usage strategies. In general, the advantages and 

disadvantages of blockchain can be listed as follows. 

Key benefits of the blockchain [45]; 

• Blockchain allows distributed management of the information transfer process 

without central management. This information management process is recorded 

in an indestructible way and viewed transparently by everyone.  
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• Each transaction has to be verified according to the mechanism used by the 

nodes included in the system, in this case the transactions become more 

consistent and secure.  

• Individuals who are involved in the processing of transaction results on blocks 

and share the computing power with the system, make money.  

• The nodes included in the system perform their transactions anonymously and 

control each information and process by themselves.  

• Thanks to digital signatures and verifications, it is ensured that its stakeholders 

trust each other easily.  

• Certain activities can be automated thanks to smart contracts. 

 

Open issues of the blockchain [46]; 

• Proof of Work algorithm-based blockchain systems consume a lot of energy. 

• The data in the blockchain is kept separately in each node and the consistency of 

these data is ensured as a result of each completed operation. For this reason, 

compared to traditional databases, there is a low performance. 

• Individuals' privacy can be harmed due to saving data and accessing data content 

transparently by each node in the network. 

• With the increase the number of applications that use blockchain network(s), the 

extra workload that system needs also have increased. As a result, scalability 

and performance problems arise. In a large distributed system, as the needs 

increase, the algorithms running on it will try to perform thousands of operations 

per second. Thus, system performance might decrease. 

 

As a result, after understanding whether a system needs blockchain technology, it would 

be a better decision to integrate the blockchain technology into the system [47]. Please 

note that, blockchain is not always applicable for all kind of distributed problems. 
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Chapter 4 

Blockchain Applications in 

Bioinformatics 

 

Blockchain technology is integrated into multiple industry areas for facilitating and 

improving the functions of systems. Considering the health sector, every development 

in the field actually means goodness to humanity because of all the innovations in this 

field directly concern the individual. So blockchain technology has picked up 

significant attention in genomics and healthcare, since it offers a new solution for their 

problems from a different perspective. Possible use cases for blockchain in genomics 

and healthcare can be classified as follow [48]: 

• Patient monitoring through the Internet of Things; Today, one of the vital 

points for the researches is to collect patient data that may be beneficial for 

health. Still, it is kept in the cloud system, which is less controlled about the 

security and access of this information. In contrast, the safer and compatible 

blockchain system can better protect and record information from objects in the 

network [49].  

• Detection and Prevention of Fraud in Medicine; As an activity of 

Hyperledger, Counterfeit Medicines Project was recently launched [50]. The  
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project aims to detect illegal, low quality or stolen drugs by marking a date 

stamp on each drug produced with the blockchain approach. 

• Payment of Insurance Premiums; It is an example of blockchain applications 

for making service pricing and payments in health system compatible with each 

other [51]. Inefficient remuneration system causes both time loss and cost. It is  

claimed that a blockchain system supported by smart contracts can be much 

more efficient than current systems. 

• Data Storage and Distribution; Due to the high costs associated with cloud 

platforms, distributed data storage enabled by blockchain will also arouse 

interest. Filecoin can be showed as an example of decentralized network storage. 

There are also many plans to provide a free private data exchange by giving full 

power to individuals. 

• Distributed Computation; For distributed computation, there are already 

ongoing projects that utilize a blockchain for rewarding as Gridcoin, Curecoin, 

and FoldingCoin. 

• Identity and Ownership; Personal identity and data ownership can be checked 

over blockchain. In this way, individuals can organize access controls of their 

data while hiding identities. 

• Voting; Blockchain also offers a way to secure online voting. Genomics works 

relies heavily on standardization, which is determined by an electoral process. 
Furthermore, attempts at crowdsourcing, such as treating variations, can be 

enforced via blockchain, which can also integrate multiuser consensus on 

curation outcomes. 

• Decentralized Autonomous Organizations (DAOs); DAOs, such as The 

Cancer Genome Atlas (TCGA), can be used for operating mediums to predefine 

laws, regulations, and governance with the powerful sides of smart contracts. 

• Medical Records Management System; Decentralized medical data recording 

systems are among the most recommended blockchain applications. 

Management of medical record systems with blockchain provides to patients 

transparent, quick access, and authority-corrected errors for their records. On the  
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other hand, it helps doctors predict the disease before the disease harm the 

patient. 

 

In this thesis a new blockchain based genomic data sharing platform for bioinformatics 

researchers has been proposed. For this reason, while reviewing the literature, the 

existing blockchain based electronic health record (EHR) and genomic data sharing 

platforms were also examined. These examined projects are Nebula Genomics, Zenome, 

Genecoin, Gene-Chain, DNATIX, Medrec, IRYO, Coral Health, Open Longevity, 

Patientory, Medicalchain, GemOS, e-Estonia, Health Nexus, and NeuRoN as in Table 

4.1. Among the fifteen projects; Nebula Genomics, Zenome, Genecoin, DNATIX, 

Medrec, Coral Health, Open Longevity, Patientory, Health Nexus and NeuRoN are 

based on Ethereum. Gene-Chain is grounded in Hyperledger. IRYO is based on EOS, e-

Estonia is based on KSI, Medicalchain, and GemOS is based on a combination of 

Ethereum and Hyperledger. All of them prefer smart contracts. Also, Nebula Genomics, 

Zenome, Genecoin, Gene-Chain and DNATIX, have been developed for genomic data 

sharing, but Medrec, Coral Health, IRYO, Open Longevity,  Patientory, Medicalchain, 

GemOS, e-Estonia and Health Nexus have been developed for EHR sharing, and only 

the NeuRoN supports both genomic data sharing and EHR sharing. According to these 

information, Ethereum or Hyperledger technologies are preferred in healthcare and 

genomics. Generally, Ethereum are used by genomics related projects. In contrast to 

genomics related projects, Hyperledger are used by healthcare related projects and 

numbers of blockchain-based EHR sharing platforms are more than blockchain-based 

genomic data sharing platforms.  

 

Table 4.2 sets out the common advantages and weaknesses of current projects. The 

benefits of using blockchain in these systems can be itemized as follow: (i) data owner 

manages data access permissions, (ii) analytical cost can be minimized, (iii) data owner-

buyer interactions accelerate and become transparent, (iv) data collection process 

accelerates and privacy issues are partially solved. On the other hand, (i) it is not 

possible to provide complete anonymity, (ii) there is no protective mechanism for the 

attack scenario, (iii) key-related issues are present, (iv) energy consumption and  



 

19 

 

 

 

 

scalability issues of blockchain technology, and (v) there is no comprehensive 

documentation. 

 

In Figure 4.1 all projects are classified with the 6 metrics. Nebula Genomics, Genecoin 

and Gene-Chain support register kit. It means they have their own facilities to 

sequencing. Data owners can make money at Nebula Genomics, NeuRoN, Open 

Longevity, Zenome, and IRYO. Zenome and Health Nexus support data concerning 

human and non-human organisms. Other projects exclusively support only human data. 

