ABDULLAH GUL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE BIOENGINEERING DEPARTMENT COURSE DESCRIPTION AND SYLLABUS

Course Name	CODE	SEMESTER	T+L Hour	CREDIT	ECST
Instrumental Analysis	525	FALL-SPRING	3 + 0	3	7,5

|--|

Course Type	Elective
Course Language	English
Course Coordinator	Asst. Prof. Dr. İsmail Alper İşoğlu
Lecturers	Dr. İsmail Alper İşoğlu, Dr. Sevil Dinçer İşoğlu, Dr. Erkin Aydın, Dr, Aysun Aydın, Dr. Aysun Adan, Dr. Mona El-Khatib, Dr. Sebiha Ç. Kaplan
Course Assistants	Res. Asst. Yağmur Kiraz
Course Objectives	General introduction about devices that are used in chemical analysis.
Learning Outcomes	Students, Able to understand devices that are used in chemical anlaysis Able to learn principles of chemical mesaurements Able to gain a different point of view on solving problems based on devices
Course Content	Separation methods, Chromatographic techniques, spectrophotometric analysis, spectroscopy tpyes

WEEKLY SUBJECTS AND RELATED PRELIMINARY PAGES							
Week	Subjects	Preliminary					
1	Introduction, chemical analysis and the role of devices	Course book, Introduction part and related articles					
2	Separation methods	Course book, Introduction part and related articles					
3	Chromatographic techniques: HPLC	Course book, Introduction part and related articles					
4	Chromatographic techniques: LC, GPC	Course book, Introduction part and related articles					
5	Spectroscopy: mass spectroscopy	Course book, Introduction part and related articles					
6	Spectroscopy: IR spectroscopy	Course book, part A and related articles					
7	Spectroscopy: NMR spectroscopy	Course book, part B and related articles					
8	Spectroscopy: atomic absorption spectroscopy	Course book, part H,I and related articles					
9	Fluorescence and raman spectroscopy	Related articles					
10	Midterm	Course notes and book					
11	X-ray spectroscopy,ESCA	Course book, part N and related articles					
12	Visualization methods: Optical microscopy	Course book, part N and related articles					
13	Visualization methods:SEM	Course book, part Q and related articles					
14	Visualization methods:AFM	Related articles					
15	Sensors: QCM, SPR	Related articles					
16	Final	Couse notes and book					

RESOURCES	
Course Notes	Related course notes and slides
Other Resources	D.A. Skoog, F.J. Holler and S.R. Crouch, Principles of Instrumental Analysis, 6th Edition, Thomson Brooks/Cole Publishers, 2007.

MATERIAL SHARING				
Documents	Related course notes and slides			
Homework	One assignment about related chapter of this course per week			
Exams	One midterm and one final			

RATING SYSTEM							
SEMESTER WORKS	NUMBER	CONTRIBUTION					
Midterm	1	20					
Homework and quiz	14	25					
TOTAL		70					
Success Rate of Semester		70					
Success Rate of Final	1	30					
TOTAL		100					

Course Category				
Basic Sciences and Mathematics	50%			
Engineering Sciences	50%			
Social Sciences	0%			

THE RELATIONSHIP BETWEEN THE LEARNING OUTCOMES AND PROGRAM COMPETENCE						
No	Program Outcomes	Contribution Level				
		1	2	3	4	5
1	Understanding of Life Sciences, Mathematics and Engineering at the post-graduate level, and being able to implement of this knowledge into bioengineering problems					x
2	Having the ability of developing a new scientific method or a technological product or process, and, designing experiments, implementing, collecting data and evaluating regarding these issues					x
3	Choosing technical equipment used in the applications related to bioengineering, having sufficient knowledge in adopting and using new technological equipment					x
4	Having the ability of reaching the information, using resources, contributing to the literature by transferring the process and results of scientific studies as written or verbally in the national and international environments					x
5	Having the ability of working as an individual or a team, in the teams composed of discipline or different disciplines, gaining awareness of leadership and taking responsibility				x	
6	Having advanced level of foreign language knowledge to manage efficient verbal, written and visual communication in the major field				x	
7	Having the understanding of ethics in science and the responsibility in profession with the awareness of lifelong learning, being beneficial to society and sensitiveness to global issues				x	
8	Being aware of the social impacts of the solutions and applications of the challenges regarding Bioengineering				x	

^{*}From 1 to 5, it increasingly goes.

ECTS / WORK-LOAD TABLE							
Activities		Duration (Hour)	Total (Work-Load)				
Course Duration (Including exam week: 16x total course hour)	16	3	48				
Out of Class Exercise Time (Pre-study, reinforcement)	16	7	112				
Reading	16	3	48				
Searching on Internet, library study	5	3	15				
Presentation	5	3	15				
Homework	16	3	48				
Midterms	1	15	15				
Final	1	15	15				
Total Work-Load			301				
Total Work-Load / 30			301/30				
Course ECTS Credit			7,5				