AGU Graduate School of Engineering and Science Bioengineering Program

COURSE RECORD

COURSE RECORD	
Code	BENG546
Name	Data Mining
Hour per week	3 (3 + 0)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Fall/Spring
Type	Elective
Location	
Prerequisites	
Special Conditions	
Coordinator(s)	Assist. Prof. Dr. Müşerref Duygu Saçar Demirci
Webpage	
Content	The course presents an introduction to popular data mining approaches. The
	key processes in data mining will be covered: types of attributes, common data
	set structures, data preprocessing, feature selection, sampling, using different
	statistical and machine learning techniques and visualization. Through a course
	project, the students will apply a data mining software on a real problem.
Objectives	- Explaining the basic concepts of Data Mining.
	- Using data mining software for solving practical problems.
	- To gain experience of analyzing real biological data.
	- Improving skills in independent study and research.
Learning	Students will be,
Outcomes	LO1 Able to describe the types, quality and influence of data.
	LO2 Able to describe preprocessing and feature selection methods.
	LO3 Able to describe classification and clustering methods and performance
	evaluation.
	LO4 Able to explain visualization techniques and anomaly detection.
	LO5 Able to design a data mining workflow to solve a real problem.
Requirements	
Reading List	Introduction to Data Mining: Pearson New International Edition, Pang-
5	Ning Tan, Michael Steinbach, Vipin Kumar, Pearson, 2014.
Ethical Rules and	
Course Policy	

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lecture	12	40%
Group Works	2	30%
Presentations	2	25%
Site Visits	1	5%
	Tota	nl 100

ASSESSMENT

Evaluation Criteria		Weight (%)
Group Project Assignments & Presentations		90%
Attendance/Participation		10%
	Total	100%

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

AGU Graduate School of Engineering and Science Bioengineering Program

COURSE LOAD

Activity	Duration	Quantity	Work Load
	(hour)		(hour)
In class activities	3	14	42
Group work	8	14	112
Research (web, library)	3	14	42
Required Readings	4	14	56
Pre-work for Presentation	25	2	50
		General Sum	302

ECTS: 7,5(Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	P01	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12	PO13	PO14
L01	5	5	4	5	4	4	3	3						
LO2	5	4	4	5	4	4	3	3						
LO3	5	5	5	5	4	4	3	3						
LO4	5	5	5	5	4	4	3	3						
LO5	5	5	5	5	5	5	3	3						

^{*} Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Topic	Outcomes
1	Introduction to Data Mining	L01
	Lab/Activity: data mining definition, goals, concepts	_
2	Data	L01
	Lab/Activity: type of data, quality of data, data sources, exploring data	
3	Preprocessing	L02
	Activity: aggregation, sampling, dimensionality reduction, transformation	
4	Feature Selection	_ LO2
	Activity: embedded, wrapper, filter approaches	
5	Classification I	L03
	Activity: basic classification concepts, Decision Tree	
6	_ Classification II	L03
	Activity: alternative approaches, SVM, Naïve Bayes	
7	Clustering I	L03
	Activity: basic issues in clustering, partitioning methods: k-means,	
	expectation maximization (EM)	
8	Clustering II	_ LO3
	Activity: hierarchical methods	
9	Student Presentations	_ L05
	Activity: students will present a research article	
10	Performance Evaluation	_ LO3
	Activity: training, testing, performance evaluation, cross-validation	
11	Visualization	_ LO4
	Activity: histograms, scatter plots, ROC curves	
12	Anomaly Detection	_ LO4
	Activity: causes of anomalies, approaches to anomaly detection	
13	Mining Real Data	_ LO5
	Activity: obtaining real data and demonstration of analysis using a software	
14	Project Presentations	L05
	Activity: students will present their term projects	

Prepared by Date