Only Nebula Genomics uses partially homomorphic encryption to share data using 

encrypted format. So in Nebula Genomics, data privacy is better than others. IRYO, 

Zenome, Open Longevity and NeuRoN are included in the metric of disease prediction. 
Because they use some artificial intelligence methods on data and obtain prediction to 

related diseases. Finally, while Medrec, IRYO, Coral Health, Open Longevity, 

Patientory, Genecoin, Medicalchain, GemOS e-Estonia and NeuRoN have mobile 

applications; Medrec, IRYO, Coral Health, Patientory, Medicalchain, e-Estonia, Health 

Nexus and NeuRoN have patient monitoring system. 

 

 
   

Figure 4.1 Classification of the projects 
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The General 

Information 

about the 

Projects 

Platform Country Company The Focused Area 

Nebula  

Genomics [52] 
Ethereum USA 

Nebula 

Genomics 

2016 

Genomic and 

Phenotyping Data 

Sharing 

Zenome 

 (ZNA) [53] 
Ethereum Russia 

Zenome 

2017 
Genomic Data Sharing 

Genecoin [54] Ethereum Brasil 
Genecoin 

2017 
Genomic Data Sharing 

Gene-Chain 

(DNA) [55] 

Hyperledger USA 
EncrypGen 

2016 
Genomic Data Sharing 

DNATIX  

(DNAtix) [56] 
Ethereum Israel 

DNAtix 

2014 
Genomic Data Sharing 

Medrec [57] Ethereum USA 
MIT Media 

Lab 2016 
EHR Sharing 

IRYO 

(IRYO) [58] 
EOS Slovenia 

IRYO 

2017 
EHR Sharing 

Coral Health [59] Ethereum USA 
Coral Health 

2017 

EHR and Genetic Test 

Results Sharing for 

Personalized Medicine 

Open Longevity 

(YEAR) [60] 
Ethereum Russia 

Open 

Longevity 

2016 

Biomedical Data Sharing 

for Development 

Antiaging Clinical Trials 

Patientory 

(PTOY) [61] 
Ethereum USA 

Patientory 

2015 
EHR Sharing 

MedicalChain  

(MTN) [62] 

Hyperledger 

Ethereum 
UK 

Medicalchain 

2017 
EHR Sharing 

GemOS [63] 
Hyperledger 

Ethereum 
USA 

GemOS 

2016 

EHR Sharing for 

Personalized Medicine 

e-Estonia [64] KSI Estonia 
Guardtime 

2009 

EHR Sharing and  

Electonic Prescription 

Health Nexus 

(HLTH) [65] 
Ethereum USA 

SimplyVital 

Health 2017 
EHR Sharing 

NeuRoN 

(NRN) [66] 
Ethereum USA 

doc.ai 

2016 

Genomic Data and  

EHR Sharing 

 
Table 4.1 General information about the projects 
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• Data owners control data access permissions 

• Easily and directly communication 

• Metadata are stored on a block instead of original data 

• Quick data transmission 

• Data standardization 

• The immutable and distributed ledger of transactions 

• No intermediary companies 

• Reducing analysis costs 

• Verification mechanism 

• Providing interoperability 

• Pseudonymity 

D
is

a
d

v
a
n

ta
g
es

 

• No fully homomorphic encryption, so both addition and multiplication 

operations cannot be performed on the encrypted data. 

• There is no utterly preventive system towards attacks 

• No fully anonymity; only pseudo-anonymity 

• No exact scalability solutions 

• Key challenges 

• Energy consumption 

 
Table 4.2 Common features of the projects 
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Chapter 5 

Why/Why not Blockchain is Suitable for 

Bioinformatics? 

 

The main challenges in genomics are categorized as data sharing, data collection, 

ownership and analysis cost. Figure 5.1 shows the problems in the genomics field and 

blockchain based solutions of these problems. Blockchain technology can easily reduce 

prices of health-based applications and genomic analysis. Because contrary to the 

functioning of existing systems, data owners can contact data buyers directly without an 

intermediary company in its network. In this way, the analysis prices decrease, and the 

data owner makes money. Although this feature seems to be an advantage, it may be 

dangerous in some cases that contain data that should remain private. The blockchain's 

verification mechanism is safer compared to existing systems. Because thanks to 

consensus algorithms, transactions are verified fairly by all system users. At this stage, 

users may face problems related to energy consumption, performance and scalability. In 

blockchain technology, transactions are examined by each node in parallel, so the 

consistency becomes very crucial for the reliability of the network. Therefore, the 

workload of the nodes increases, and a lot of energy is spent for consensus. Also, as the 

number of nodes joining the distributed system increases, the system needs increase.  
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The algorithms that run on it will attempt to do thousands of operations per second. As a 

consequence, system efficiency is declining [67-68]. 

 
 

Figure 5.1 Genomics challenges and their blockchain based solutions 

 

The other important problems on genomics are personal data security and privacy. 

Although there are many privacy preserving techniques, in fact, no fully anonymity can 

be achieved in any health-based or genomic projects until people develop portable 

devices that can sequence the genomes without resorting to the laboratory. Only 

pseudo-anonymity provides by methods including blockchain technology. People 

generally do not want to share their private data directly. Using blockchain, individuals 

can share only metadata, which includes general informations about data, with their 

hash value instead of original data. Likewise, data owners can share their data with 

encrypted format using any encryption technique such as homomorphic encryption, 

thereby system security increases [69-70-71]. With the help of smart contracts, 

unauthorized data access can be prevented. People can easily edit their data access 

permissions with smart contracts and perform their transactions automatically. As a 

result, data management is provided entirely by themselves. Processing of large 

amounts of genomic data requires fast computing power, as it takes trillions of hours of 

CPU. It can be said that blockchain technology is one of the best technologies that is  
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suitable for the solution of this problem. Because it’s working principle is based on 

computing power. Based on these innovative solutions [72], in this thesis, the new 

genomic data sharing and computing platform is designed that is based on hybrid 

blockchain structure consisting of Hyperledger Fabric and Ethereum, homomorphic 

encryption, and SGX. 
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Chapter 6 

Methods  

In this section, the fundamental technologies used in the platform and the general 

architecture of the system are explained. 

 

6.1 Ethereum and Hyperledger Fabric 

Choosing the most suitable blockchain platform for the design and construction of a 

blockchain-based project is an important step. There are two types of blockchain as 

public and private, explained in Chapter 3. The most popular examples of public and 

private blockchain are Ethereum [10] and Hyperledger Fabric [11]. These two 

technologies have been developed for different aims [73]. Since the Ethereum is mostly 

used as a public blockchain in applications, it aimed to be completely transparent and 

permissionless. So, everyone in the Etherum network can access the transaction ledger, 

get into the system without permission, and do any operation without restrictions. On 

the other hand, Hyperledger Fabric is a permissioned blockchain technology that 

develops to meet the needs of applications where privacy and security are required. A 

closed network can be easily set up by editing access permissions on the network. It is 

possible to create multiple channels in the system and only the specified users to use 

these channels. Thus, unregistered users cannot access the ledger, and private  
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information can be shared without any notification by the entire network. In addition, 

Hyperledger Fabric has different types of nodes in the consensus mechanism and these 

nodes are predefined in the network configuration. 

