ABDULLAH GUL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE BIOENGINEERING DEPARTMENT COURSE DESCRIPTION AND SYLLABUS

Course Name	CODE	SEMESTER	T+L Hour	CREDIT	ECST
Biomechanics	522	FALL- SPRING	3 + 0	3	7,5

Prerequisite Courses

Course Type	Elective
Course Language	English
Course Coordinator	Prof. Dr. Sevil Dinçer İşoğlu
Lecturers	Prof. Dr. Sevil Dinçer İşoğlu
Course Assistants	None
Course Objectives	Learning of the systems which provide living organisms with locomotion. Learning of how to apply bioengineered devices to movement and locomotion systems.
Learning Outcomes	Students,
Course Content	Introduction to biomechanics and musculoskeletal system, introduction to processes of biomechanics and transport in biological systems, dynamics of mechanical systems, dynamics of muscle and joint, responses of living tissues to prolonged loads, application methods of mechanical engineering to human musculoskeletal system, mechanical properties of tissues, analysis of orthopedic materials in terms of their mechanical properties, stress- strain and unit deformations in materials, analysis of break and fracture, fixation of break- fracture, friction of implants, cases of polishing and wearing, selected topics about dynamics of heart and the tempo of the heartbeat, circulatory systems, microcirculation and mechanistic of muscles, current developments in advanced mathematical biomechanics, introducing of urgent problems that can be solved with certain research fields of biomechanics.

WEEKLY SUBJECTS AND RELATED PRELIMINARY PAGES						
Week	Subjects	Preliminary				
1	Introduction to biomechanics and musculoskeletal system	Recommended books and scientific publications				
2	Introduction to processes of biomechanics and transport in biological systems,	Recommended books and scientific publications				
3	Dynamics of mechanical systems	Recommended books and scientific publications				
4	Dynamics of muscle and joint	Recommended books and scientific publications				
5	Responses of living tissues to prolonged loads	Recommended books and scientific publications				
6	Application methods of mechanical engineering to human musculoskeletal system	Recommended books and scientific publications				
7	Mechanical properties of tissues	Recommended books and scientific publications				
8	Midterm	Recommended books and scientific publications				
9	Orthopedic materials in terms of their mechanical properties, stress- strain and unit deformations in materials	Recommended books and scientific publications				
10	Analysis of break and fracture, fixation of break- fracture, friction of implants, cases of polishing and wearing	Recommended books and scientific publications				
11	selected topics about dynamics of heart and the tempo of the heartbeat, circulatory systems, microcirculation and mechanistic of muscles	Recommended books and scientific publications				
12	Current developments in advanced mathematical biomechanics	Recommended books and scientific publications				
13	Introducing of urgent problems that can be solved with certain	Recommended books and				

	research fields of biomechanics.	scientific publications
14	Presentations	Recommended books and scientific publications
15	Presentations	
16	Final	

RESOURCES					
Course Notes	Nihat Özkaya, Margareta Nordin, V.H. Frankel, R. Skalak, "Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation", 1999, Springer; 2. baskı, ISBN-10: 0387982833.				
Other Resources	Konu ile ilgili bilimsel makaleler ve ders notları Y.C. Fung, "Biomechanics", Springer, 2. baskı, 1996), ISBN-10: 0387943846.				

MATERIAL SHARING				
Documents -				
Homework	Homework, presentation at the end of the semester			
Exams	Midterm, final			

RATING SYSTEM						
SEMESTER WORKS	NUMBER	CONTRIBUTION				
Midterm	1	35				
Presentation	1	25				
TOTAL		60				
Success Rate of Semester		60				
Success Rate of Final		40				
TOTAL		100				

Course Category				
Basic Sciences and Mathematics	50%			
Engineering Sciences	50%			
Social Sciences				

ТН	THE RELATIONSHIP BETWEEN THE LEARNING OUTCOMES AND PROGRAM COMPETENCE						
No			on ev	ntribution el			
		1	2	3	4	5	
1	Understanding of Life Sciences, Mathematics and Engineering at the post-graduate level, and being able to implement of this knowledge into bioengineering problems				X		
2	Having the ability of developing a new scientific method or a technological product or process, and, designing experiments, implementing, collecting data and evaluating regarding these issues				x		
3	Choosing technical equipment used in the applications related to bioengineering, having sufficient knowledge in adopting and using new technological equipment				x		
4	Having the ability of reaching the information, using resources, contributing to the literature by transferring the process and results of scientific studies as written or verbally in the national and international environments				x		
5	Having the ability of working as an individual or a team, in the teams composed of discipline or different disciplines, gaining awareness of leadership and taking responsibility				x		
6	Having advanced level of foreign language knowledge to manage efficient verbal, written and visual communication in the major field					x	
7	Having the understanding of ethics in science and the responsibility in profession with the awareness of lifelong learning, being beneficial to society and sensitiveness to global issues			x			
8	Being aware of the social impacts of the solutions and applications of the challenges regarding Bioengineering			x			

^{*}From 1 to 5, it increasingly goes.

ECTS / WORK-LOAD TABLE			
Activities	Activities	Duration (Hour)	Total (Work-Load)
Course Duration (Including exam week: 16x total course hour)	16	3	48

Out of Class Exercise Time (Pre-study, reinforcement)	16	7	112
Searching on Internet, library study	16	3	48
Presentation	5	3	15
Homework	16	3	48
Midterms	1	15	15
Final	1	15	15
Total Work-Load			301
Total Work-Load / 30			301/30
Course ECTS Credit			7,5