ABDULLAH GUL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE BIOENGINEERING DEPARTMENT COURSE DESCRIPTION AND SYLLABUS

Course Name	CODE	SEMESTER	T+L Hour	CREDIT	ECST
Molecular Biology lab for Engineers	BENG511	FALL-SPRING	3+0	3	7,5

Prerequisite Courses	None
-------------------------	------

Course Type	Elective		
Course Language	English		
Course Coordinator	Assist. Prof. Dr. Aysun Cebeci Aydın		
Lecturers	Assist. Prof. Dr. Aysun Cebeci Aydın		
Course Assistants	None		
Course Objectives	To learn basic molecular biology techniques		
Learning Outcomes	Student will learn about Basic principles in designing molecular biology experiments Apply basic molecular biology knowledge in a research project Learn the steps of the protocols, and interpret the results		
Course Content	Laboratory safety, DNA, RNA, PCR, qRT-PCR, plasmid isolation, sequencing		

WEEKLY SUBJECTS AND RELATED PRELIMINARY PAGES					
Week	Subjects	Preliminary			
1	Introduction I: Lab safety	Main course book and related articles			
2	Introduction II: Preparation of the solutions	Main course book and related articles			
3	DNA isolation, quantification and characterization	Main course book and related articles			
4	Primer design	Main course book and related articles			
5	PCR	Main course book and related articles			
6	Plasmid isolation from bacteria	Main course book and related articles			
7	Restriction enzymes	Main course book and related articles			
8	Ligation	Main course book and related articles			
9	Preparation for sequencing	Main course book and related articles			
10	Midterm	Main course book and related articles			
11	Interpreting sequencing results	Main course book and related articles			
12	Reverse transcription	Main course book and related articles			
13	RNA isolation	Main course book and related articles			
14	qRT-PCR	Main course book and related articles			
15	Interpretation of qRT-PCR results	Main course book and related articles			
16	Final exam	Main course book and related articles			

RESOURCES	
Course Notes	Lecture notes and slides
Other Resources	Course main book: "Molecular Biology Techniques, A Classroom Laboratory Manual" 3rd Edition

by Heather Miller, D. Scott Witherow, Sue Carson. Academic Press

MATERIAL SHARING				
Documents	Lecture notes and slides			
Homework	1 homework / week			
Exams	1 MT and 1 Final			

RATING SYSTEM						
SEMESTER WORKS	NUMBER	CONTRIBUTION				
Midterm	1	20				
Homework	14	25				
Quizzes	14	25				
TOTAL		70				
Success Rate of Semester		70				
Success Rate of Final	1	30				
TOTAL		100				

Course Category	
Basic Sciences and Mathematics	%90
Engineering Sciences	%10
Social Sciences	%00

THE RELATIONSHIP BETWEEN THE LEARNING OUTCOMES AND PROGRAM COMPETENCE							
No	No Program Outcomes		Contribu Level			ution	
		1	2	3	4	5	
1	Understanding of Life Sciences, Mathematics and Engineering at the post-graduate level, and being able to implement of this knowledge into bioengineering problems					x	
2	Having the ability of developing a new scientific method or a technological product or process, and, designing experiments, implementing, collecting data and evaluating regarding these issues					x	
3	Choosing technical equipment used in the applications related to bioengineering, having sufficient knowledge in adopting and using new technological equipment					X	
4	Having the ability of reaching the information, using resources, contributing to the literature by transferring the process and results of scientific studies as written or verbally in the national and international environments					x	
5	Having the ability of working as an individual or a team, in the teams composed of discipline or different disciplines, gaining awareness of leadership and taking responsibility				X		
6	Having advanced level of foreign language knowledge to manage efficient verbal, written and visual communication in the major field				X		
7	Having the understanding of ethics in science and the responsibility in profession with the awareness of lifelong learning, being beneficial to society and sensitiveness to global issues					x	
8	Being aware of the social impacts of the solutions and applications of the challenges regarding Bioengineering					x	

ECTS / WORK-LOAD TABLE						
Activities	Activities	Duration (Hour)	Total (Work-Load)			
Course Duration (Including exam week: 16x total course hour)	16	3	48			
Out of Class Exercise Time (Pre-study, reinforcement)	16	7	112			
Searching on Internet, library study	14	3	42			
Quizzes	14	2	28			
Homework	14	3	42			
15Midterms	1	15	15			
Final	1	15	15			
Total Work-Load			302			
Total Work-Load / 30			302/30			
Course ECTS Credit			7,5			