 

Smart contract consists of a set of rules which is running on the blockchain. It 

automatically fulfils certain obligations and tasks when appropriate conditions occurs as 

the software representative of users [74-75]. Purpose of smart contracts are that 

maintaining of data, managing of  contracts and relationships,  providing of functions to 

other contracts and complex authentication. Almost all blockchain-based healthcare and 

genomics related projects have used smart contracts [76]. Genshare also choose to use 

smart contracts in proposed project because of its many advantages, such as the 

automatic fulfillment of obligations and the regulation of data access permissions and 

relationships feasibly. Ethereum and Hyperledger are suitable environments for smart 

contracts. As differences, Hyperledger uses also chain-codes instead of Ethereum-type 

smart contracts. From an application developer's point of view, a smart contract with the 

ledger forms the heart of the Hyperledger Fabric blockchain system. Whereas a smart 

contract defines the executable logic that generates new facts that are added to the 

ledger, a chain-code is typically used by administrators to group related smart contracts 

for deployment, but can also be used for low level system programming of Fabric.  

 

In the GenShare network, the combined version of Ethereum and Hyperledger networks 

is proposed. While data owners will share the indices of their data as privately, 

researchers will be public community that wants to perform computation on shared data. 

To execute the requirements of data owners and researcher, respectively Hyperledger 

Fabric and the Ethereum have been selected by the GenShare [77]. Another reason for 

choosing these two blockchain technologies is that Hyperledger Fabric supports 

Ethereum smart contracts using the EVM chain-code plugin. Hence, Hyperledger Fabric 

and Ethereum can interact with each other. It is an important factor because every 

blockchain project targets a specific area, and applying a combination of different 

technologies according to the desired characteristics of the project may be necessary. 

Combining of different blockchain technologies and providing interaction of  
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them are a current issue which is examined under the blockchain interoperability or 

cross-chain interaction between all public, private, and consortium blockchains 

headings [78]. 

 

6.2 Partially Homomorphic Encryption 

Homomorphic encryption is an encryption method that allows calculation on ciphertexts 

and generates an encrypted result that matches the result of operations, such as done on 

plaintext when decrypted. With this technology, data leakage can be effectively 

prevented, since it works with encrypted text without deciphering it. There are currently 

three types of homomorphic encryption schemes with respect to the number of allowed 

operations on the ciphertexts as Partially Homomorphic Encryption (PHE), Somewhat 

Homomorphic Encryption (SWHE) and Fully Homomorphic Encryption [79]. PHE 

permits only one type of operation with an unlimited number of times, either addition or 

multiplication. SWHE permits some types of operations with a limited number of times. 

FHE permits an unlimited number of operations with unlimited number of times. 

Nowadays, numerous genomic computations are done with homomorphic encryption 

[80]. With the help of PHE scheme, statistical analysis over frequency count of genetic 

data can be performed [81]. SWHE should be preferred for operations that are more 

complex than statistical analysis, such as pattern matching and searching [82]. Creating 

an FHE encryption scheme is conceptually straightforward but in computing terms its 

implementation is too expensive. As the number of operations that can be performed in 

a scheme increases, the size of the ciphertext expands for each homomorphic encryption 

operation [83]. Hence, enforcing the fully homomorphic encryption scheme is not 

favored today. GenShare is preferred to be designed with the Paillier's encryption 

scheme, kind of PHE, and to perform safe computations on genomic data using an 

additive homomorphic property of it. The following Figure 6.2.1 illustrates the 

properties of Paillier’s scheme. Paillier’s encryption scheme is a probabilistic 

asymmetric algorithm to public key cryptography which is developed by Pascal Paillier 

in 1999. Due to the difficulty of calculating the n-th root classes, the Paillier encryption  
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system is based on the decisional composite residuosity assumption. The system shows 

homomorphic feature according to the addition process; this means that, given only the 

public key and the encryption of M1 and M2, one can compute the encryption of M1+M2. 

 

Key Generation Encryption of m Decryption of c 

1. n=pq, the RSA  

    modulus 

2. λ=lcm(p-1, q-1) 

3. g ϵ Z /n2Z s. t. n|or 

    dn
2(g) 

4. Public-key : (n,g), 

    secret key: λ, μ 

1. m ϵ {0,1…n-1},    

    a message                             

2. h ϵR Z /nZ 

3. c= gm hn mod n2,  

    a ciphertext                   

1. m = L (c λ mod n2 ) L (gλ mod n2)-1 

    mod n 

2. The constant parameter, 

     L (g λ mod n2)-1 mod n or 

     L (g α mod n2 ) -1 mod n 

     where g = 1+n mod n2 can also be 

     recomputed once for all. 

Example: Suppose there are two ciphers. If CipherText1 = gm1x1
n mod n2 and 

                  CipherText2 = gm2x2
n mod n2, → CipherText1 ∙ CipherText2 =  

                  gm1x1
n ∙ gm2x2

n mod n2 and additive property is: g m1+m2 (x1x2) n mod n2 

 

 
Figure 6.2.1 Pailler’s cryptosystem 

 

6.3 Intel Software Guard Extensions 

The Software Guard Extensions (SGX) is an intel processor architecture security 

extension that enables private memory regions, called enclaves. By using SGX, private 

codes and data in enclaves are separated from privileged modules and secured against 

them. Access control supported by the hardware limits accesses to the enclaves. So 

SGX can perform protected data computations by untrusted parties on private data [12]. 

As an alternative to conducting computations while preserving anonymity, SGX, and 

homomorphic encryption can be combined [84]. Homomorphic encryption provides the 

data privacy while the SGX achieves the data protection. Figure 6.3.1 illustrates this 

architecture. 
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Figure 6.3.1 The combination of SGX and additively homomorphic encryption 

 

Using a combination of the Paillier's scheme and SGX technology, the following 

computations can be performed on GWAS and NGS data [69-70-71]:  

(i) Disease Susceptibility,  

(ii) Generation of Contingency Table (counts of observed genomic variants as 

computing allele frequency and calculating chi-square statistics) and Statistical Analysis 

of Genomic as Linkage Disequilibrium,  

(iii) Hardy-Weinberg Equilibrium,  

(iv) Cochran-Armitage Test for Trend (CATT),  

(v) Fisher's Exact Test (FET) 

(vi) Transmission Disequilibrium Test (TDT).  

 

To reach the privacy aims of GenShare, a combination of Pailler's homomorphic 

encryption scheme and intel SGX was preferred to perform computations on GWAS an 

NGS data. 
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Chapter 7 

Overview of GenShare Model 

GenShare is a new genomic data sharing and computation platform that is based on 

blockchain, homomorphic encryption and SGX technologies. When the GenShare 

model is being developed, the sytem structure is divided into two categories as inclusion 

of nodes in the GenShare and relations, and obtaining the genomic data. The reason for 

categorizing the system structure was to evaluate all the solutions that can be applied for 

each stage and choose the most suitable methods among them for the system 

requirements of GenShare.  

