AGU Graduate School of Engineering and ScienceProgram

COURSE RECORD

COURSE RECORD	
Code	BENG622
Name	Machine Learning
Hour per week	3 (3 + 0)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Type	Elective
Location	
Prerequisites	
Special Conditions	
Coordinator(s)	Assist. Prof. Dr. Müşerref Duygu Saçar Demirci
Webpage	
Content	The course presents an introduction to popular machine learning approaches.
	The key processes in machine learning will be covered: common classification
	methods like SVM and Decision Tree and approaches like hierarchical clustering
	will be analyzed in detail. Through a course project, the students will apply a
011	few machine learning software on a real problem.
Objectives	- Explaining the basic concepts of Machine Learning.
	- Using machine learning approaches accurately.
	- To gain experience of analyzing real biological data.
I	- Improving skills in independent study and research.
Learning	Students will be,
Outcomes	LO1 Able to describe machine-learning concepts.
	LO2 Able to describe classification and clustering methods. LO3 Able to describe performance evaluation.
	LO4 Able to design processes on big data sets.
	LO5 Able to design a machine learning workflow to solve a real problem.
Requirements	105 hore to design a machine rearming worknow to solve a rear problem.
Reading List	
Ethical Rules and	
Course Policy	
Course I oney	

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lecture	12	40%
Group Works	2	30%
Presentations	2	25%
Site Visits	1	5%
	Tot	al 100

ASSESSMENT

Evaluation Criteria		Weight (%)
Group Project Assignments & Presentations		90%
Attendance/Participation		10%
	Total	100%

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

AGU Graduate School of Engineering and ScienceProgram

COURSE LOAD

Activity	Duration (hour)	Quantity	Work Load (hour)
In class activities	3	14	42
Group work	8	14	112
Research (web, library)	3	14	42
Required Readings	4	14	56
Pre-work for Presentation	25	2	50
		General Sum	302

ECTS: 7,5(Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PO13	PO14
L01	5	5	5	5	4	4	3	3						
LO2	5	5	5	5	4	4	3	3						
LO3	5	5	5	5	4	4	3	3						
LO4	5	5	5	5	4	4	3	3						
LO5	5	5	5	5	5	5	3	3						

^{*} Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Topic	Outcomes
1	Introduction to Machine Learning	L01
	Lab/Activity: machine learning definition, goals, concepts	
2	Regression I	LO2
	Lab/Activity: linear regression with one variable	
3	Regression II	L02
	Activity: linear regression with multiple variables	
4	Regression III	LO2
	Activity: Logistic regression	
5	Supervised Learning	L02
	Activity: basic classification concepts	
6	Classification I	L02
	Activity: Decision Tree	
7	Classification II	L02
	Activity: SVM	
8	Clustering I	L02
	Activity: basic issues in clustering, partitioning methods: k-means,	
	expectation maximization (EM)	
9	Student Presentations	L05
	Activity: students will present a research article	
10	Clustering II	L02
	Activity: hierarchical methods	
11	Performance Evaluation	L03
	Activity: training, testing, performance evaluation, cross-validation	
12	Dimensionality Reduction	_ LO4
	Activity: PCA, SVD	
13	Mining Real Data	L05
	Activity: obtaining real data and demonstration of analysis using a software	
14	Project Presentations	L05
	Activity: students will present their term projects	

Prepared by Müşerref duygu SAÇAR DEMİRCİ

Date: 16.07.2018