 

7.1 Inclusion of Nodes in the GenShare and Relations 

Primaly, as seen in Figure 7.1.1, the GenShare consist of three different type of nodes as 

data owner, researcher and secure compute nodes. 

• Data Owner Nodes: Individuals who want to share their genomic data by 

organizing the privacy and access permissions of uploaded data. Data owners 

make money as a result of sharing their data. They utilize the GenShare App and 

involve in Hyperledger Fabric network to privately share index of their data. 
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• Researcher Nodes: Usually, these nodes are a part of the university or R&D 

centers. Researcher nodes purchase genomic data from data owners through 

secure compute nodes and analyze this data in secure compute nodes without 

seeing the content of data. Researcher nodes involve in the GenShare chain, 

which is an Ethereum-derived blockchain. 

 
 

Figure 7.1.1 Overview of GenShare model 

 

• Secure Compute Nodes: They are potent servers that support SGX technology 

and perform computations on homomorphic encrypted data. They are the 

touchstone of the system and managed by certain universities. They provide 

communication between the data owners and the researchers by involving in 

both Hyperledger Fabric and GenShare network. They are responsible from that 

verifying the data and making the calculations requested by the researcher and  
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sending the results to the researcher. Secure compute nodes also make money 

via their computations. 

 

Two different blockchain technologies are used in the GenShare system, as Hyperledger 

Fabric and Ethereum. Data owners are included in the Hyperledger Fabric network, 

while researchers are included in the Ethereum-based GenShare chain. Secure compute 

nodes provide communication between the researcher and the data owner and are 

included in both chains at the same time. Data types and computations prices in the 

system can be determined as fixed by the system or as dynamically by the users. In 

dynamic regulation, users are given the right to choose. However, in order to ensure fair 

distribution in GenShare system, fixed prices are determined according to data and 

calculation types. 

 

In the GenShare, data owners store their data wherever they wish, in a homomorphic 

encrypted form. When they participate in the network, they first specify the properties 

of their data. In the data sharing phase, they share their data indices instead of data with 

secure compute nodes. Secure compute nodes obtain the homomorphic encrypted data 

through sending indexes. After this step, the disease stated by the data owner in the 

characteristics of the data must be approved by the hospital, and the secure compute 

nodes must verify the data through hash records in the laboratory. When the data is 

verified, the fee is transferred to the data owner and demanded computations are made 

automatically. If the data is not verified, the data owner will be blacklisted and punished 

for the further calculations to keep the system maintenance safe. 

 

There are two situations to consider the involvement of researchers in the data-sharing 

platform. Firstly, researchers may want to perform computations on data publicly or 

privately; secondly, these calculations can be an individual process or group 

participation. To ensure operation privacy, blockchain systems can offer an off-chain 

working model to include researchers in the data-sharing platform [85]. Also, using 

threshold cryptography [86] can push researchers to work altogether by providing data  
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if and only if at least three researchers request to process it. Thus unnecessary 

computation requests are prevented, and the system becomes more reliable. After 

researchers included in the system, on the Ethereum-derived chain, they create a smart 

contract that includes the solicited data features and desired computation type. The 

secure compute node reads a contract of researchers and examines the Hyperledger 

Fabric chain to find suitable data owners. When secure compute node finds suitable data 

owners, related fee is automatically collected from the researchers. Also, a selection 

mechanism can be acreated according to the system requirements when selecting a node 

from multiple suitable data owners with the desired property data. As soon as the data 

owner's data is verified by the secure compute node, specified calculations are 

performed, and result is sent to researcher.  

 

In the system, participant universities provide secure compute nodes. These machines 

must support SGX technology to contribute to the GenShare platform because the 

shared data is in encrypted form. They are responsible for verifying the data and making 

the calculations requested by the researcher and sending the results to the researcher. 

Secure compute nodes gather the requests and find the relevant data according to the 

applications. After finding relevant data, SCNs receive the corresponding payment from 

researchers. If a problem occurs in the assigned SCN before the result reaches the 

researcher, a new computation node can be assigned to the transaction, or the 

turnaround mechanism refunds the researcher's money. As with any system, there may 

be trust problems in the GenShare. To prevent this, nodes that in charge to validate the 

computation results can be included in the system. 

 

7.2 Obtaining Genomic Data 

Today, genome sequencing is carried out by the relevant laboratories. In disease 

research, genome sequencing is mostly performed by hospitals, while sometimes people 

want to learn their gene map. To obtain the relevant results, firstly individuals' samples 

should be forwarded to the laboratories. This process is done either by posting the 

samples to the laboratories or individuals directly go to the laboratories. At this point  



 

34 

 

 

 

 

anonymity of persons is not entirely assured because the laboratories know the identity 

details of every person. Briefly, until people develop portable devices that they can  

sequence their genomes without resorting to laboratory, to speak of full anonymity is 

not possible. The laboratories conduct research on samples according to the method of 

sequencing in the final stage of the receiving genomic data and relay the findings to 

individuals. Laboratories claim that after the findings are passed on to people, they erase 

the details, but it should be noted that there may be malicious users in every system and 

organization.  

 

There are three separate concerns to be discussed at the point of sharing the individuals' 

genomic data; disease confirmation, data verification and data security. Hospitals are 

mainly using genomic data sequencing for disease research. The data owner presents the 

data features to the researcher while sharing its data, but it needs to get approval from 

the hospital to prove that the presence of disease in the data features. Additionally, a 

data authentication process that determines whether the individual shares his or her 

original data is needed. If the interaction between the laboratory and the data owner is 

conducted on blockchain as seen in Figure 7.2.1, part 1, the problem of trust against the 

laboratory is eliminated, the laboratory from which data is obtained appears 

transparently, and the selling of data to others by the laboratory is prevented.  

 
 

Figure 7.2.1 The process of obtaining genomic data 
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At the same time, the disease confirmation mechanism can be provided directly with 

being included in blockchain of hospitals. 

 

In Figure 7.2.1, part 2, the data owner and hospitals can work as a single node by 

generating partially common keys so that both the data owner and the hospital get 

approval from each other for the sharing of the data. In the approval mechanism, at least 

three physicians from a facility can be required for acceptance of illness to deter 

security breaches. As data verification mechanism, the GenShare recommend keeping 

the hash values of the data in labs, as shown in Figure 7.2.1, part 3 so, when necessary, 

secure compute nodes can easily understand whether the data is original by comparing 

hash values. Even if the genomic data owner's identity is unclear, information about its 

identity and ancestors can be obtained through its data. Therefore, providing the security 

of genomic data is also very important. As the most effective methods for this are that 

data owner can save its data anywhere in an encrypted form with homomorphic 

encryption and share only index of data as shown in Figure 7.2.1, part 4. In this way, the 

desired computations are performed on the data without knowing the content of the data 

and nobody except the data owners can access the content of the data. 
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Chapter 8 

Implementation and Results  

Implementation of the GenShare system is divided into three parts as  following: 

 

• Hyperledger Fabric network setup and providing communication between data 

owners and secure compute nodes. 

• Secure computation nodes setup and providing secure computations on shared 

data. 

• Ethereum based GenShare network setup and providing communication between 

secure compute nodes and researchers. 

 

For implementation and results section, the Hyperledger Composer Business Network 

[87] was set up, tested and the performance of the network was showed with different 

number of nodes and transactions, since to make the entire system operational will take 

a long time and providing communication between the data owners and the secure 

compute nodes is more important for the initial phase. 
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8.1 Hyperledger Composer Business Network Setup 

Hyperledger Composer is a development framework that simplifies the creation of 

Hyperledger Fabric blockchain applications. Aim of it is helping users to create 

blockchain applications on Hyperledger Fabric without needing to know the low-level 

details involved in blockchain networks. As shown in Figure 8.1.1, it permits to define 

the data model, business logic and access control lists for an application which can be 

deployed and executed within of a Fabric channel [88]. Hyperledger Composer supports  

creating web, mobile or native Node.js applications. Using Composer, users’ 

applications do not need to run a local node and if required, they can communicate with 

a remote node through an RPC or HTTP REST. Besides these, it comes with a web 

playground which is named Hyperledger Composer Playground [89] for the 

configuration, deployment and testing of a business network in browser without a local 

network being set up. 

 
Figure 8.1.1 Hyperledger Composer architecture 

 

Composer has its own object-modeling language. Four types of resources can be 

defined: 
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• Assets: In the application, items are being monitored. 

• Participants: Entities that interact with the network. Each of them has its own 

permits. 

• Transactions: are sent to update an asset or a participant as well as to execute a 

custom-defined logic. 

• Events: can be emitted from the transaction logic and subscribed to by 

participants. 

 

With take advantage of the mentioned benefits, a Hyperledger Composer Business 

Network which is named AguWork was created in this thesis. For the configuration, 

deployment and testing of AguWork Hyperledger Composer Playground was used. 

AguWork was set up on two different physical nodes, which was communicated on 

global network. Node 1 run on 4 vCPU, 8 GB memory, 50 GB storage - enabled server. 

Node 2 run on 4 vCPU, 8 GB memory, 50 GB storage - enabled server. As an OS, 

Ubuntu 18.04 version was preferred because of it is compatible with Hyperledger Fabric 

1.4 version. The reason for the global network preference in communication of physical 

nodes is that while examining AguWork performance, to achieve realistic results were 

desired. Figure 8.1.2 shows the playground of the AguWork. It consists of three 

different files as model, script and access control. The model file contains assests, 

participants, transactions and events definitions. The script file contains transaction 

logics as functions, and finally, the access control file contains defined permission on 

assets, participants, and transactions. 

 

In the AguWork: 

• Participants: are DataOwner (data owner) and SCN (secure compute node) as 

in the Figure 8.1.3 

• Assets: are GenomicData (genomic data) and URL (data index) as in the Figure 

8.1.3 

• Transactions: are SCN Creation, Owner Creation, Assests Creation and Data 

Request as in the Figure 8.1.4 
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Figure 8.1.2 Hyperledger Composer Playground of AguWork 

 

 

 

 

 

 

Figure 8.1.3 Participants of AguWork 
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Data owners join the AguWork with their ownerId as the following. 

{  "$class": "org1.aguhyper.xyz.OwnerCreation", 

  "ownerId": "100" } 

 

 
 

 

Figure 8.1.4 Transactions of AguWork 

 

 

At the same time, data owners submit their data information and data index as assets. 

The following function automatically create two different asset. GenomicData asset 

contains dataId, description (features of data), owner (pointer for data owner) and price 

(price of data) parameters. URL asset contains urlId, url (data index) and data (pointer 

for genomic data) parameters. 

{  "$class": "org1.aguhyper.xyz.AssetsCreation", 

  "dataId": "10", 

  "description": "GWAS", 

  "owner": "resource:org1.aguhyper.xyz.DataOwner#100", 

  "price": 250, 

 "urlId": "1", 

  "url": "www.*", 

  "data": "resource:org1.aguhyper.xyz.GenomicData#10" } 
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Secure compute nodes join the AguWork with their scnId and affiliations as the 

following. 

{  "$class": "org1.aguhyper.xyz.SCNCreation", 

  "scnId": "25", 

  "affliation": "AGU" } 

 

DataRequest is a transaction which the url of the data is requested by SCN, and if the 

appropriate conditions are provided, access to the data url is granted with SCN. It 

contains owner (pointer for data owner), scn (pointer for SCN), data (pointer for 

requested genomic data) and price (the payment amount sent to data owner for its 

genomic data by SCN) parameters as the following. 

{  "$class": "org1.aguhyper.xyz.DataRequest", 

  "owner": "resource:org1.aguhyper.xyz.DataOwner#100", 

  "scn": "resource:org1.aguhyper.xyz.SCN#25", 

  "data": "resource:org1.aguhyper.xyz.GenomicData#10", 

  "price": 500 } 

 

Permission on assets, participants and transaction in the system are as follows: 

• Owners can read SCN information 

• Owners can read data request transactions 

• Owners have full access to their assets 

• SCNs can read genomic data and its owner information 

• Nobody can access URL information except its data owners 

• SCNs can submit DataRequest transactions 

• If the appropriate conditions are provided, the SCN gets the permission to read 

the url information of the relevant genomic data. 

 

For providing data request transaction, there are two types different way as using smart 

contract and chain-code. While smart contract usage is a user-sided solution method, the 

usage of chain-codes provides a administrators-sided solution method. The purpose of 

these two methods is to update the information of the relevant assets or the participant  
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automatically as determined when appropriate conditions occur. We preferred to use 

chain-code for data request transaction. In the GenShare, each data owner has a 

genomic data and URL asset. For data request transaction, if owner of genomic data and 

URL assets is updated to be secure compute node, the data owner cannot sell the same 

data for the second time, in order to sell it, data owner must create assets for the same 

data again. This means an extra load on the AguWork during each data sharing.   

 

For this reason, instead of changing owner of the genomic data and URL assets, 

GenShare preferred initially blocked access to URL assets everyone except the data 

owner. Before the DataRequest transaction takes place, SCN searches the genomic data 

on the AguWork. In the DataRequest transaction, when it finds the genomic data that it 

is looking for, SCN pays the price of the data. If the amount of money sent is same with 

the price of the genomic data, SCN automatically has the right to read the relevant URL 

asset. Otherwise access to URL asset is still restricted. With all these approaches, an 

extra load on the AguWork was prevented. 

 

8.2 Testing 

Apache JMeter is operated to test the performance that using the Hyperledger Composer 

REST server [90] with several API calls. With these external calls, the system can be 

run over the global network instead of a local network. The reason for the worldwide 

network preference in sending requests is that real application of the GenShare cannot 

work locally, and at the same time, the effects of global network delays to the system 

were desired to show. Hyperledger Composer Rest Server are used to generate a REST 

API from a deployed Hyperledger Fabric business network that can be easily consumed 

by HTTP or REST clients. Figure 8.2.1 shows the generated APIs of GenShare. At 

runtime, Hyperledger Composer REST server implements Create, Read, Update, and 

Delete (CRUD) operations to manipulate the state of assets and participants and allow  
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transactions to be submitted or retrieved with queries. Runtime operations of the 

GenShare APIs are shown in the Figure 8.2.2. Angular-based web applications can be 

created to use Hyperledger Composer, but web applications also should make REST 

API calls to interact with a deployed business network [91-92]. Figure 8.2.3 shows the 

Angular-based web application of AguWork.  

 

 
 

Figure 8.2.1 APIs of GenShare 

 

 
 

Figure 8.2.2 Runtime operations of GenShare APIs 
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Figure 8.2.3 Angular-based web application of AguWork 

 

The Apache JMeter is a software which is designed to load test functional behavior and 

measure performance [93]. It can be used to analyze and measure the performance of 

web application or a variety of services like a functional test, database server test etc. 

Performance testing means testing a web application against heavy load, multiple and 

concurrent user traffic. For API calls, the Apache JMeter is preferred in this thesis. 

Also, Hyperledger Composer Query could be used instead of it. But the Apache JMeter 

outputs were more suitable for the GenShare system to the calculations made in the 

result section. 

 

8.3 Results 

The performance of the Hyperledger Fabric network in the relevant transactions and 

workloads is shown in this section. Firstly, the Hyperledger performance metrics, which 

are used for measurement will be explained before workloads, results, and inferences of 

test. There are three types of performance metric used in evaluation as following [94]:  
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• Average Transaction Latency: Transaction latency involves the time from the 

point that it is submitted to the point that the result is widely available in the 

network. This includes the propagation period and any settling period owing to 

the developed consensus process. In this thesis, average transaction latency is 

shown. 

 

Average Transaction Latency = Total confirmation time – submit time 

(calculated for each transaction) / number of transactions 

 

• Transaction Throughput: is the rate at that valid transactions are committed 

over a given time period by the blockchain system under test (SUT). At a 

network scale, this rate is represented as transactions per second (TPS). 

 

Transaction Throughput = Total committed transactions / total time in seconds 

 

• Read Latency: is the time between when the read request is submitted and 

when the reply is received. 

 

Read Latency = Time when response received – submit time 

 

Measurements on the AguWork run in two fundamental scenarios:  while 100 nodes and 

500 nodes in the system. When workload is both 100 nodes and 500 nodes, 10% of 

nodes are considered as SCN, 90% as data owner. It means that while workload is 100, 

the system has 10 SCN and 90 data owners. Each owner has one genomic data and url 

asset. While workload is 500, the system has 50 SCN and 450 data owner. Also, each 

owner has one genomic data and url asset. While analyzing the results data, it should be 

remembered that API calls made to the system are sent externally over the global 

network instead of the local network. As a result of this, Internet speed affected the 

results certain extent and constant increase rate could not be observed among them. 
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Firstly, creation of data owners, SCN and assets are examined for both workloads and 

two figures are obtained as Figure 8.3.1 and Figure 8.3.2. In the Figure 8.3.1, average 

transaction latencies of the participant and assets creation process are shown. When the 

workload changed, the number of transactions increased five times, and as expected, 

when the number of transactions increased, the average transaction latencies increased 

too. But the point to be emphasized here is that the transaction numbers of data owners 

and assets are equal. However, the transaction delays of asset creations are 

approximately twice that of the data owner, because the size of the transmitted message 

is different. The bytes sent in the creation of data owner, SCN and assets are follows, 

respectively: 215 bytes, 294 bytes and 489 bytes. From this, it is understood that the 

increase in the size of the message, such as an increase in the number of transactions, 

affects the transaction latencies. 

 

 
 

Figure 8.3.1 Average transaction latencies of participant and assets creation 

 

In the Figure 8.3.2, transaction throughput of the participant and assets creation process 

are shown. When the workload changed, the number of transactions increased and as 

expected, when the number of transactions increased, the transaction throughput 

decreased. As mentioned in Figure 8.3.1, although the transaction numbers of data 

owners and assets are equal, the transaction throughput of asset creations are 

approximately twice less that of the data owner due to the size of the transmitted  
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message of them are different. Thus, it is shown that message size affects the transaction 

throughput performance. 

 

There are some details needed to be explained before showing the results for other 

measurements. Different workload rates are determined as a parameter for the rest of the 

tests according to the obtained results. While deciding test scenarios, restrictions 

imposed by the AguWork and the hardware it works on are analyzed, and the results are 

given in Table 8.3.1, Table 8.3.2, and Figure 8.3.3. According to our tests AguWork 

system allows max 900 transactions at the same time because of the limitations. If there 

are more than that amount of transactions, scheduling techniques will be implemented 

as a future work. Workload performance can be improved by increasing the power of 

the hardware where the nodes are installed and by changing the settings made in the 

Hyperledger core installation. With the hardware resources of AguWork, the specified 

number of nodes for different roles has the optimum proportion for the comparison of 

network performance from different angles. 

 

 
 

Figure 8.3.2 Transaction throughput of the participant and assets creation 

 

According to different workloads, Table 8.3.1 shows average transaction latencies and 

average transaction throughput results when data request transactions changed. In one 

scenario, node distribution in AguWork is designed as 10% SCN and 90% data owner a 
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as in the node creation process. There are two workloads are applied on 100 nodes and 

500 nodes as follows:  

1. Simultaneously 10% of the SCNs in the system, request to buy the genomic data 

from respectively 1, %5 and %10 of the data owners. 

2. Simultaneously 20% of the SCNs in the system, request to buy the genomic data 

from respectively  1, %5 and %10 of the data owners. 

o For example: When there are 100 nodes in the system, 20% means only 

2 of them are SCN. When these nodes request to buy genomic data from 

respectively 1%, 5% and 10% of the data, that means, each of the 2 SCN 

respectively buy one, five and nine genomic data simultaneously, and 

separately. 

 

For 100 

Node 

 1 SCN 2 SCN 

Average 

Transaction 

Latency 

Transaction 

Throughput 

Average 

Transaction 

Latency 

Transaction 

Throughput 

1 

Owner 
0,15 6,62 0,14 6,83 

5 

Owner 
0,14 7,17 0,13 7,95 

9 

Owner 
0,13 7,50 0,12 8,3 

For 500 

Node 

5 SCN 10 SCN 

Average 

Transaction 

Latency 

Transaction 

Throughput 

Average 

Transaction 

Latency 

Transaction 

Throughput 

1 

Owner 
0,375 2,66 0,39 2,53 

23 

Owner 
1,57 0,63 1,37 0,73 

45 

Owner 
1,73 0,57 1,9 0,51 

Results are expressed in seconds. 

 

Table 8.3.1 Average transaction latencies and transaction throughput for the data request 

transaction 
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When the results obtained for the 100 nodes are examined, it is seen that as the number 

of transactions increases, the average transaction latency decreases and the transaction 

throughput increases. In contrast, when the results obtained for the 500 nodes are 

examined, it is seen that as the number of transactions increases, the average transaction 

latency increases and the transaction throughput decreases. Normally, the expected 

results for both scenarios should have followed the same trend as obtained with 500 

nodes. It shows that, when there are 100 nodes in the system with a low level of 

workload, the worker nodes have enough power to handle all the requests since there is 

no congestion. Therefore, while transaction throughput increases, latency decreases 

naturally.   

 

In general, when the number of transactions increased, while transaction latency is 

increasing, throughput is decreasing due to a large volume of requests on the worker 

nodes. However, the point that should be emphasized here is that although transaction 

numbers of the parts marked with a red and blue parenthesis in Table 8.3.1 are the same, 

their results have a different pattern. In other words, making five data sharing requests 

by one SCN and sending one data sharing request by five different SCN, in total five 

transactions for both scenarios, does not give the same results. It is shown that as the 

that as the number of SCN making the request increases in cases where the total number 

of transactions is the same, average transaction latency increases and transaction 

throughput values decrease. 

 

According to different workloads, Table 8.3.2 shows average transaction latencies and 

transaction throughput for the data request transactions when there are several collision 

rates. Four workloads are applied on 100 nodes and 500 nodes as follows:  

1. Simultaneously 20% of the SCNs in the system, request to buy the genomic data 

from respectively 5% and 10% of the data owners with 10% collision . 

2. Simultaneously 20% of the SCNs in the system, request to buy the genomic data 

from respectively 5% and 10% of the data owners with 25% collision . 

3. Simultaneously 20% of the SCNs in the system, request to buy the genomic data 

from respectively 5% and 10% of the data owners with 50% collision . 
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4. Simultaneously 20% of the SCNs in the system, request to buy the genomic data 

from respectively 5% and 10% of the data owners with 100% collision . 

o For example: When there are 100 nodes in the system, 20% means there 

are 2 SCNs. When these nodes request to buy genomic data from 

respectively 5% and 10% of the data owners with 100% collision, means 

from the same set of data owners. It means that simultaneously, each of 

the 2 SCN respectively buy five and nine genomic data from the same 

data owner. 

 

When collision-included scenarios applied, Table 8.3.2 shows a similar pattern on 

latency and throughput analysis, as in Table 8.3.1.  

 

 
Table 8.3.2 With collisions, average transaction latencies and transaction throughput for the data 

request transaction 
 

Once again, when the workload for 100 nodes is not high, and the system occupancy 

rate is low, the system will perform more consistent results as expected. The main goal 

here is to get an idea of AguWork performance when the same data was bought by more  

 

For 100 

Node 

2 SCN 

10% Collision 25% Collision 50% Collision 100% Collision 

ATL TT ATL TT ATL TT ATL TT 

5 

Owner 
0,61 1,645 0,64 1,56 0,66 1,51 0,63 1,58 

9 

Owner 
0,51 1,96 0,53 1,89 0,54 1,85 0,53 1,92 

For 500 

Node 

10 SCN 

10% Collision 25% Collision 50% Collision 100% Collision 

ATL TT ATL TT ATL TT ATL TT 

23 

Owner 
1,96 0,51 1,98 0,50 2 0,49 2,05 0,48 

45 

Owner 
2,43 0,41 2,573 0,388 2,75 0,362 2,86 0,349 

ATL: Average Transaction Latency                                               Results are expressed in seconds.  

TT: Transaction Throughput 
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than one SCN at the same time that shows the load on the data owner node. It is shown 

that, as the number of collision increases in both workloads, average transaction latency 

increases and transaction throughput decreases. 

 

According to different workloads, Figure 8.3.3 shows the read latencies for transactions. 

There are three workloads are applied by 1 node, 5 node and 10 nodes as follows: 

1. One participant, respectively request to read one, fifty and hundred 

transactions. 

2. Simultaneously 5 participant, respectively request to read one, fifty and 

hundred transactions. 

3. Simultaneously 10 participant, respectively request to read one, fifty and 

hundred transactions. 

 

 
 

Figure 8.3.3 Read latencies for transactions 

 

When the results are examined, it is seen that as the number of the read request for 

transactions increases, the read latency increases. Therewithal, although read request 

numbers of the parts marked with a red parenthesis in Figure 8.3.3 are the same, their 

results are different. It is shown that as the number of node making the read request 

decreases, read latency increases. This is the opposite of the situation observed in Table 

8.3.1. Based on this, please note that; for POST method in cases where the total number  
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of transactions is the same, as the number of node making the request increases, average 

transaction latency increases but for GET method in cases where the total number of 

transactions is the same, as the number of node making the request decreases, average 

transaction latency increases . 
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Chapter 9 

Evaluation of the Genshare 

9.1 Contributions of the GenShare 

The main contributions of proposed hybrid platform are follows: 

 

• When creating the GenShare model, the sytem structure is divided into two 

categories as obtaining the genomic data, inclusion of nodes in the GenShare 

and relation between nodes. The reason for categorizing the system structure 

was to evaluate all the solutions that can be applied for each stage and choose 

the most suitable methods among them for the system requirements of 

GenShare. The various solutions presented in this approach will provide insight 

for many other systems. 

• Obtaining genomic data and data verification process have not been considered 

and explained in any system. This is a subject that is meticulously handled in the 

GenShare system. 

• GenShare is a hybrid platform that is based on blockchain, homomorphic 

encryption and SGX technologies. There are genomic data computation studies 

developed with SGX and homomorphic encryption in the literature and genomic  
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data sharing studies with a single blockchain structure. Combining different 

blockchain technologies and providing interactions between them is a field that 

has just been studied and does not have an exemplary representation in 

bioinformatics. While examining all these studies, the advantages, disadvantages 

and problems still waiting to be solved are listed and it has been realized that all 

of them combined with appropriate rules into a novel hybrid structure will 

improve the advantages and close the number of open issues. In line with this 

idea, the GenShare model was presented. 

• With the help of homomorphic encryption and SGX technology, data privacy 

and security problems are solved. Thus anyone other than the data owner cannot 

access the original genomic data. Also through inclusion of powerful SGX 

supported servers in the system, statistical analysis and count query operation of 

genomics are performed easily. 

• Using blockchain in data sharing process, data owners take control of their data 

access permissions and authorization. Also they make money from this process. 

All of positive yields has encouraged data owners to share their data. So a 

helpful proposal has been created for the problem of not being able to collect the 

desired number of data in scientific studies. 

• For providing data sharing process, there are two types different way as using 

smart contract and chain-code. We preferred to use chain-code for data request 

transaction. In the GenShare, if owner of genomic data and URL assets is 

updated to be secure compute node, the data owner cannot sell the same data for 

the second time, in order to sell it, data owner must create assets for the same 

data again. This means an extra load on the AguWork during each data sharing.  

For this reason, instead of changing owner of the genomic data and URL assets, 

GenShare preferred initially blocked access to URL assets everyone except the 

data owner. In this way, when SCN pays the data owner the price of the data, 

SCN automatically has the right to read the relevant URL asset and an extra load 

on the AguWork was prevented. 
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• AguWork was set up on two different physical nodes which was communicated 

on global network. The reason for the global network preference in 

communication of physical nodes is that while examining AguWork 

performance, to achieve realistic results were desired. Because if the nodes 

provided communication over the local network, the latency results would be 

lower than it should be in the actual application, and the throughput results 

would be more. 

• In the test section, the API calls made to the system were sent externally over 

the global network instead of local network. The reason for the global network 

preference in sending requests is that real application of the GenShare cannot 

work locally and at the same time, the effects of global network delays to the 

system were desired to show. 

• Many different workload rates are determined for performance measurements 

made in the system according to the hardware resources of AguWork. 

 

9.2 Security Analysis 

When creating the proposed model, the sytem structure is divided into some categories 

and evaluate all possible solutions that can be applied on each category, and the most 

suitable methods among solutions are preferred according the system requirements of 

GenShare. The purpose of this categorization is to minimize any security problems that 

could occur. In GenShare, genomic data is stored in a private storage with 

homomorphic encrypted form by owner, and computations are performed on encrypted 

data safely through the use of SGX, which ensures data privacy and security. The index 

of encrypted data is shared on the Hyperledger Fabric network. GenShare preferred 

initially blocked access to index of data everyone except the data owner. In this way, 

when SCN pays the data owner the price of the data, SCN automatically has the right to 

read the relevant index of data. Thus unauthorized user can't obtain the access 

permission are prevented [95]. As data verification mechanism, the GenShare 

recommend keeping the hash values of the data in labs. Thus through APIs, the SCN 

easily understand whether the data is original or not by comparing their hash values and  
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data falsifications are prevented. If a user has malicious actions, the system can blacklist 

the account and all attacks will be recorded as evidences. For preventing denial-of-

service (DDoS) attacks [96], when at least three researchers come together, they can 

request to process the data thanks to threshold cryptography. Secure compute nodes 

occur from certain universities in the system but there may be trust problems in each 

system. To prevent this, nodes that are in charge to validate the computation results of 

SCNs are included in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

57 

 

 

 

 

Chapter 10 

Discussions and Conclusion  

In this thesis, a hybrid GenShare platform is proposed for genomic data gathering and 

sharing with bioinformatics researchers. The system is designed as a combination of 

Hyperledger Fabric and Ethereum platforms. Also, homomorphic encryption and Intel 

SGX technologies are applied for sharing genomic data with the privacy-preserving way 

among all types of users. Thus, all computations on genomics data will be calculated in 

a secure and safe way.  

 

Developments in genomics play a significant role in human life. In order to increase the 

efficiency of the genomics based approaches used to protect human health, researchers 

should collect more genomic data, but there are some difficulties for obtaining and 

sharing genomic data such as, high analysis costs, an inability on data access 

permissions, limitations on data privacy and security, and storage of massive amount of 

data. The proposed model brings new solutions to these problems using combined 

blockchain, homomorphic encryption and SGX technologies. With homomorphic 

encryption and SGX, data privacy and security related problems are solved feasibly. In 

the GenShare model, the genomic data is processed by the owner in a private storage 

with homomorphically encrypted form and the computations are safely performed on 

encrypted data using SGX. Other problems have been solved with Hyperledger Fabric  
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and Ethereum-derived GenShare. Thanks to these two technologies, data owners and 

researchers can communicate anonymously without an intermediary; data owners and 

secure compute nodes can make money; researchers can access more data; and data 

owners can control their data access permissions. 

 

In the proposed system, while the researchers are included in the public side of the 

GenShare network, the data owners are included only in the permissioned part of 

GenShare. Communication between these two chains is provided by SCNs, which are 

linked to both blockchain structures. When a researcher wants to study genomic data, it 

prepares smart contract with the specified data type and operations on the GenShare. 

The system assigns an SCN for this process, and related data is searched in the 

Hyperledger network. We would like to remind that the data owner has two types of an 

asset: i) genomic data information, and ii) address of data. For the data request 

processes, GenShare initially prefers blocked access to URL assets for everyone except 

its owner. As soon as the data is found, SCN pays the price of the genomic data. If the 

amount of money sent is same with the price of the genomic data, SCN automatically 

has the right to read the relevant URL asset. If the SCN, who has the right to access the 

data verifies the data, the paid fee is automatically transferred to the account of the data 

owner. Then, computations of the researcher are made, and the result is provided to the 

researcher. 

 

Implementation of the GenShare system is divided into three parts as (i) providing 

communication between data owners and SCNs, (ii) applying secure computations on 

shared data, and (iii) establishing communication between SCNs and researchers. 

Making these three-part operations will take a long time, and providing communication 

between the data owners and the SCNs is more critical for the initial phase. For these 

reasons, the Hyperledger Composer Business Network, which is named the AguWork, 

is set up on two different physical nodes, which communicate via the worldwide 

network. After AguWork is set up operationally, API calls were performed by Apache 

JMeter using the Hyperledger Composer REST server externally over the global 

network. In the testing part, these API calls are performed with both the same and  
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different workloads, and the performance of the AguWork is evaluated according to 

well-known metrics like average transaction latency, transaction throughput, and read 

latency. The performance of AguWork is measured by applying two different scenarios 

that include 100 nodes and 500 nodes in the system. Different proportions of different 

roles of users are also tested. Firstly, the creation performance of data owners, SCN, and 

assets are examined via considering 10% of nodes as SCN, 90% as the data owner. 

Then according to the hardware resources of AguWork, some parameters were 

optimized for different workload scenarios. The same scenarios are applied for totally 

different test cases and collision-included ones. Finally, the performance of transaction 

reading requests is tested according to specific test cases.  

 

As a result, a steady increase rate should not be expected among the results obtained 

from the global network test, since the internet speed will affect the results. In test cases, 

when the number of transaction increases, the average transaction latency increases, and 

transaction throughput decreases, but the only thing that affects metrics is not the 

number of transactions. For two different workloads with the same total number of 

processes, the average transaction latency increases as the transaction throughput 

decreases when the message size increases, and the number of nodes that send request 

to buy genomic data increases. On contrary to sending request to buy genomic data, for 

two different workloads with the same total number of processes, the average 

transaction latency increases as the transaction throughput decreases when the number 

of nodes which send request to read transactions decreases. Finally, when the workload 

and occupancy rate increases at a certain rate, the system will give more consistent 

results. In conclusion, the proposed GenShare model is suitable for projects where more 

data collection and sharing are required, such as the Turkish Genome Project [97]. We 

believe that the proposed model will accelerate the completion time of this type of 

projects and will be the most efficient platform for its users. It is worth to note that the 

higher the capacity of the hardware resources used, the higher the performance of the 

system. As a future work, we aim to develop the remaining parts of the system and 

make the whole system fully operational. 
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